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Early detection remains a significant challenge for the treatment of depression. In
our work, we proposed a novel approach to mild depression recognition using
electroencephalography (EEG). First, we explored abnormal organization in the
functional connectivity network of mild depression using graph theory. Second, we
proposed a novel classification model for recognizing mild depression. Considering the
powerful ability of CNN to process two-dimensional data, we applied CNN separately
to the two-dimensional data form of the functional connectivity matrices from five
EEG bands (delta, theta, alpha, beta, and gamma). In addition, inspired by recent
breakthroughs in the ability of deep recurrent CNNs to classify mental load, we merged
the functional connectivity matrices from the three EEG bands that performed the
best into a three-channel image to classify mild depression-related and normal EEG
signals using the CNN. The results of the graph theory analysis showed that the brain
functional network of the mild depression group had a larger characteristic path length
and a lower clustering coefficient than the healthy control group, showing deviation from
the small-world network. The proposed classification model obtained a classification
accuracy of 80.74% for recognizing mild depression. The current study suggests that
the combination of a CNN and functional connectivity matrix may provide a promising
objective approach for diagnosing mild depression. Deep learning approaches such
as this might have the potential to inform clinical practice and aid in research on
psychiatric disorders.
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INTRODUCTION

Depression is a global public health problem, which has a
relatively high lifetime prevalence, ranging from 2 to 15%, and
is associated with significant morbidity (Ustun and Chatterji,
2001; Üstün et al., 2004). According to the latest data from
the World Health Organization (2017)1, more than 300 million
people are now living with depression1. Presently, the most
widely used methods for depression diagnosis are based on Beck’s
Depression Inventory (BDI), the patient’s self-report, the doctor’s
clinical experience, or some combination thereof. However, the
accuracy of this diagnosis is often influenced by the doctor’s
proficiency and patient’s cooperation, both of which are highly
subjective. Critically, a subset of depression–mild depression–
receives far less attention than does depression, despite being
more common than depression and often increasing in severity
over time (Volz and Laux, 2000). This lack of attention leads to
missed early detection and treatment and increases the mortality
risk and likelihood that mild depression will evolve into major
depression (Fogel et al., 2006; Lyness et al., 2006). Additionally,
mild depression is not only a mental illness but also often a
social problem (Li et al., 2016b). Therefore, studies of methods
that might improve the early detection and treatment of mild
depression are both necessary and meaningful.

With the emergence of more and more studies of depression
using functional brain imaging, it is becoming clear that this
psychopathology might be relevant to the distributed properties
of large-scale cortical systems across many functionally
connected cortical regions (Spence, 1995; Dalgleish, 2004; Wang
et al., 2012). Recent studies have provided further evidence that
depressed individuals tend to have altered brain functional
connectivity, such as significantly decreased functional
connectivity between right posterior insula and a series of
sensory cortices (Hu et al., 2019), decreased brain activity in the
dorsolateral prefrontal cortex, superior temporal gyrus, posterior
precuneus, and posterior cingulate (Zhong et al., 2016), and
increased subgenual cingulate–thalamic connectivity (Ajilore
et al., 2015). To examine the functional connectivity of the brain,
various metrics have been used, including coherence, correlation,
phase locking value, and phase lag index, among others.

Electroencephalography (EEG) coherence is an effective
measure of functional cortical connectivity and is used
to calculate linearly dependent interactions between the
frequencies of EEG signals derived from two electrodes or
brain regions (Andrew and Pfurtscheller, 1996; Pfurtscheller
and Andrew, 1999). This measure results in a symmetrical,
two-dimensional (2D) matrix. High coherence between two EEG
signals reflects synchronized neuronal oscillations (suggesting
functional integration between neural populations), while
low coherence indicates independently active populations
(suggesting functional segregation) (Murias et al., 2007). Using
EEG coherence to study the brain activity of patients with
depression (Li et al., 2017), as well as those with Alzheimer’s
disease (AD) (Wada et al., 1998) and Parkinson’s disease
(Teramoto et al., 2016), has been quite successful. For example,

1https://www.who.int/mental_health/management/depression/en/

Murias et al. (2007) observed an elevated EEG theta coherence
in the frontal and temporal regions of the left hemisphere in
individuals with autism spectrum disorder. In a study that used
EEG coherence to assess resting state functional connectivity,
Teramoto et al. (2016) found a decreased resting state functional
connectivity between the frontal and parietal cortices, especially
in the left hemisphere, of patients with Parkinson’s disease.
Yingjie et al. (Li et al., 2015) further used EEG coherence to
investigate differences in brain functional networks between
patients with depression and healthy controls, while they were
processing emotional stimuli. The authors found that global EEG
coherence in the gamma band was significantly higher in patients
with depression than it was in healthy controls.

Correlation is an alternative method of calculating functional
connectivity matrices and is often used to estimate the level of
linear dependence between two electrode channels. In a study
by Zhang et al. (2018) that measured functional connectivity,
the authors calculated the Pearson correlation coefficients of
the power spectral densities for the delta, theta, alpha, beta,
and gamma bands. Following this, they constructed a square
correlation matrix for each participant and each frequency band.
Finally, the functional brain networks of healthy controls and
patients with major depressive disorder (MDD) were constructed
using the correlation matrix. The results revealed that compared
to healthy controls, the patients with MDD showed significant
randomization of the global network metrics.

A statistical method known as “phase synchronization” can
also be used to measure coordinated activation across different
brain regions. In biological signals, such as EEG time series,
synchronization is measured by calculating the phase locking
value (PLV). Mormann et al. (2000) reported on the application
of phase synchronization methods to biological time series
data representative of brain electrical activity in patients with
epilepsy. They observed characteristic spatial and temporal shifts
in synchronization that appeared to be strongly related to
pathological activity. In particular, the authors reported distinct
differences in the degree of synchronization between recordings
from seizure-free intervals and those from the intervals just
before an impending seizure.

The phase lag index (PLI) is another measure of asymmetry in
the distribution of phase differences between two signals. The PLI
is an alternative measure of statistical interdependencies between
time series that reflects the strength of their coupling by detecting
consistent, non-zero phase lag between the two times series. Stam
et al. (2007) found that PLI performed well for detecting relative
increases in synchronization between the pre-seizure and seizure
epochs. In addition, upon analyzing the EEG signals, the authors
found that the average PLI in the beta band was significantly
lower in patients with AD (15 subjects) than it was in healthy
controls (15 subjects).

The current mainstream method for studying brain functional
connectivity is to convert a functional connectivity matrix
into a graph via graph theory analysis. After completing a
characterization of the topological properties of the graph, the
clustering coefficient and characteristic path length–two indices
that characterize a graph and correspond to the two basic
principles of brain functional organization, namely, functional
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separation and integration (Friston, 2009), respectively–are used
to distinguish between patients with neurological disorders
and healthy controls. In addition, these two indices can
comprehensively reflect the small-world characteristics of the
network. Randomization of network topology and distribution
of the small-world network architecture have been consistently
shown in AD, schizophrenia, and depression. Stam et al.
(2006) found that the characteristic path length in AD patients
was significantly longer than that in healthy controls and
demonstrated that AD is characterized by loss of small-
world network characteristics. Rubinov et al. (2009) found
a randomization of the small-world network structure in
schizophrenia. One EEG study showed that the loss of small
world characteristics in the sleep functional brain network in
MDD indicates a disruption of topological organization caused
by this disease (Zhang et al., 2011). In addition, Leistedt et al.
(2009) reported that the healthy controls’ neural network is closer
to the ordered part of the rewiring scale, while the depressed
patients’ brain network during sleep is closer to the random part
of the scale. Although changes in brain function connectivity in
MDD have been known, the functional brain network structure of
mild depression is unclear. Therefore, we analyzed the functional
brain network of mild depression through graph theory.

Deep neural networks have recently achieved great success
in the widespread application of large-scale image- (Hinton
et al., 2012), video- (Karpathy et al., 2014), and text-based
recognition tasks (Hermann et al., 2015; Zhang and Lecun,
2015). Convolutional neural networks (CNNs) lie at the core
of the best current architecture processing methods for both
image and video data, primarily due to the advantages of
CNNs in processing 2D input data (Cecotti and Graser, 2011).
CNN has good performance in the field of biological image
classification, and the features learned from CNN are often better
than handcrafted features (Bello-Cerezo et al., 2019). The studies
of Nanni et al. (2019a; 2019b) show that ensemble system of
handcrafted and learned features can boost the performance of
CNN in bioimage classification. In neural signal classification,
several studies have used different methods to convert EEG
signals into image representations. One, in particular, used the
short-term Fourier transformation method to convert EEG time
series into 2D images and combined 1D CNNs and stacked
autoencoders to classify EEG motor imagery signals (Tabar
and Halici, 2016). This approach yielded a 9% improvement
over the winning algorithm. A new representation of EEG
signals was proposed by Bashivan et al. (2015) that preserves
the structure of EEG data across space, time, and frequency
bands. In this approach, 3D electrode locations were projected
onto a 2D surface using azimuthal equidistant projection, and
the spectral power within three prominent frequency bands
was extracted for each location. This was then used to form
topographical maps that were subsequently combined to form
three-channel images. Finally, these three-channel images were
input into a deep convolutional recurrent neural network to
further classify the EEG signals. Inspired by these studies
and the powerful ability of CNNs to process 2D data, we
innovatively applied a CNN to the 2D data form of functional
connectivity matrices and constructed a classification model

for mild depression as a depression recognition method other
than graph theory.

In addition, research on facial emotion processing plays
a significant role in the study of emotion and cognition in
patients with depression. For example, David et al. (Rubinow
and Post, 1992) conducted an experiment where 17 patients
with depression and 31 healthy controls were asked to recognize
seven affective states within images of facial expressions. The
results revealed that patients with depression were significantly
impaired in their ability to recognize facial affect; specifically,
they made significantly (or nearly significantly) fewer correct
matches for sad, happy, and interested face items. Similarly, James
et al. (Cavanagh and Geisler, 2006) examined mood-relevant
emotion processing in individuals with depression using event-
related potentials. Mixed-model analyses of variance revealed
significantly reduced P3 amplitudes and P3 latencies for happy
faces in participants with depression. The authors interpreted
these findings as providing evidence for a diminished cognitive
processing ability during emotion discrimination in individuals
with depression. Collectively, these studies reveal differences
in the brain activity of patients with depression and healthy
individuals during common face-processing tasks. Therefore,
in the current study, we used a facial expression paradigm to
investigate differences in brain functional connectivity between
individuals with mild depression and healthy controls.

In the present study, we first studied the differences in
the brain functional network between the mildly depressed
group and the normal control group using graph theory. We
calculated the four functional connectivity matrices of coherence,
correlation, PLV, and PLI and converted them into binary
undirected graphs. We calculated the characteristic path length,
clustering coefficient, and the small-world properties of the
brain functional network of the two groups to investigate the
differences in these indices between two groups. Then, we
proposed a novel approach aimed at improving the ability to
recognize individuals with mild depression. Inspired by the
proven utility of CNNs in image processing, we used a CNN
to process EEG signals. EEG time series signals were converted
into images through calculating functional connectivity matrices,
and then these images from the two groups were used to classify
individuals with mild depression and healthy controls in a CNN.

MATERIALS AND METHODS

Network Analysis
Coherence Analysis
Coherence is defined as the spectral cross-correlation between
two signals normalized by their power spectrum. Coherence is
computed mathematically as:

Cohxy(f ) =

∣∣∣ 1
n
∑n

k=1 Ax(f , k)Ay(f , k)ei(ϕx(f ,k)−ϕy(f ,k))
∣∣∣√( 1

n
∑n

k=1 A2
x(f , k)

) ( 1
n
∑n

k=1 A2
y(f , k)

) (1)

where n is the number of data points in a trial. A and ϕ

are the amplitude and phase of the signal, respectively. The
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numerator term represents the cross-spectral density on a single
trial between the signals x and y at frequency f. The denominator
represents the square root of the product of the power estimates
on a single trial of the signals x and y at frequency f.

The coherence can then be concisely defined as:

Cohxy(f ) =
|Sxy(f )|√

Sxx(f )Syy(f )
(2)

where Sxy(f) is the cross-spectral density of the signal, and Sxx(f )
and Syy(f ) are the power spectral density of signals x and y,
respectively. Values of Cohxywill always satisfy 0 ≤ Cohxy(f ) ≤ 1,
where 0 represents no coupling, and 1 indicates maximum linear
interdependence between two signals.

Correlation Analysis
Correlation (Pearson correlation coefficient) is used to estimate
the level of linear dependence between two electrode channels in
the time domain. The correlation is given by the following:

Corrxy =
Cov(x, y)

σxσy
(3)

where Cov(x, y) is the covariance between electrodes x andy,
σxand σy are the standard deviations of the electrodes x and y,
respectively. Corrxy has a value between 1 and −1, where 1 is
a total positive linear correlation, 0 is no linear correlation, and
−1 is a total negative linear correlation. The greater the absolute
value of Corrxy, the stronger the correlation.

Phase Locking Value Analysis
The PLV (Mormann et al., 2000) assumes that the signal
amplitude and phase are statistically independent, and thus,
only the phase synchronization is used to estimate a possible
functional interaction between the EEG signals of two channels.
When Ax(.,.) = Ay(.,.) = 1 in Eq. (1), the PLV is obtained (Lachaux
et al., 1999), as follows:

PLVxy(f ) =

∣∣∣ 1
n
∑n

k=1 1x(f ,k)1y(f ,k)ei(ϕx(f ,k)−ϕy(f ,k))
∣∣∣√( 1

n
∑n

k=1 12
x(f ,k)

)( 1
n
∑n

k=1 12
y(f ,k)

)
=

∣∣∣ 1
n
∑n

k=1 ei(ϕx(f ,k)−ϕy(f ,k))
∣∣∣ (4)

The value of PLV is between 0 and 1, where 0 represents a lack of
synchronization, and 1 represents perfect phase synchronization.

Phase Lag Index Analysis
The PLI (Stam et al., 2007) is a measure of the asymmetry of the
distribution of phase differences between two EEG signals and is
defined as follows:

PLIxy(f ) = |
1
n

n∑
k=1

sign(φx(f , k)− φy(f , k))| (5)

where n is the number of data points, and φx(f , k)− φy(f , k)
represents the phase synchronization between the signals in
channels x and y at the frequency f. It is essential to know
the instantaneous phase of the two signals involved, which can
be achieved using the analytical signal based on the Hilbert

transform (Bruns, 2004), to compute the phase synchronization.
The PLIxy(f ) ranges between 0 and 1, where 1 indicates perfect
phase synchronization and 0 indicates either no coupling or
coupling with a phase difference centered around 0 mod π.
PLI, contrary to the other methods, basically disregards perfect
coupling (zero phase) or phase opposition coupling, which
cannot be distinguished from no coupling.

Four kinds of metrics, coherence, correlation, PLV, and
PLI, were calculated using all 128 EEG channels through the
Neurophysiological Biomarker Toolbox2. For each trial, four
128 × 128 matrices were obtained (128 was the number of EEG
channels). For each kind of metric, we considered the following
EEG bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz), and gamma (30–70 Hz).

Complex Network Analysis
Applying graph theoretical analysis to a functional connectivity
matrix is to convert the matrix into a binary undirected graph.
The functional connectivity matrix can be converted to a graph
by considering a threshold T. If the functional connectivity metric
between a pair of channels exceeds T, then there is an edge,
otherwise there is no edge. The choice of T has an important
impact on the constructed graph, i.e., a low T-value will result
in a densely connected network, while a large T-value will result
in a sparse network. Since there is no unique method to select the
appropriate threshold, we studied the entire range of values of T
(0 < T < 1, with increments of 0.025 for coherence, correlation,
and PLV and 0.005 for PLI) and repeated the full analysis for each
value of T.

Once we converted the functional connectivity matrix into a
graph, the next step is to characterize the graph in terms of its
characteristic path length L and its cluster coefficient C. These two
indices correspond to the two basic principles of brain function
organization, that is, functional integration and segregation
(Friston, 2009). Functional integration reflects the brain’s ability
to organize and combine information from different brain
regions, and could be well measured by the characteristic
path length L, which is obtained by calculating the average
shortest path length between all pairs of nodes. Functional
segregation reflects the ability to process information in a
specialized way. Clustering coefficient C is often used to measure
functional segregation. “C quantifies the number of connections
between the nearest neighbours of a node as proportion of the
maximum possible number of connections” (Strogatz, 2001).
After clustering coefficients of all nodes are calculated, the average
is taken as the clustering coefficient of the network.

To establish the network topology characteristics, the ratios
C/Cr and L/Lr are calculated as a function of the threshold T,
where Cr and Lr represent the values of C and L for matched
random networks. Random networks have the same nodes and
connectivity as the original network, whereas their choice of
connected nodes is completely random. Following the previous
studies (Watts and Strogatz, 1998; Stam et al., 2006; Li et al.,
2015) that generated 20 random networks, 20 matched random
networks are generated here for each actual network of each

2http://www.nbtwiki.net/
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subject, and their average Cr and Lr are calculated to compare
with the actual network. When values of C/Cr are significantly
greater than 1, while the values of L/Lr are close to the value of
1, the small-world network organization is evident. In addition,
Humphries et al. (2005) defined a single scalar index S to quantify
the “small-world-ness” of a network, S = γ

λ
=

C/Cr
L/Lr

, and a value
of S greater than 1 is often used as a simple indicator of small-
world organization.

The software used in this study was the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010) for calculating two graph
theoretical measurements.

Convolutional Neural Network
Input
We used only the upper triangular part of the 128 × 128
functional connectivity matrices due to the symmetry of
matrices and computational efficiency of neural networks. This
triangular part contains 8,256 elements, of which 128 are
on the diagonal. As the elements on the diagonal are the
coherence/correlation/PLV/PLI values between an electrode and
itself, we excluded these 128 elements. Since the input to the
CNN is generally square, we organized the remaining 8,128
elements into a square and made the size of the square as
small as possible. In addition, considering that the functional
connectivity metric located in the last part of the upper triangle
is calculated based on the electrodes distributed on the face,
they are more affected by myoelectricity and ocular electricity.
We, thus, organized the 8,128 elements line by line into a
90 × 90 matrix and discarded the last 28 elements, which
are calculated based on the eight electrodes E121, E122, E123,
E124, E125, E126, E127, E128. The transformation process is
depicted in Figure 1. A new 90 × 90 matrix was transformed
into a single-channel image and served as the CNN’s input.
It is worth mentioning that the elements in the functional
connectivity matrix are arranged according to the increasing
electrode number, and the neighborhood relationship between
the electrodes did not represent the neighborhood information of
128 electrodes on HydroCel Geodesic Sensor Net. In other words,
the location information of the electrodes was not preserved
in the functional connectivity matrix. In addition, studies such
as those mentioned in this review (De Aguiar Neto and Rosa,
2019) involve little information on the location of the electrodes
when performing depression recognition. Similarly, in our study,
the key piece of information for depression recognition is the
functional connectivity value between the electrode pairs rather
than the location of these values. So the element rearrangement
during this transformation process will not have any obvious
influence on mild depression recognition.

In addition, inspired by the work of Bashivan
et al. (2015), we merged the 90 × 90 single-channel
functional connectivity matrices into an image with
three channels. We used the three bands with the best
classification performance for each functional connectivity
matrix as the red, green, and blue channels to generate
a three-channel image that was then fed into the
CNN (Figure 2).

Architecture
It is known that CNNs are multi-layer neural networks with
several convolution–pooling layer pairs and a fully connected
output layer (Tabar and Halici, 2016). A standard CNN (LeCun
et al., 1990) is designed to recognize the shape in the images. As
shown in Figure 3, the CNN model used here mainly included
the following types of layers: convolution, pooling, activation
function, fully connected layer, and softmax layer. Below, we
provide brief descriptions of each of these.

In simulating orientation-selective simple cells in the primary
visual cortex of the brain (LeCun et al., 2010), convolution
is considered to be an indispensable component of CNN
frameworks. The input data x is a tensor with K channels. There
are K′ filters of weights W generating K ′output y, as shown in Eq.
(6). In our network architecture, K = 1 or K = 3, K ′ = 32.

yi′ j′k′ =
∑
ijk

wijkk′ xi+i′ ,j+j′ ,k (6)

In the present study, we adopted two stacked convolutional layers
as the basic structure of the CNN. Each convolutional layer
used 32 3 × 3 small filters with a convolution stride of one.
Convolution layer inputs were padded with one pixel to preserve
the spatial resolution after convolution.

Pooling was also an important operation in the CNN
framework. Multiple pooling methods serve to simulate complex
cells in the brain’s visual cortex (LeCun et al., 2010). In practice,
the pooling method known as max pooling has been shown to
work better than does average pooling. Specifically, max pooling
calculates the max response of each feature map in a patch of size
p× p as follows:

yijk = max
{

yi′ j′k : i ≤ i
′

< i+ p, j ≤ j
′

< j+ p
}

(7)

Max pooling is performed over a 2 × 2-pixel window here with
a stride of two.

Additionally, we selected a rectified linear unit as an activation
function for our CNN model, since it has performed both
accurately and quickly in other CNN models (Dahl et al., 2013;
Donahue et al., 2014). Its output is given by the following
formula:

yijk = max(0, xijk) (8)

The max pooling layer is followed by a fully connected layer with
512 hidden cells, the last layer of which is a two-way softmax
layer. The softmax layer is usually used for classification in
CNN, and several classifications use several ways of softmax. In
our study, since our goal is to distinguish between depression
and normal subjects, that is, two classifications, we used two-
way softmax. Softmax changes the output of the original neural
network into a probability output to represent the probability
that a sample belongs to different categories. Assuming that the
output of the original neural network is y1, y2, . . . yn, then the
output after softmax processing is:

softmax(y)i =
eyi∑n
j=1 eyj

(9)
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FIGURE 1 | The transformation process of functional connectivity matrices. The first row represents the original functional connectivity matrices corresponding to
128 electrodes. The second row represents the new 90 × 90 matrices obtained by rearranging the elements in the upper triangle of the original functional
connectivity matrices. From left to right are, the functional connectivity matrices for coherence, correlation, phase locking value, and the phase lag index.

FIGURE 2 | Three-channel input of the convolutional neural network (CNN). The three bands with the best classification performance among the five bands (delta,
theta, alpha, beta, and gamma) of each type of functional connectivity matrix were used as the red (R), green (G), and blue (B) channels of the image to generate a
three-channel image that was then used as input for the CNN.

Training
Most of the code used in the present study was written in
Python (version 3.5). The CNN model was trained and tested
based on a lightweight library named Lasagne3, which was

3https://github.com/Lasagne/Lasagne

used for building and training the neural networks in Theano
(Al-Rfou et al., 2016).

The network was trained with the Adam algorithm (Kingma
and Ba, 2014), which has demonstrated a competitively fast
convergence rate in the training of neural network (Bashivan
et al., 2015). The learning rate was 10−3, and the decay rates of
the first and second moments were 0.9 and 0.999, respectively.
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FIGURE 3 | Schematic structure of the convolutional neural network we
constructed.

The weight initialization method we used was Xavier (Glorot and
Bengio, 2010), which has been shown to be effective in network
training (Jiao et al., 2018). We also used early stopping to monitor
the performance of the model over the validation sets. Dropout
(Hinton et al., 2012) with a probability of 0.5 was used across all
fully connected layers. The effectiveness of this dropout to reduce
overfitting in deep neural networks with millions of parameters
has been shown previously (Krizhevsky et al., 2012) and in
neuroimaging applications specifically (Plis et al., 2014). Because
of implicit regularization imposed by smaller convolution filter
sizes, the network requires fewer epochs to converge. Given this,
our model was trained over 15 epochs with a batch size of 30.

EXPERIMENTS

Participants
Fifty-one students (36 males, 15 females) aged between 18 and 24
were recruited from Lanzhou University and participated in the
study. All of them had no prior history of psychopathology and
had normal or corrected-to-normal vision. All participants were
interviewed by psychologists after completing an investigation
in the psychological screening system of Lanzhou University.
According to psychologists, 24 of them were considered
depressed, and the remaining 27 were healthy. Also, participants
were asked to finish the Beck Depression Inventory test-II (BDI-
II) (Beck et al., 1996) before experiment. Analysis of BDI-II
showed that the BDI-II scores in the depression group ranges
from 14 to 28, corresponding to mild depression, whereas the
BDI-II scores of the healthy group were all lower than 13. In
order to ensure that the number of samples was balanced for
the two groups, 24 healthy participants were selected to comprise

TABLE 1 | Characteristics of the individuals with mild depression and
healthy controls.

Mild depression (n = 24) Healthy controls (n = 24)

Age (years) 20.96 ± 1.95 20 ± 2.02

BDI-II score 17.63 ± 3.41 4.63 ± 3.00

Sex

Female 6 9

Male 18 15

Data are presented as the number or mean ± standard deviation. BDI-II, Beck
Depression Inventory test-II.

FIGURE 4 | Representative picture from the Neu_block (Left) and Emo_block
(Right).

our control group. Table 1 shows the demographic characteristics
and BDI-II scores of the two groups. This study was approved
by the Ethics Committee of Lanzhou University Second Hospital
(reference number: 2015A-037) and was conducted in full
compliance with the ethical standards outlined in the Declaration
of Helsinki. All participants signed an informed consent form
before the experiment and received monetary compensation after
study completion.

Materials and Procedures
The stimuli used in the experiment were derived from the
China Facial Affective Picture System (Gong et al., 2011), a
subsystem in the standardized emotional stimuli picture system.
We selected pictures of 45 neutral faces and 15 negative faces,
including three each of angry, sad, disgusted, surprised, and
fearful faces. The experiment consisted of two blocks, emotional
block (Emo_block) and neutral block (Neu_block). Each block
contained 15 trials. Each trial in the Emo_block contained an
emotional expression and a neutral facial expression picture.
Each trial in the Neu_block contained two pictures of neutral
facial expressions. Each picture appeared randomly on either the
right or left side of the screen. All faces were presented without
hair, glasses, beards, or other facial accessories, and the two facial
expressions used in each trial were combined into one image and
presented on the screen. All 30 images were processed with the
Adobe Photoshop CS6 software (Adobe Systems Incorporated,
San Jose, CA, United States), and the size (1,280 × 738 pixels,
10.84× 6.25 cm) and gradation were made uniform (Figure 4).

Instructions were displayed on the screen before the beginning
of each block. Further, four practice trials identical to the real
trials were included to ensure that all participants understood the
experimental procedures. Each trial was presented for 6 s. A black
background was also presented for 2 s between every two trials.
The participants were comfortably seated 60 cm from a 17-inch
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liquid crystal display monitor with a resolution of 1,024 × 768
and instructed to view each trial freely. A 2-min rest period
followed the Neu_block, which was followed by the Emo_block.
The whole protocol took approximately 7 min.

EEG Acquisition and Data Preprocessing
Electroencephalography signals were collected using a 128-
channel HydroCel Geodesic Sensor Net (Electrical Geodesics,
Inc.). The EEG electrodes were placed according to the HydroCel
Geodesic Sensor Net128 Channel Map (Version 1.0) and
referenced to Cz. The impedance of all electrodes was maintained
below 60 k� (Ferree et al., 2001), and EEG signals were
continuously recorded at a sampling frequency of 250 Hz.
Because the signal gathered between two trials was not valid, each
participant’s continuous EEG signals were divided into 30 6-s
segments according to marks in the time series. All EEG signals
were high-pass filtered at a 0.5-Hz cutoff frequency and low-pass
filtered at a 70-Hz cutoff frequency. Eye movement and muscle
activity artifacts were discarded using Net Station Waveform
Tools. Furthermore, because ocular artifacts are presented in the
frequency band between 0 and 16 Hz, they overlap with the
alpha rhythm frequency band (8–13 Hz). This study, therefore,
used FastICA to eliminate ocular artifacts, as this approach has
previously been shown to be effective in delineating between
overlapping frequency bands (Hu et al., 2011). We used MATLAB
R2010a (Mathworks, Natick, MA) to process all data.

RESULTS

Results of Network Analysis
In this section, our results show a significant difference in the
small-world property between the two groups by showing the
relationship between the small-world property and the thresholds
of the two groups (Small-World Property section); statistical
analysis of the mean clustering coefficient for each electrode was
performed to determine the specific distribution of functional
connectivity differences between the two groups in the brain
(Statistical analysis of the mean clustering coefficient for each
electrode section). In The Topological Structures of the Networks
section, we visualized the functional connectivity differences
between the two groups using coherence as an example.

Small-World Property
Figure 5 shows the mean small-world index S as a function
of threshold T for the two groups. For coherence, a significant
difference between the two groups was found in the delta band
under Neu_block and in the theta band under Emo_block.
The value of S in the mildly depressed group was significantly
lower than that in the healthy control at most of the T-values
points (indicated by asterisks). For the correlation, PLV, and
PLI, we found a similar difference only in the delta band
under both blocks.

In addition, from the separate analysis of γ and λ, we found
that the γ of both groups was greater than 1, but the difference
between the groups was not significant. The λ of both groups was
less than 1 and close to 1, indicating that the brain networks of

both groups showed small-world characteristics; however, the λ

of the mild depression group was significantly higher than that
of the healthy control group, showing that the functional brain
network of the mild depression group deviated from the small-
world network.

Statistical Analysis of the Mean Clustering Coefficient
for Each Electrode
Table 2 shows the statistical analysis of the mean clustering
coefficient based on independent samples t-tests for each
electrode for coherence and PLV under Neu_block and
Emo_block. For both metrics, we observed a similar pattern,
that is, in the delta band, the clustering coefficient of the
mild depression group was significantly higher than that of
the healthy control group for the electrodes distributed in the
temporal and frontal regions, but the results were exactly the
opposite for the electrodes distributed in the central and parietal–
occipital regions; in the beta band, the mild depression group
had significantly lower clustering coefficient in the parietal–
occipital region than the healthy controls under Neu_block and
Emo_block, and the difference was mainly found in the right
hemisphere. We observed a different pattern for correlation.
Differences between the two groups were observed in all five
bands, and we listed those common electrodes on which there are
differences between the two groups in the five bands in Table 3.
Similarly, the mild depression group had a significantly lower
clustering coefficient than had healthy controls under Neu_block
and Emo_block, and the differences were mainly found in the
parietal–occipital region of the right hemisphere. The above
statistical analysis was performed at a threshold T of 0.15. For
the PLI, no differences between the two groups were found
on all five bands.

The Topological Structures of the Networks
In order to visualize the distribution of coherence differences
between the two groups, we plotted the topological structures
of functional networks between the mild depression group and
healthy controls at a threshold of 0.1 in the delta band under
Neu_block. Figure 6 was drawn based on the absolute value
obtained by subtracting one coherence matrix from another one.
When the absolute value was greater than the threshold of 0.1,
there would be a connection in the figure. At a threshold of 0.1,
the difference in coherence between the two groups in the delta
band can be clearly seen. Most of the connections are distributed
in the central, temporal regions and parietal–occipital region of
the right hemisphere, and a few connections are distributed in
the frontal region.

Classification Results
To evaluate the proposed CNN classification model, 24-fold
cross-validation was adopted. In each fold, the functional
connectivity matrices from one control and one participant
with mild depression were used for testing, while matrices from
remaining participants were utilized as training data and for
validation. In each fold, the functional connectivity matrices of
another mild depression and healthy control participants were
used for validation. The functional connectivity matrices of the
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FIGURE 5 | The mean small-world index S as a function of the threshold T for the two groups under Neu_block and Emo_block. For the four metrics of coherence,
correlation, phase locking value (PLV), and phase lag index (PLI), the values of S in the mildly depressed group were significantly smaller than those in healthy
controls. The title of each subgraph is denoted as “metric_band_block.” The horizontal axis presents different thresholds. The values under asterisks (*) denoted the
values of S at different thresholds when the difference between two groups was significant at these thresholds. **The value of p smaller than 0.05; *the value of p
between 0.05 and 0.1.
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TABLE 2 | Statistical analysis of clustering coefficient using coherence and PLV (T = 0.15).

Neu_block Emo_block

Metric Band Electrode N D F P region Electrode N D F P region

Coherence Delta E31 0.326 0.3026 0.007 0.039 LC E2 0.2719 0.2851 2.699 0.022 RF

E60 0.3855 0.3646 0.016 0.047 LPO E7 0.3045 0.2837 0.315 0.02 LC

E78 0.3777 0.3543 0.014 0.039 RPO E31 0.3287 0.3026 0.032 0.018 LC

E79 0.3658 0.3394 0.138 0.033 RC E60 0.38 0.3585 0.311 0.039 LPO

E89 0.3859 0.3436 19.833 0.017 RPO E78 0.3729 0.3503 0.101 0.045 RPO

E111 0.3392 0.3183 0.525 0.043 RC E89 0.38 0.341 9.471 0.022 RPO

E119 0.3155 0.3341 0.25 0.043 RT E119 0.3096 0.3308 0.07 0.017 RT

E126 0.2842 0.2995 1.457 0.04 RF E126 0.279 0.2984 0.045 0.013 RF

E127 0.2751 0.2943 1.959 0.012 LF

Beta E63 0.3572 0.3238 2.605 0.023 LT E56 0.3515 0.3177 14.499 0.034 LT

E67 0.3541 0.3313 1.274 0.03 LPO E60 0.3569 0.3293 7.942 0.033 LPO

E68 0.3526 0.3303 1.337 0.032 LPO E63 0.3588 0.319 10.884 0.017 LT

E69 0.3575 0.329 0.527 0.035 LPO E67 0.3577 0.3298 5.523 0.019 LPO

E71 0.3616 0.3381 2.142 0.046 LPO E68 0.326 0.3291 5.474 0.023 LPO

E73 0.3492 0.3185 3.887 0.031 LPO E69 0.3587 0.3254 4.372 0.028 LPO

E74 0.3593 0.3319 1.998 0.042 LPO E71 0.3651 0.336 6.753 0.03 LPO

E77 0.3543 0.3301 2.533 0.047 RPO E73 0.3512 0.3148 10.285 0.026 LPO

E78 0.443 0.3195 3.511 0.038 RPO E74 0.3619 0.3277 5.502 0.025 LPO

E84 0.3624 0.3353 1.701 0.044 RPO E77 0.3575 0.3293 4.993 0.038 RPO

E85 0.3536 0.3255 1.354 0.027 RPO E78 0.3471 0.3205 6.769 0.049 RPO

E89 0.3612 0.3148 0.402 0.006 RPO E84 0.3635 0.3335 4.796 0.043 RPO

E91 0.3587 0.3293 1.92 0.036 RPO E85 0.3552 0.3254 3.586 0.032 RPO

E98 0.3495 0.3223 7.493 0.044 RC E86 0.3461 0.3155 6.666 0.033 RC

E87 0.3275 0.3016 7.723 0.043 RC

E89 0.3622 0.3093 0.288 0.004 RPO

E90 0.3622 0.3304 4.187 0.036 RPO

E91 0.3598 0.3281 3.06 0.036 RPO

E97 0.3606 0.3266 8.773 0.034 RT

E98 0.3519 0.3187 10.346 0.027 RC

E110 0.3393 0.3068 12.954 0.043 RC

PLV Delta E1 0.302 0.3188 0.235 0.034 RF E7 0.3408 0.3149 0.277 0.044 LC

E2 0.3069 0.3248 0.117 0.025 RF E60 0.4267 0.4026 0.17 0.037 LPO

E7 0.3437 0.3193 0.007 0.046 LC E78 0.4173 0.3903 0.099 0.034 RPO

E26 0.3106 0.3283 2.938 0.028 LF E79 0.4054 0.3772 0.08 0.037 RC

E31 0.3734 0.3447 0.464 0.018 LC E80 0.3682 0.3414 0.781 0.048 RC

E60 0.4225 0.4007 2.591 0.047 LPO E85 0.4253 0.4017 0.04 0.038 RPO

E78 0.416 0.3908 0.546 0.042 RPO E86 0.4168 0.3908 0.55 0.026 RC

E89 0.4224 0.3796 9.518 0.022 RPO E87 0.395 0.3682 0 0.037 RC

E111 0.3775 0.3555 1.77 0.043 RC E89 0.427 0.3807 14.249 0.016 RPO

E119 0.352 0.3779 0.001 0.017 RT

E126 0.3178 0.3389 0.326 0.029 RF

E127 0.3124 0.333 0.013 0.195 LF

Beta E7 0.2751 0.234 2.879 0.036 LC E78 0.3583 0.3124 0.582 0.017 RPO

E23 0.2908 0.2573 0.951 0.043 LF E79 0.3336 0.2936 1.278 0.031 RC

E46 0.3411 0.2941 3.461 0.041 LT E82 0.3742 0.3331 0.008 0.042 RPO

E60 0.3642 0.3238 2.789 0.045 LPO E85 0.3675 0.329 0.146 0.046 RPO

E66 0.3705 0.3344 1.202 0.048 LPO E89 0.3686 0.3038 1.561 0.012 RPO

E67 0.3717 0.3335 2.427 0.044 LPO

E68 0.3713 0.3323 1.961 0.038 LPO

E70 0.3745 0.3379 3.355 0.049 LPO

(Continued)
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TABLE 2 | Continued

Neu_block Emo_block

Metric Band Electrode N D F P region Electrode N D F P region

E71 0.381 0.337 1.719 0.019 LPO

E74 0.3693 0.3232 1.418 0.023 LPO

E76 0.3765 0.3367 1.187 0.031 RPO

E77 0.3706 0.3262 2.14 0.022 RPO

E78 0.3567 0.3066 3.725 0.016 RPO

E79 0.3321 0.2893 3.849 0.037 RC

E82 0.3733 0.3189 2.234 0.009 RPO

E83 0.3784 0.334 1.224 0.018 RPO

E84 0.376 0.3317 1.153 0.03 RPO

E85 0.365 0.3128 1.226 0.013 RPO

E86 0.3526 0.3048 1.947 0.024 RC

E87 0.3243 0.2815 5.833 0.024 RC

E88 0.3529 0.303 3.609 0.026 RPO

E89 0.371 0.2894 0.101 0.001 RPO

E90 0.3708 0.3206 0.907 0.012 RPO

E91 0.365 0.321 1.094 0.027 RPO

E95 0.3565 0.3096 2.015 0.04 RPO

E96 0.3577 0.3104 3.751 0.032 RT

E97 0.3551 0.3087 4.479 0.034 RT

E98 0.346 0.304 6.075 0.042 RC

E105 0.3103 0.2674 7.592 0.045 RC

E111 0.316 0.2876 10.572 0.031 RC

N, mean clustering coefficient of normal control group; D, mean clustering coefficient of mild depression group; F and p, mean F- and P-value of independent samples
t-tests. The electrode distribution of the 128-channel Geodesic Sensor Net is in the Section Appendix. The electrodes are divided into eight regions: the left frontal (LF),
right frontal (RF), left temporal (LT), right temporal (RT), left central (LC), right central (RC), left parietal–occipital (LPO), and right parietal–occipital (RPO) regions. The italics
indicate that the mean clustering coefficient of mild depression group at this electrode is lower than that of healthy control group.

remaining 44 participants were used for training. This strategy
allowed us to avoid records from one participant being divided
into both training and test sets and, thus, yielding a falsely
high classification accuracy. The classification performance of
the validation data was used for selecting the hyperparameters
(such as learning rate, learning rate decay, regularization
coefficient, number of iterations, weight initialization, etc.) and
as a stopping criterion in training to avoid overfitting of
the training data.

Classification Performance of the Four Functional
Connectivity Matrices Using the CNN
We assessed the classification accuracy of the functional
connectivity matrices using our CNN method. Since the initial
weights of CNN were randomly initialized and different initial
weights will train a slightly different model, we repeated the
training and testing procedures nine times and calculated the
mean and standard deviation of nine test accuracy for further
analysis. Coherence performed best under the Neu_block and
Emo_block (77.78% for the two blocks). The second highest
classification accuracy was achieved with the PLV (74% in the
gamma band for the Neu_block, 73.33% in the delta band for
the Emo_block). Correlation yielded a 71.46% accuracy for the
Neu_block and a 65.83% accuracy for the Emo_block. The PLI
achieved the lowest accuracy for both the Neu_block (63.41%)

and the Emo_block (55.60%). The classification accuracy of each
functional connectivity matrix is shown in Table 4A.

Receiver operating characteristic (ROC) curves are commonly
used to present the results of binary decision problems in
machine learning (Davis and Goadrich, 2006). AUC is the area
under an ROC curve and has a value between 0 and 1, with a
greater AUC value indicating a better classification ability of the
model. In order to compare the classification performance of the
four input forms more intuitively, ROC curves for four functional
connectivity matrices were obtained in the delta, theta, alpha,
beta, and gamma bands. These are shown in Figures 7A–E. From
these ROC curves, we were able to obtain the same results as those
displayed in Table 4A.

Performance Comparison Between Our Method and
the Self-Established Baseline
In order to further demonstrate the efficiency of our model,
we input the four functional connectivity metrics into the four
classic classifiers that are widely used in computer aided detection
systems for depression (Hosseinifard et al., 2013; Li et al., 2016a;
Cai et al., 2018), namely, BayesNet (BN), logistic regression (LR),
k-nearest-neighbor (kNN), and random forest (RF), to classify
participants into one of two classes, mild depression or healthy.
The accuracy obtained from these four classifiers served as the
baseline. These classifiers all used the default parameter values
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TABLE 3 | Statistical analysis of clustering coefficient using correlation (T = 0.15).

Neu_block Emo_block

Electrode F P Region Electrode F P Region

E30 2.118 0.042 LC E60 0.74 0.036 LPO

E36 0.068 0.039 LC E61 0.843 0.04 LPO

E41 0.187 0.043 LC E65 1.056 0.034 LPO

E42 0.421 0.041 LC E66 1.638 0.02 LPO

E46 0.152 0.02 LT E67 0.879 0.013 LPO

E47 0.024 0.04 LC E68 0.694 0.012 LPO

E53 0.049 0.029 LC E69 0.159 0.03 LPO

E60 0.005 0.038 LPO E70 0.928 0.009 LPO

E61 0.066 0.034 LPO E71 0.506 0.026 LPO

E64 0.134 0.047 LPO E73 0.009 0.047 LPO

E65 0.01 0.033 LPO E74 1.822 0.012 LPO

E66 0.313 0.026 LPO E76 1.521 0.01 RPO

E67 0.06 0.023 LPO E77 0.87 0.006 RPO

E68 0.012 0.026 LPO E78 0.02 0.006 RPO

E69 0.088 0.018 LPO E79 0.102 0.01 RC

E70 0.044 0.006 LPO E82 1.055 0.019 RPO

E71 0.463 0.016 LPO E83 3.964 0.029 RPO

E73 0.64 0.022 LPO E84 1.443 0.01 RPO

E74 0.012 0.007 LPO E85 0.561 0.008 RPO

E76 0.212 0.008 RPO E86 1.404 0.009 RC

E77 0.112 0.005 RPO E87 0.156 0.046 RC

E78 0 0.007 RPO E88 1.072 0.043 RPO

E79 0.002 0.016 RC E89 7.387 0.005 RPO

E82 0.097 0.009 RPO E90 2.974 0.023 RPO

E83 0.839 0.005 RPO E91 1.522 0.015 RPO

E84 0.005 0.015 RPO E92 1.002 0.016 RC

E85 0.135 0.014 RPO E93 0.404 0.045 RC

E86 0.03 0.023 RC E94 0.374 0.047 RPO

E87 0.268 0.047 RC E97 1.489 0.036 RT

E88 0.068 0.028 RPO E98 0.631 0.042 RC

E89 3.717 0.002 RPO E104 0.133 0.045 RC

E90 0.048 0.024 RPO E107 1.632 0.04 RT

E91 0 0.019 RPO

E92 0.241 0.038 RC

E93 0.021 0.031 RC

E94 0.011 0.03 RPO

E95 0.512 0.028 RPO

E97 0.027 0.042 RT

E98 0.022 0.031 RC

E104 0.115 0.033 RC

E105 1.097 0.031 RC

E107 0.019 0.034 RT

E110 0.694 0.023 RC

F and p, mean F- and P-value of independent samples t-tests. The electrodes are divided into eight regions: the left frontal (LF), right frontal (RF), left temporal (LT), right
temporal (RT), left central (LC), right central (RC), left parietal–occipital (LPO), and right parietal–occipital (RPO) regions.

implemented in Weka (Witten et al., 1999). The values of k
used in kNN were 1, 5, and 10. The evaluation method we used
herein for classification accuracy also underwent 24-fold cross-
validation. Since the inputs for the above four classifiers were
feature vectors, we calculated the mean value of all elements in the
functional connectivity matrix for each trial, and the mean value

for all trials constituted an N × 1 (N represents the number of
trials) vector that was then input into the above four classifiers for
classification. We only show the highest classification accuracies
among the four classifiers in Table 4B.

Table 4B revealed that when functional connectivity metrics
were input to the classic classifiers in the form of a feature
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FIGURE 6 | The results of the distribution which was the difference of the
coherence in the delta band. Red nodes represent 128 electrodes, and the
red lines between nodes show the difference in coherence at the threshold of
0.1. The thicker the red line is, the more the threshold is exceeded.

vector, the recognition rates obtained were obviously lower than
the accuracy of the coherence, correlation, and PLV obtained
using the CNN. This fully demonstrated the improvements in
classification accuracy that our method provided compared to
the self-established baseline when the functional connectivity

metrics were input into the CNN in the form of 2D data for
classification. However, this improvement did not appear in the
PLI of the Emo_block.

Classification Performance of the Three-Channel
Functional Connectivity Matrix
As described above, for each functional connectivity matrix, we
used the three bands of the top three classification performance
as the R, G, and B channels to generate a three-channel image. We
then input this three-channel image into the CNN for it to learn
and classify. The bands used for each functional connectivity
matrix are shown in Table 5.

The classification accuracy and ROC curves for the three-
channel functional connectivity matrix obtained using the CNN
are shown in Table 6A and Figure 7F. Compared with the results
of the single channel, the three-channel functional connectivity
matrix, which integrated information from three frequency
bands, slightly increased the classification accuracy of coherence
and correlation in the Neu_block and Emo_block. However,
there was no increase in the PLV or PLI accuracy, which
performed similarly to a single-channel construct. Figure 8
displayed the comparison of the results of the delta, theta,
alpha, beta, and gamma bands, as well as the three-channel
coherence that performed the best among the four functional
connectivity matrices. The obvious accuracy improvement of
coherence through integrating three EEG frequency bands can
be observed in Figure 8.

TABLE 4 | The classification accuracy of each band.

(A) The mean accuracy and standard deviation in each functional connectivity matrix using the CNN for the Neu_block and Emo_block.

Accuracy (acc) % and standard deviation (std) %

Neu_block Emo_block

Delta Theta Alpha Beta Gamma Delta Theta Alpha Beta Gamma

Coherence acc 77.78 75.88 68.64 75.91 75.77 74.48 72.10 72.67 75.57 77.78

std 1.87 2.17 3.65 1.76 1.86 1.35 4.69 1.86 2.18 2.22

Correlation acc 70.69 71.33 71.17 70.93 71.46 65.83 60.59 60.94 63.60 63.60

std 4.30 3.92 3.68 4.19 3.38 3.92 5.51 5.26 5.18 4.94

PLV acc 71.23 70.93 71.87 66.82 74.00 73.33 71.71 62.64 56.00 64.75

std 2.12 2.83 3.37 4.50 5.05 1.94 2.88 4.08 3.18 7.11

PLI acc 61.79 62.27 63.41 61.88 62.16 51.61 50.68 50.73 52.85 55.60

std 3.89 3.55 3.02 3.33 4.21 2.37 1.10 0.66 1.61 2.82

(B) The highest classification accuracy obtained by inputting the feature vector corresponding to each functional connectivity metric into the four classic

classifiers (BN, LR, kNN, and RF) in the Neu_block and Emo_block.

Accuracy %

Neu_block Emo_block

Delta Theta Alpha Beta Gamma Delta Theta Alpha Beta Gamma

Coherence 57.22 50 51.67 56.67 61.53 53.47 54.86 51.94 57.78 61.94

Correlation 47.08 49.03 46.81 51.39 52.64 48.19 47.78 47.5 51.39 47.78

PLV 53.19 50 49.03 58.61 60.14 54.31 53.75 49.17 53.06 50.97

PLI 54.72 52.08 52.50 54.03 53.75 56.39 51.67 51.81 53.61 51.25
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FIGURE 7 | The receiver operating characteristic (ROC) curves of four functional connectivity matrices [coherence (Coh), correlation (Corr), phase locking value (PLV),
and phase lag index (PLI)] obtained in the delta (A), theta (B), alpha (C), beta (D), and gamma bands (E), as well as the three-channel input (F). The shaded area in
the graph is the result of each measure, and the solid line in the shadow is the average result of nine measures. Neu, neutral picture condition; Emo, emotional
picture condition.

TABLE 5 | The bands used for each functional connectivity matrix in the Neu_block and Emo_block.

Coherence Correlation PLV PLI

Neu_block Delta, beta, theta Gamma, theta, alpha Gamma, alpha, delta Alpha, theta, gamma

Emo_block Gamma, beta, delta Delta, beta, gamma Delta, theta, gamma Gamma, beta, delta

We also applied the three-channel strategy to the functional
connectivity metrics in the form of feature vectors. The
functional connectivity metrics on the three bands shown in
Table 5 formed an N × 3 feature vector (N represents the
number of trials, and three represents the three bands) that
was input into the four classic classifiers for classification.
The classification accuracies (the highest classification accuracy
among the four classifiers) are shown in Table 6B. Compared
to the accuracy of the single band that was obtained using
the classic classifiers shown in Table 4B, no improvement was
provided. This demonstrated that the feature vector form of the
functional connectivity metrics did not exhibit the advantages
that integrating the three channels in the classic classifiers did
and further confirmed the benefits of combining the CNN with
functional connectivity matrices.

DISCUSSION

In the present study, we first illustrated the abnormal
organization of functional connectivity network in mild
depression by graph theory. Second, we proposed a novel

approach of using a CNN to process functional connectivity
matrix data in order to identify individuals with mild depression.

The Differences in the Small-World
Network Between the Mildly Depressed
Group and the Normal Control Group
Through graph theory, we found that the small-world index of
the mild depression group was significantly lower than that of the
healthy control group. Small-world networks are characterized
by a high clustering coefficient and a short path length (Watts
and Strogatz, 1998), while the mild depression group has a
lower clustering coefficient and a larger characteristic path length
than the healthy control group, indicating that the functional
brain networks of the mild depression group deviate from small-
world networks. These findings were consistent with previous
neuroimaging studies using graph analysis to study depression
(Leistedt et al., 2009). The lower clustering coefficient of the
mild depression group implies that the local connectedness of
networks in mild depression is relatively spared. In addition,
short path lengths ensure effective interregional integrity or
prompt information transmission in brain networks, which
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TABLE 6 | The classification accuracy of the three-channel input form.

(A) The mean classification accuracy and standard deviation of the

three-channel functional connectivity matrix obtained using the CNN.

Accuracy % ± standard deviation %

Coherence Correlation PLV PLI

Neu_block 78.39 ± 2.62 71.68 ± 2.51 71.54 ± 4.79 63.12 ± 3.10

Emo_block 80.74 ± 1.48 66.93 ± 3.06 65.80 ± 4.57 53.63 ± 2.48

(B) The highest classification accuracy obtained by inputting the three-

band feature vector corresponding to each functional connectivity metric

into the four classic classifiers (BN, LR, kNN, and RF) in the Neu_block

and Emo_block.

Accuracy %

Coherence Correlation PLV PLI

Neu_block 57.92 51.81 49.72 54.03

Emo_block 54.72 46.81 53.47 51.39

Bold indicates that the accuracy obtained based on the three-channel functional
connectivity matrix is higher than that of single channel in Table 4 (A).

constitutes the basis of cognitive processes. Thus, the increase in
the path length associated with the disease may be attributed to
the degeneration of fiber bundles for information transmission
(Bai et al., 2012).

In addition, the statistical analysis results of the clustering
coefficients for each electrode showed that the difference between
the two groups was mainly found in the parietal–occipital region
of the right hemisphere. The study has shown that the right
hemisphere is hyperactive in depression (Hecht, 2010). The
parietal region and the right occipitotemporal cortex are the
locations of the amygdala and hippocampus. Positron emission
tomography studies have shown that the resting blood flow
of the amygdala in patients with major depression increased
by about 6% (Drevets et al., 1992). Jin et al. (2011) observed
an abnormal hyperactive amygdala in depressed adolescents
compared to healthy controls. In addition, research reported that
the hippocampal volume of depressed patients was significantly
reduced compared with healthy controls and the hippocampal
neurons of these patients atrophy (Lee et al., 2002). Our findings
are consistent with these previous results.

However, it is worth noting that, in the delta band, the
clustering coefficient of the mild depression group was higher
than that of the healthy control group in the frontal area. Some
researchers have suggested that one function of prefrontal cortex
is to modulate or inhibit amygdala activity (Davidson, 2004).
Ochsner et al. (2002) reported a strong inverse relationship
between activation of the prefrontal cortex and the amygdala
when subjects were requested to voluntarily downregulate
their negative affect. Our results and previous findings suggest
abnormal frontal activity in mild depression.

Moreover, through the analysis of small-world properties
and clustering coefficients, it is found that the difference
between the two groups was mainly in the delta band.
Knyazev (2012) reported that delta oscillations are prominent

FIGURE 8 | Comparison of the accuracy of each band and three-channel
image for coherence (Coh).

only in early human development stages and during slow-wave
sleep. In waking adults, delta oscillations are overshadowed
by more advanced processes associated with higher-frequency
oscillations. However, delta oscillations are more pronounced
in pathological states caused by detrimental environmental
factors, developmental pathology, or damage to brain tissue,
such as depression.

Coherence Recognizes Mild Depression
Best
In the present study, we used different methods to construct
functional connectivity matrices and compared the performance
of four of these to identify cases of mild depression. Our results
demonstrated that coherence was most effective in identifying
mild depression using a CNN.

By using Eqs. (1) and (3), we determined that the PLV was
the amplitude-normalized coherence. There are two perspectives
on coherence and PLV. Researchers who support the use of
the PLV often claim that the phase synchronization reflected
by the PLV is more stringent than that for coherence because
the latter confuses the consistency of the phase difference with
amplitude correlation. This may be true from a mathematical
point of view, but one might argue that when there are
no amplitude correlations, it would be more “difficult” to
get a meaningful non-zero coherence value in the absence
of consistent phase differences. For example, when none of
the separately observed cross-spectral density estimates has
phase synchrony, even if there is perfect amplitude correlation,
the expected value of the vector averages will be relatively
small. On the other hand, if cross-spectral densities of all
individuals are estimated to be strongly phase-synchronized,
the expected value of their vector averages is still perceptible
even in the absence of amplitude correlations. In addition,
those in support of using the coherence also believe that in
the case of coherence, the observations with large-amplitude
products are given stronger weight, meaning they are favoring
those observations that have a higher-quality phase difference
estimate. This actually assumes that a higher amplitude reflects
a higher signal-to-noise ratio of the source of interest, and thus
a better-quality phase estimate (Bastos and Schoffelen, 2016).
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FIGURE 9 | The electrode distribution of 128-channel Geodesic Sensor Net.

A better-quality phase estimate may result in coherence
achieving better classification performance than the PLV when
using a CNN. However, the classification performance of
the PLI in our CNN was relatively poor. This may be
because the PLI is sensitive to the chosen length of the
selected epochs (Fraschini et al., 2016), which was 6 s in the
present study. This may have been too short to allow the
PLI to stabilize.

The Three-Channel Functional
Connectivity Matrix Improved
Recognition Performance
Based on the data shown in Tables 4A, 6A, it is clear that
the three-channel functional connectivity matrix used
herein improved the accuracy of coherence and correlation
slightly, achieving an accuracy similar to that of single
channels for the PLV and PLI. We suspect that human
cognitive processes involve different EEG rhythms, making it

reasonable that neural networks learn the information contained
across several integrated EEG spectrums. However, this
conjecture requires further, future verification using additional
data sets.

CONCLUSION AND FUTURE WORK

In summary, the present study first illustrated that some
abnormal organizations in the functional connectivity network
of patients with depression also appeared in individuals with
mild depression. Specifically, compared with healthy controls,
the mild depression group has a larger characteristic path length
and a lower clustering coefficient, indicating that the brain
functional network of mild depression deviated from the small-
world network. Second, we proposed a computer-aided method
by which a CNN was used to learn information relevant to
the functional connectivity matrices evident in individuals with
mild depression such that they could be readily identified. This
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is an innovative approach other than the existing graph theory
for the use of functional connectivity matrices for depression
recognition. We primarily considered functional connectivity
matrices that reflect altered brain functional connectivity in
patients with mental illnesses using a 2D data structure given the
advantages of CNNs in processing 2D datasets. The classification
results of our method showed that coherence, correlation, and
the PLV can effectively recognize mild depression using a
CNN and that the recognition performance of coherence was
superior to the other functional connectivity metrics, obtaining
a classification accuracy of 80.74%. The proposed method can
provide an auxiliary diagnosis of mild depression and offers
great promise. In the future, we are committed to implement
this method as an online depression detection system. Once
an individual’s EEG signal is collected, it is used to determine
whether the individual has mild depression, a disease that is not
easily detectable and diagnosable. This approach may be used
to improve and hasten the detection of individuals with mild
depression, ultimately permitting quicker treatment.

While the present study offers significant benefits, it has
some limitations that warrant discussion. First, in addition
to the functional connectivity matrices used in the present
study, there are other various connectivity metrics available,
such as the imaginary part of coherency (Nolte et al., 2004),
partial directed coherence (Baccalá and Sameshima, 2001),
directed transfer function (Kamiñski et al., 2001), phase
slope index (Nolte et al., 2008), and Geweke’s extension
of Granger causality to the frequency domain (Brovelli
et al., 2004). Further investigation of these metrics and
their ability to detect the signatures of mental illnesses
such as depression must continue in the future. Second,
we used the functional connectivity metrics generated by all
128 pairs of electrodes available to us here. It is necessary
to further explore which electrodes most obviously dictate
functional connectivity matrix differences between healthy
control individuals and those with mild depression. This
would allow greater reductions to the number of electrodes

used for classification and pave the way for real-time, online
depression detection.
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APPENDIX

The electrode distribution of 128-channel Geodesic Sensor Net (Figure 9).

Left frontal region (LF, number = 13): E32, E26, E23, E19, E12, E25, E22, E18, E21, E27, E24, E127, E128;

Right frontal region (RF, number = 13): E1, E2, E3, E4, E5, E8, E9, E10, E14, E123, E124, E126, E125;

Left temporal region (LT, number = 17): E33, E34, E38, E39, E40, E43, E44, E45, E46, E48, E49, E50, E51, E56, E57, E58, E63;

Right temporal region (RT, number = 17): E122, E116, E121, E115, E109, E120, E114, E108, E102, E119, E113, E101, E97, E107, E00,
E96, E99;

Left central region (LC, number = 16): E7, E13, E20, E28, E29, E30, E31, E35, E36, E37, E41, E42, E47, E52, E53, E54;

Right central region (RC, number = 16): E106, E112, E118, E117, E111, E105, E80, E110, E104, E87, E103, E93, E98, E92, E86, E79;

Left parietal–occipital region (LPO, number = 13): E59, E60, E61, E64, E65, E66, E67, E68, E69, E70, E71, E73, E74;

Right parietal–occipital region (RPO, number = 13): E91, E85, E78, E95, E90, E84, E77, E94, E89, E83, E76, E88, E82.
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