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Amyotrophic lateral sclerosis (ALS) is an intractable adult-onset neurodegenerative
disease that leads to the loss of upper and lower motor neurons (MNs). The long axons
of MNs become damaged during the early stages of ALS. Genetic and pathological
analyses of ALS patients have revealed dysfunction in the MN axon homeostasis.
However, the molecular pathomechanism for the degeneration of axons in ALS has
not been fully elucidated. This review provides an overview of the proposed axonal
pathomechanisms in ALS, including those involving the neuronal cytoskeleton, cargo
transport within axons, axonal energy supply, clearance of junk protein, neuromuscular
junctions (NMJs), and aberrant axonal branching. To improve understanding of the
global changes in axons, the review summarizes omics analyses of the axonal
compartments of neurons in vitro and in vivo, including a motor nerve organoid
approach that utilizes microfluidic devices developed by this research group. The
review also discusses the relevance of intra-axonal transcription factors frequently
identified in these omics analyses. Local axonal translation and the relationship
among these pathomechanisms should be pursued further. The development of novel
strategies to analyze axon fractions provides a new approach to establishing a detailed
understanding of resilience of long MN and MN pathology in ALS.

Keywords: amyotrophic lateral sclerosis (ALS), omics analysis, axonal dysfunction, local translation, axon
branching, motor nerve organoid, human induced pluripotent stem cell (hiPSC)-derived motor neuron

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disorder
(Brown and Al-Chalabi, 2017). Both the upper and lower motor neurons (MNs) are affected, such
that the disorder is characterized by muscle weakness with spasticity and atrophy. Approximately
10% of ALS occurrence is familial (Ghasemi and Brown, 2018). Since the identification in 1993
(Rosen et al., 1993) of copper/zinc superoxide dismutase 1 (SOD1) in ALS patients with an autosomal
dominant trait in 1993 (Aoki et al., 1993), more than 25 genes have been reported as causative genes
of familial ALS (Maday et al., 2014; De Vos and Hafezparast, 2017; Ghasemi and Brown, 2018;
Cook and Petrucelli, 2019).

The pathomechanisms of ALS have been examined using familial ALS models. Intracellular
generation of reactive oxygen species production (Borchelt et al., 1994; Wiedau-Pazos et al.,
1996; Howland et al., 2002) and unfolded protein response/endoplasmic reticulum (ER) stress
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(Kikuchi et al., 2006; Kieran et al., 2007; Urushitani et al., 2008)
have been inferred from the discovery of SOD1 as a factor. A cell
non-autonomous effect (Boillee et al., 2006; Di Giorgio et al.,
2007; Nagai et al., 2007; Yamanaka et al., 2008; de Boer et al.,
2014) has also been examined in mutant SOD1-transgenic mouse
and cellular models. Mutations in the RNA-binding protein
(RBP) TAR DNA-binding protein (TARDBP encoding TDP-43)
can result in ALS (Kabashi et al., 2008; Rutherford et al., 2008),
and cytoplasmic TDP-43 inclusions have been reported in over
90% of cases of sporadic ALS (Mackenzie et al., 2010). In 2009,
fused in sarcoma (FUS) was determined in 2009 to be the
causative gene of ALS (Kwiatkowski et al., 2009; Vance et al.,
2009). FUS and TDP-43 have similar structural characteristics,
including an RNA recognition motif (RRM), a nuclear export
signal (NES), a nuclear localization signal (NLS), and prion-
like domains (PrLDs) (Kapeli et al., 2017). The C-terminal NLS
site regulates the nucleocytoplasmic localization of FUS and is
a hotspot for mutations in familial ALS (Kwiatkowski et al.,
2009; Vance et al., 2009; Suzuki et al., 2010; Nishiyama et al.,
2017). Abnormal phase separation of FUS is involved in this
pathomechanism (Guo et al., 2018; Hofweber et al., 2018; Qamar
et al., 2018). NLS mutations impair the nuclear import of FUS,
and the level of mislocalized cytoplasmic FUS is correlated to
the severity of the clinical ALS phenotypes (Dormann et al.,
2010). In addition, recent reports have demonstrated that the
abnormal NLS function results in the aberrant accumulation
of mutant FUS in the cytoplasm (Ichiyanagi et al., 2016;
Guo et al., 2018; Hofweber et al., 2018; Qamar et al., 2018;
Yoshizawa et al., 2018). Previous studies have found that the
toxic gain of function occurring with mutant FUS is crucial for
neurodegeneration (Scekic-Zahirovic et al., 2016; Sharma et al.,
2016; Shiihashi et al., 2016).

A hexanucleotide repeat expansion in chromosome 9 open
reading frame 72 (C9orf72) (DeJesus-Hernandez et al., 2011;
Renton et al., 2011) is the most common cause of ALS when
examined in Western countries (Balendra and Isaacs, 2018). Loss
of function of C9ORF72 (Burberry et al., 2016; O’Rourke et al.,
2016), toxic gain of function of C9ORF72 due to repeat RNA
(Peters et al., 2015; Jiang et al., 2016), and toxic gain of function
due to proteins with dipeptide repeats resulting from repeat-
associated non-ATG translation (Mori et al., 2013; Kwon et al.,
2014; Mizielinska et al., 2014; Wen et al., 2014; Chew et al., 2015)
have been suggested as disease mechanisms.

These findings are mainly focused on the event in the
cytoplasm of MNs. Actually, long axons, which have lengths of up
to 100 cm in humans, are characteristic of MN morphology, and
connect the soma of MNs to the skeletal muscles. In ALS, MNs
are dysfunctional due to axonal degeneration (Ferraiuolo et al.,
2011), that occurs prior to the motor phenotype in ALS (Fischer
et al., 2004; Roy et al., 2005). Consistent with this observation,
transgenic models of ALS also demonstrate abnormal axons and
other degenerative processes, followed by the death of MNs
(Armstrong and Drapeau, 2013; Tian et al., 2016; Fujimori,
2018). Other studies have revealed that axonal damage occurs
earlier than the death of cell bodies and subsequent symptoms
in patients; such symptoms become apparent only after the loss
of many MNs (Dadon-Nachum et al., 2011).

Various reviews have described the physiological and
pathological features of neuronal axons, including cargo
transport within axons, local translation, and the axonal
transcriptome (Jung et al., 2012; Maday et al., 2014; Batista and
Hengst, 2016; Neto et al., 2016; Brady and Morfini, 2017; De Vos
and Hafezparast, 2017). However, because primary neurons from
patients cannot be easily obtained and because axons produce
low sample yields and are difficult to culture, the details of the
pathological mechanisms of ALS remain unclear. To further
elucidate the resilience and pathomechanisms in MN axons, this
review summarizes omics analyses of the axon compartment
using microfluidic devices and ex vivo samples. Intra-axonal
transcription and local axonal translation are the mechanisms of
ALS emerging in the field, as discussed in the following.

ACCUMULATING EVIDENCE OF
AXONAL DYSFUNCTION IN ALS

The global pathomechanisms of axons in ALS are considered
next, in an overview of the current knowledge of axonal
events in MNs. This section classifies the pathomechanisms
of axonal dysfunction into six subsections, including neuronal
cytoskeleton, cargo transport within axons, axonal energy supply,
clearance of junk protein, neuromuscular junctions (NMJs), and
aberrant axonal branching (Figure 1). As mentioned in the
introduction, an increasing number of genes have been found
as causative or associated genes for ALS. Evidence of axon
pathomechanisms from the genetics of ALS is also accumulating
(Table 1). These mechanisms are explained in each subsection.

Neuronal Cytoskeleton
The axon can be visualized as a railway, and the electric signal
should be transferred from one train terminal station (the
cell body) to another terminal station (the skeletal muscle).
Mutations in genes associated with microtubules have been
identified as the causative events in ALS.

Several variants of the gene encoding α-tubulin, TUBA4A,
destabilize the microtubule network and reduce the
repolymerization capability of this network (Smith et al.,
2014). A missense mutation in the tubulin-specific chaperone
E gene, causing MN degeneration in the progressive motor
neuronopathy model mouse, ends in microtubule and axonal
defects similar to those induced by the ALS-linked TUBA4A
variation in patients (Bommel et al., 2002; Martin et al., 2002).

Mutations in profilin 1 (PFN1) can also lead to familial
ALS. PFN1 converts monomeric actin to filamentous actin.
Ubiquitinated aggregates are present in cells that express mutant
PFN1, and many of these aggregates include TDP-43, which is
associated with ALS (Wu et al., 2012). Such cells also have lower
levels of bound actin and block axon growth. Primary MNs
that harbor mutant PFN1 have a lower ratio of monomeric to
filamentous actin and smaller growth cones. The PFN1 transgenic
mouse has also been observed to recapitulate the phenotype of
MN disease (Fil et al., 2017).

NIMA (never in mitosis gene A)-related kinase 1 (NEK1)
has been linked to cilia formation, microtubule stability, and
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FIGURE 1 | Proposed pathomechanism of ALS in axon compartments. (1) Neuronal cytoskeleton; (2) cargo transport within axons; (3) axonal energy supply; (4)
clearance of junk protein; (5) Neuromuscular junction (NMJs); (6) aberrant axonal branching; (7) Axonal translation; (8) Intra-axonal transcription factors are prominent
features of the proposed pathomechanism.

neuronal morphology (Thiel et al., 2011). The NEK1 gene was
identified as a susceptibility factor for ALS (Brenner et al., 2016;
Kenna et al., 2016). Using in vivo imaging, axonal degeneration
was identified as an early event in the SOD1 and C9ORF72
repeat expansion mouse models of ALS (Tian et al., 2016).
Neurofilament L transcripts are reduced in ALS (Bergeron et al.,
1994). Neurofilaments are also found in a spheroid structure
(large axonal swelling) (Corbo and Hays, 1992). Neurofilament
light (NFL) and phosphorylated neurofilament heavy (pNFH) are
also known as biomarkers for ALS (Brettschneider et al., 2006;
Steinacker et al., 2016).

Thus, a dysfunctional cytoskeleton plays a role in
ALS pathogenesis.

Cargo Transport Within Axons
Maintenance of the function and structure of all types of cells
in mammals requires the intracellular transport of cargo. This
transport is especially important in neurons because of their
axonal and cell body polarization (De Vos and Hafezparast,
2017). Proteins and mRNA, as well as organelles, are generally
synthesized in the soma and transported along the axon. Proper
transport is required for the distribution of this cargo at the
right time and place in the axon. Using electron microscopy of
autopsy samples from ALS cases, defects in the cargo transport
within axon transport in ALS have been observed. The studies
of this transport defect revealed that the proximal axons of
large MNs harbor abnormal accumulation of mitochondria,

phosphorylated neurofilaments, and lysosomes (Hirano et al.,
1984a,b; Okada et al., 1995; Rouleau et al., 1996). In addition,
spheroids present in the axons contain different types of vesicles,
lysosomes, mitochondria, neurofilaments, and microtubules (De
Vos and Hafezparast, 2017). The accumulation of phosphorylated
neurofilaments at the initial segment of MN axons is a
major pathological characteristic of ALS (Ackerley et al., 2004;
Brady and Morfini, 2017).

Aberrant cargo transport within axons occurs early in
ALS disease progression (Williamson and Cleveland, 1999;
De Vos et al., 2007). For example, an altered transport of
mitochondria in axons has been demonstrated in two different
mutant SOD1-G93A transgenic mouse models of ALS (Magrane
et al., 2014). The slow anterograde transport of cytoskeletal
components is decreased during the months prior to the
initial neurodegeneration in mutant SOD1-G37R transgenic
mice, a change that has been exhibited using metabolic
labeling studies (Williamson and Cleveland, 1999). In mutant
SOD1-G93A transgenic mouse models, inhibiting p38 MAPK
α rescues retrograde cargo transport defects within axons
(Gibbs et al., 2018).

TDP-43 functions as an mRNA transporter across the
axonal cytoskeleton, and ALS-related mutations in TDP-43 alter
this transport function (Alami et al., 2014). Mitotracker and
Lysotracker experiments in FUS-mutant iPSC-derived MNs have
demonstrated that defects in the cargo transport within axons can
be rescued by histone deacetylase 6 inhibition (Guo et al., 2017).
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TABLE 1 | Motor neuron disease-associated mutations and axonal pathology.

Disease Gene Protein Axonal pathology

ALS1 SOD1 Superoxide dismutase 1 Impaired transport of mitochondria, microtubule stability, modulation of motor proteins
via p38 MAP kinase etc.

ALS2 ALS2 Alsin Impaired endocytic trafficking, signaling endosomes

ALS5/SPG11 SPG11 Spatacsin Axonal destabilization, reduced tubulin acetylation, reduced anterograde vesicle
transport

ALS6 FUS FUS Defective transport of mitochondria, aberrant microtubule acetylation, NMJ deformity,
aberrant axon branching, Fos-B overexpression

ALS8 VAPB Vesicle-associated membrane
protein-associated protein B

Impaired transport of mitochondria and vesicles

ALS10 TARDBP TAR DNA-binding protein 43 Defective transport of mitochondria and mRNP granules; reduced expression of
dynactin 1; aberrant microtubule stability/acetylation

ALS17 CHMP2B Charged multivesicular body
protein 2B

Impaired endocytic trafficking, signaling endosomes

ALS12 OPTN optineurin Progressive dysmyelination and axonal degeneration through engagement of
necroptotic machinery in the CNS, including RIPK1

ALS18 PFN1 Profilin l Decreased bound actin levels and can inhibit axon outgrowth. Primary motor neurons
expressing mutant PFN1 display smaller

ALS22 TUBA4A Tubulin, alpha 4a Destabilization of microtubules, general transport defect

ALS23 ANXA11 annexin All Molecular tether between lysosomes and RNA granules in axon

ALS25/SPGIO KIF5A Kinesin heavy chain Reduced kinesin-1 mediated transport, impaired neurofilament transport

FALS/HMN7B/
Perry syndrome

DCTN1 Dynactin 1 (p150, glued homolog,
Drosophila)

Altered axonal transport and vesicle trafficking, impaired signaling endosome trafficking

FTDALS1 C9orf72 C90RF72 Defective transport of mitochondria

SPG4 SPAST Spastin Destabilization of microtubules, impaired transport of mitochondria and vesicles

SPG30 KIF1A Kinesin Family Member 1A Reduced kinesin-3 mediated transport

SBMA AR Androgen receptor Defective retrograde and anterograde transport, modulation of motor proteins via JNK

Modified from Maday et al. (2014); De Vos and Hafezparast (2017), and Ghasemi and Brown (2018). Also refer to OMIM (https://www.omim.org/) as of June 2019.

Mutations in the genes that code for the motor protein
dynactin (DCTN1) (Puls et al., 2003) have been identified in
the genetic analyses of familial ALS. Mutant dynactin binds
weakly to microtubules, compared with the binding of wild-
type proteins. ALS and slowly progressing, autosomal dominant,
distal hereditary motor neuropathy in vocal paresis (HMN7B)
are due to loss-of-function mutations in DCTN1 (Puls et al.,
2003; Munch et al., 2004; Yan et al., 2015). DCTN1 expression is
also found to be downregulated in ALS-derived autopsy samples
(Jiang et al., 2005).

Kinesin family member 5A (KIF5A) is a newly identified gene
that plays a role in ALS (Brenner et al., 2018; Nicolas et al.,
2018). Mutations that occur in the N-terminal motor domain
of KIF5A cause an autosomal dominant type of hereditary
spastic paraplegia known as spastic paraplegia (SPG)10, as well
as Charcot–Marie–Tooth disease type 2 (Fichera et al., 2004).
In contrast, mutations associated with ALS are mainly found in
the C-terminal domain, which is important for binding cargo.
Patients with loss-of-function KIF5A mutations have longer
survival times than those with typical ALS (Brenner et al., 2018;
Nicolas et al., 2018). Mutations in KIF5A, as well as KIF1A, which
are loss-of-function mutations, are present in the motor or neck
domains (Ebbing et al., 2008; Citterio et al., 2015).

In addition to MNs, mature sensory axons also possess
a complex series of mRNA. A microtubule-stabilizing agent,
paclitaxel, which impairs cargo transport within axons, results
in sensory neuropathy (Gumy et al., 2011). Defects in

the cargo transport within axons are common to various
neurodegenerative diseases. Impaired cargo transport in axons
can cause neurodegeneration (Millecamps and Julien, 2013).

Axonal Energy Supply
The mitochondria play an important role in meeting the
axonal energy demand as they generate ATP through oxidative
phosphorylation (Chamberlain and Sheng, 2019). Following their
synthesis in the cell body, the mitochondria enter the axon where
they undergo robust trafficking and accumulate at the nodes of
Ranvier to meet metabolic needs (Zhang et al., 2012). Disruption
of the mitochondrial activity, transport proteins, and microtubule
association likely leads to dysfunctional mitochondrial transport
in neurodegenerative diseases. Energy deficits in injured axons
are caused by damage to the mitochondria following damage
to axons, a decrease in mitochondrial transport in axons
of mature neurons, and an increased energy consumption
(Zhou et al., 2016). During regeneration, the axons adapt to
this increased energy demand by changing the dynamics of
the mitochondria (Kiryu-Seo and Kiyama, 2019). Mutations
in RAPGEF2 mutations impair microtubule stability and
the mitochondria distribution in axons (Heo et al., 2018).
Reduction in mitochondrial Rho GTPase 1 (Miro 1), the
outer mitochondrial membrane protein, leads to anterograde
axonal transport defects (Moller et al., 2017). The imbalance
between mitochondrial fission and fusion leads to abnormal
mitochondrial morphology, underlies axonal damage, and is
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a potential therapeutic target for treating SPG15 and SPG48
(Denton et al., 2018). The ER and mitochondria form
complex sites of interactions known as mitochondria-associated
membranes (Gentile et al., 2019). Decreased ER-mitochondria
association can occur as a result of loss-of-function mutations
in SIGMAR1, leading to impaired retrograde transport and,
ultimately, to axonal degeneration and MN death (Bernard-
Marissal et al., 2015; Watanabe et al., 2016).

Astrocytes and oligodendrocytes may meet the axonal
energy demand (Kang et al., 2010; Lee et al., 2012; Morrison
et al., 2013). A deficiency in monocarboxylate transporter
1 (MCT1) was observed in oligodendroglia in the ventral
cord of SOD1 transgenic mice and in the motor cortex
of ALS patients (Kang et al., 2013; Philips et al., 2013).
The removal of the SOD1 mutation from oligodendroglial
precursor cells was observed to result in marked attenuation
of the progression of the disease (Kang et al., 2013).
Reducing the expression of MCT1 in oligodendroglia is the
pathomechanism involving the energy supply that contributes to
MN degeneration in ALS.

Clearance of Junk Protein
The ubiquitin proteasome and autophagy clearance systems
are significant homeostatic processes engaged in eliminating
defective organelles and aggregated proteins throughout the life
span of the neuron. Impairment of the ubiquitin proteasome
degradation system in MNs has been reported to replicate
the ALS phenotype in mice (Tashiro et al., 2012). Mice with
MN-specific, conditional knockout of the proteasome subunit
Rpt3 exhibit locomotor dysfunction, progressive MN loss, and
gliosis (Tashiro et al., 2012). Constitutive autophagy in neurons
also maintains cellular homeostasis by balancing the synthesis
and degradation of proteins, particularly within the distal
axonal processes (Maday and Holzbaur, 2016). Several genes,
such as valosin-containing protein, are involved in the protein
degradation process (Johnson et al., 2010).

What about in the axon fraction? Disruption of the
endosomal-lysosomal system due to ALS2/Alsin loss exacerbates
the phenotype of SOD1-H46R transgenic mice by accelerating
the accumulation of misfolded proteins and immature vesicles in
the spinal cord (Hadano et al., 2010). In the early symptomatic
and even presymptomatic SOD1-H46R transgenic mice,
degenerating and swollen spinal axons with the accumulation
of autophagosome-like vesicles have been observed (Hadano
et al., 2010). A recent study also reported impairment of
the degradation of autophagic vacuoles that engulf damaged
mitochondria from distal axons in the SOD1-G93A transgenic
mouse model (Xie et al., 2015). The clearance of dysfunctional
mitochondria from axons may be mediated by syntaphilin, a
mitochondria-anchoring protein, which is expressed at high
levels in the early disease stages of ALS in MNs (Lin et al.,
2017). FUS mutation causes axonal retention of the FUS protein
prior to its aggregation, which is caused by poly(ADP-ribose)
polymerase-dependent DNA response signaling (Naumann et al.,
2018). The authors of this review also observed the accumulation
of mutant FUS protein in the neurites of FUS-mutant induced
pluripotent stem cell (iPSC)-derived MNs (Akiyama et al., 2019).

Optineurin (OPTN) mutations are implicated in both familial
and sporadic ALS (Maruyama et al., 2010). OPTN binds
to ubiquitin and regulates NFκB activation and apoptosis
(Nakazawa et al., 2016). OPTN is also involved in several
selective autophagy processes regulated by TBK1 (Li et al.,
2016). Receptor-interacting kinase (RIPK) 1-dependent signaling
is suppressed by OPTN through the regulation of its turnover
(Ito et al., 2016). OPTN loss leads to progressive demyelination
and axonal degeneration through the activation of necroptotic
machinery in the central nervous system (CNS) (Ito et al., 2016).
These observations suggest that RIPK1 and RIPK3 are significant
in the process of progressive axonal degeneration.

A novel variant in UBQLN4 compromises motor axon
morphogenesis in zebrafish, impairing the proteasomal function
(Edens et al., 2017; Morrice et al., 2018). Based on these
reports, the clearance of junk protein is important in the
compartment of the MN axon.

NMJs
Amyotrophic lateral sclerosis can be redefined as a distal
axonopathy disease, because many molecular changes
influencing MN degeneration occur at the NMJ (Moloney
et al., 2014). The NMJ is a highly specialized synapse, that
controls signals between muscles and nerves for skeletal muscle
function. Neuromuscular remodeling precedes loss of the
motor unit in the mutant SOD1-G37R transgenic mouse model
(Martineau et al., 2018).

Certain molecules, including galectin-1 (Ferraiuolo et al.,
2007; Plachta et al., 2007), CD44 (Schmidt et al., 2011), and
amyloid precursor protein (Bryson et al., 2012), affect the
function of NMJ. Axon guidance molecules affecting the stability
of the cytoskeleton, such as Semaphorin 3A (Venkova et al.,
2014), Ephrin A4 (Takata et al., 2013), and Nogo-A (Pradat
et al., 2007), have been reported to alter the function of the NMJ
in the early stage of ALS. The loss of mitofusin 2 in neurons
causes NMJ dysfunction, whereas the upregulation of mitofusin
2 ameliorates the phenotype of mutant SOD1-G93A transgenic
mice (Wang et al., 2018).

The expression of mutant FUS or FUS knockdown in zebrafish
results in the impairment of motor activity and reduces quantal
transmission at NMJs, indicating loss and gain of function of
FUS (Armstrong and Drapeau, 2013). These changes in FUS
culminate in presynaptic dysfunction at the NMJ (Armstrong
and Drapeau, 2013). There is evidence that FUS plays multiple
roles in the nucleus and axonal compartments involved in
NMJ maintenance and axonal transport (Schoen et al., 2015;
So et al., 2018). FUS mediates the regulation of acetylcholine
receptor transcription at NMJ and is dysregulated in ALS
(Picchiarelli et al., 2019).

C9ORF72 was identified on the presynaptic side where the
protein interacts with Rab3 protein family members, suggesting
that it has a role in the regulation of synaptic vesicle functions as
a guanine nucleotide exchange factor (Frick et al., 2018).

In Drosophila, the protein Arc1 is a component of the capsid-
like structures that bind DARC1 mRNA in neurons. These capsids
are included in the extracellular vesicles that are transferred
across the NMJ from MNs to the muscle cells (Ashley et al., 2018).
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The transport of mRNA across the NMJ via these retrovirus-
like capsids and extracellular vesicles is required for synaptic
plasticity (Ashley et al., 2018). Dipeptide repeat proteins related
to C9ORF72 spread between cells in vitro and in vivo (Westergard
et al., 2016). Tau is another protein that is transported from
donor cells to recipient cells through the cell culture medium
(Wu et al., 2016b). Evidence suggests that the mechanism of
pathogenic molecular transfer, termed the prion hypothesis,
may be activated in the extracellular space and across the
NMJ synapses during degeneration of the motor cortex with
centrifugal spreading (Furukawa et al., 2011; Nonaka et al., 2013;
Porta et al., 2018).

Aberrant Axonal Branching
Axonal branching is a fundamental mechanism of nervous
system neuroplasticity (Menon and Gupton, 2018).
Accumulating evidence suggests that aberrant axonal branching
is involved in the pathomechanisms of ALS.

Overexpression of mutant human TARDBP in zebrafish
embryos induces a phenotype that includes shorter MN axons,
premature and increased branching, and abnormal swimming
(Kabashi et al., 2010). On the other hand, overexpression of
progranulin rescues mutant TARDBP-induced aberrant axonal
branching and short axonal outgrowth (Laird et al., 2010).

Injection of morpholino antisense oligonucleotides to inhibit
the translation of target mRNA and to knock down SMN
in zebrafish embryos significantly increases MN branching
(McWhorter et al., 2003). C9ORF72 modulates the activity of
the small GTPases, resulting in increased activity of LIM kinases
1 and 2 and regulation of axonal actin dynamics (Sivadasan
et al., 2016). Various actin isoforms are expressed in primary
mouse MNs, and their transcripts have been observed to be
translocated into axons (Moradi et al., 2017). It is proposed that
short hairpin RNA-mediated depletion of α-actin reduces axonal
filopodia dynamics and disrupts collateral branch formation in
developing MNs (Moradi et al., 2017).

Temporary overexpression of human cyclin-F (CCNF) in
zebrafish embryos increases the levels of cleaved caspase-3 and
cell death in the spinal cord. The mutant CCNF zebrafish also
developed an MN axonopathy, which consists of shortened
primary MN axons and an increased frequency of aberrant axonal
branching (Hogan et al., 2017).

A recent study reported that MNs cultured from mutant
SOD1-G93A transgenic mouse models exhibit enhanced axonal
outgrowth and dendritic branching (Osking et al., 2019).
As the level of branching does not correlate with the
severity of the disease, in this study, the authors concluded
that axonal branching does not affect the disease process.
Increased synaptic activity or branching is considered desirable
in the field of psychiatric disease (Shao et al., 2019). The
authors of the present review identified aberrant axonal
branching in FUS-mutant iPSC-derived MNs (Akiyama et al.,
2019). The sensory axons branching in the presence of
nerve growth factor (NGF) can be observed at sites marked
by stalled mitochondria. NGF promotes branching through
the generation of ATP and active axonal translation of
mRNA (Spillane et al., 2013). The mechanism underlying

mitochondrial stalling and growth factor distribution in MNs
requires examination.

The meaning of axonal branching might be different in each
stage of the development (Jung et al., 2012). In the embryonic
stage, axon pathfinding and synaptic formation are important.
However, in the developed stage, aberrant axon branching might
have a disadvantage in terms of normal function of signal
transmission. The significance of aberrant axonal branching in
the neurodegenerative model in vivo has not yet been elucidated.

OMICS PROFILING OF THE AXONAL
COMPARTMENT

The previous section provided an overview of the important
pathomechanisms of MN axons. These pathomechanisms have
been found to influence each other and cannot be entirely
separated. This section reviews the omics analysis of the axon
compartment in order to obtain an overall understanding of this
complex process occurring in an important region of the neuron.

Lessons From Different Nervous
Systems
The rationale for conducting omics analysis of the axon
compartment is as follows (Table 2). Surprisingly complex,
constantly changing transcriptomes are present in mature axons.
Thus, axonal mRNA localization is likely to be tightly regulated
and to play multiple roles. The ribosomal protein S6 has
been observed with immunoelectron microscopy in the axons
of embryonic sympathetic and hippocampal neurons grown
in vitro (Tcherkezian et al., 2010), indicating that local mRNA
translation also occurs in growing axons. Further, the local
translation of proteins from mRNAs selectively transported from
the soma to the synaptic terminal appears to be involved in the
regulation of axon outgrowth and regeneration (Zheng et al.,
2001; Taylor et al., 2009).

Elucidation of what features of axonal function require local
translation and determination of the mRNAs that mediate these
functions have induced intriguing challenges in the field of
axonal biology (Deglincerti and Jaffrey, 2012; Jung et al., 2012).
Assessment of the axonal transcriptome using microarray studies
has identified important axonal mRNAs and has demonstrated
the complexity and dynamic nature of the axonal transcriptome
(Zivraj et al., 2010; Gumy et al., 2011).

In a pioneering study involving omics analysis in axons,
more than 200 different mRNAs were identified with cDNA
microarray analysis in axons derived from rat with injured
sensory neurons (Willis et al., 2007). Proteins involved in
the transcription, synthesis of proteins, intracellular transport,
calcium metabolism, mitochondrial functions, and cytoskeletal
functions were identified in the study (Willis et al., 2007).
The report raised several important questions regarding axonal
translation (Deglincerti and Jaffrey, 2012), including the
question of why transcripts for nuclear proteins are localized
to distal axons.

Using a microfluidic chamber enabling the isolation of axons
without contamination with non-axonal material, mRNA has

Frontiers in Neuroscience | www.frontiersin.org 6 March 2020 | Volume 14 | Article 194

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00194
M

arch
23,2020

Tim
e:20:8

#
7

S
uzukietal.

O
m

ics
A

pproach
to

A
LS

A
xon

TABLE 2 | Omics analyses of the axon compartment in in vivo, ex vivo, and in vitro models of several types of nervous systems.

Disease
modeling

System Cell resource Vivo/Vitro Methodology Analysis Core result References

ALS Motor Human iPS-derived
motor neuron

in vitro Separating axon using
microfluidics (Jiksak
Bioengineering)

RNA sequencing Increased level of Fos-B mRNA, the binding target of
FUS, in FUS-mutant MNs. While Fos-B reduction using
si-RNA or an inhibitor ameliorated the observed
aberrant axon branching, Fos-B overexpression
resulted in aberrant axon branching even in zebrafish
model.

Akiyama et al.,
2019

ALS Motor Mouse and human
stem cell-derived spinal
motor axons

in vitro Microfluidics RNA sequencing Identified 3,500–5,000 transcripts in mouse and human
stem cell-derived spinal motor axons, most of which
are required for oxidative energy production and
ribogenesis. Axons contained transcription factor
mRNAs, e.g., Ybx1, with implications for local
functions. In SOD1G93A mutant, identifying 121
ALS-dysregulated transcript, including Nrp1, Dbn1, and
Nek1, a known ALS-causing gene.

Nijssen et al.,
2018

No Motor hiPSC-derived motor
neuron

in vitro Permeable inserts
culture device

RNA sequencing Discriminate axonal and somatodendritic
compartments

Maciel et al.,
2018

No Retina Retinal ganglion cells
(RGCs) exit from the
eye primordia from
Xenopus laevis
embryos

Ex vivo Axon grow through the
1 µm pores of the
transfilter on the
Boyden chamber

Pulsed stable isotope
labeling of amino acids in
cell culture (pSILAC) with
ultrasensitive sample
preparation technology
termed single-pot
solid-phase-enhanced
sample preparation (SP3)

Axons stimulated by different cues (netrin-1, BDNF,
Sema3A) showed distinct signatures with over 100
different nascent protein species

Cagnetta et al.,
2018

ALS Spinal Dissociated spinal cord
culture from ICR mice
at E12.5

Ex vivo Modified boyden
chamber membrane
culture system

RNA sequencing Elavl2 and miR-146a, miR-126-5p, miR-99a are shared
in axons of lentiviral overexpression of both p.A315T
TARDBP and p.G93A SOD1 mutants.

Rotem et al.,
2017

No Neuron Differentiated neurons
from human ESC

in vitro Microfluidics Microarray Confirmed the presence of two well characterized
axonal mRNAs in model organisms, β-actin and
GAP43, within hESC-neuron projections. oxytocin
mRNA localized to these human projections and
confirmed its localization using RNA-FISH.

Bigler et al.,
2017

No Motor Isolated motor neuron
from E12.5 CD-1
mouse spinal cord
using p75NTR antibody
panning

Ex vivo Xona microfluidics,
SND 150 chamber

RNA sequencing Double-random priming transcriptome methods enable
to serially diluted total RNA down to 10 pg

Briese et al.,
2016

No Retina Retinal ganglion cells
(RGCs) of mouse

in vivo Axonal translatome
using
Axon-TRAP-RiboTag
mouse and IP of
ribosome mRNAs

in vivo axonal translatome The embryonic to postnatal axonal translatome
comprises an evolving subset of enriched genes with
axon-specific roles, suggesting distinct steps in axon
wiring, such as elongation, pruning, and
synaptogenesis. Adult axons have a complex
translatome with strong links to axon survival,
neurotransmission and neurodegenerative disease.

Shigeoka et al.,
2016
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TABLE 2 | Continued

Disease
modeling

System Cell resource Vivo/Vitro Methodology Analysis Core result References

SMA Motor Isolated motor neuron
from E12.5 CD-1
mouse spinal cord
using p75NTR antibody
panning

Ex vivo Xona microfluidics,
SND 150 chamber

Microarray Knockdown of SMN, the protein deficient in spinal
muscular atrophy, produced a large number of
transcript alterations in both compartments. Transcripts
associated with axon growth and synaptic activity were
down-regulated on the axonal side of smn- deficient
motor neurons.

Saal et al.,
2014

No Retina DRG explants
dissected from
embryonic (E16) and
adult (3–5 mo old) from
Sprague Dawley rats

Ex vivo Compartmentalized
chamber to isolate
mRNA from pure
embryonic and adult
sensory axons devoid
of non-neuronal or cell
body contamination

Genome-wide microarray Tubulin-beta3 (Tubb3) mRNA is present only in
embryonic axons, with Tubb3 locally synthesized in
axons of embryonic, but not adult neurons where it is
transported

Gumy et al.,
2011

No Retina Retinal ganglion cell
(RGC) axons of two
vertebrate species,
mouse and Xenopus

Ex vivo Laser capture
microdissection (LCM)
to isolate the growth
cones

Coupled with unbiased
genomewide microarray
profiling.

Many presynaptic protein mRNAs are present
exclusively in old growth cones. ome receptor
transcripts (e.g., EphB4), present exclusively in old
growth cones, were equally abundant in young and old
cell bodies.

Zivraj et al.,
2010

No Cortical Cortical and
hippocampal
dissociated neurons
from embryonic
Sprague Dawley rats at
E18

Ex vivo Microfluidic chamber
with microgrooves
(7.5 µm wide, 3 µm
high)

Microarray Axonal transcripts are enriched for protein translational
machinery, transport, cytoskeleton, and mitochondrial
maintenance.

Taylor et al.,
2009

No Motor Primary DRG cultures
from L4-5 were
prepared from Sprague
Dawley rats that had
been injury conditioned
7 days before by sciatic
nerve crush at midthigh
level

Ex vivo Dissociated DRGs were
plated into tissue
culture inserts
containing porous
membranes (8-µm
pores). Axons were
isolated after 16-20 h in
culture by scraping
away the cellular
content from the upper
or lower membrane
surfaces

cDNA microarray Neurotrophins (nerve growth factor, brainderived
neurotrophic factor, and neurotrophin-3) regulate axonal
mRNA levels and use distinct downstream signals to
localize individual mRNAs.

Willis et al.,
2007
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been purified from mature CNS axons (Taylor et al., 2009). The
same study also described the localization of catenin-β1 and
neurexin-3 mRNA with fluorescence in situ hybridization in the
axonal compartment (Taylor et al., 2009). The somatodendritic
compartments are enriched in transcripts with postsynaptic
functions and in nuclear non-coding RNAs such as 7SK, whereas
transcripts related to translation such as7SL, the cytoplasmic non-
coding RNA, are upregulated in the compartment of the axon
fraction (Briese et al., 2016).

Transcriptome-wide analyses have revealed numerous
transcripts encoding transmembrane or secreted proteins,
which comprise about 13% of the total mRNAs found in
growth cones (Zivraj et al., 2010). Transcripts present in axons
encode many transmembrane proteins, such as integrins and
protocadherins, which are cell adhesion molecules, and EphB4
and Nrp2, which are guidance receptors (Zivraj et al., 2010).
Thus, local translation may change the cell adhesion capacity
of axons and allow axons to respond to extracellular signaling
molecules (Gumy et al., 2011). Axons also contain transcripts
that code for secreted proteins, including semaphorin and
ephrin, which are guidance molecules; BMP1, CTGF, and FGF,
which are growth factors; and collagen and TIMP3, which
compose and regulate the extracellular matrix. Thus, it is
expected that local translation probably plays a role in the
regulation of extracellular components by affecting proteins
that are secreted from growth cones (Deglincerti and Jaffrey,
2012). Axons also contain structures that resemble the ER and
Golgi. Specific labeling of the ER and Golgi exhibits irregular,
punctate staining along the axon, suggesting that axon-specific
versions of these organelles may be present in nerve terminals
(Merianda et al., 2009).

The development of compartmentalization has enabled the
examination of axon pathology in MN diseases. The knockdown
of SMN, which encodes the protein that is deficient in spinal
muscular atrophy (SMA), was shown to produce numerous
transcript alterations in both axon and somatic compartments
of the microarray (Saal et al., 2014). Transcripts associated
with axon growth and synaptic activity are downregulated on
the axonal side of SMN-deficient MNs. Improvements in the
handling of small quantities of RNA have led to further progress
in this field (Briese et al., 2016).

Evaluation of cultured spinal cord neurons grown with
a compartmented platform and subjected to next-generation
sequencing technology revealed that mRNAs and miRNAs
are differentially expressed in the somatic compared with
the axonal neuronal compartments (Rotem et al., 2017). In
axons with lentiviral overexpression of p.A315T TARDBP or
p.G93A SOD1 mutants, Elavl2, miR-146a, miR-126-5p, and
miR-99a are commonly expressed. Examination of the local
transcriptome revealed that the most abundant mRNAs within
human embryonic stem cell-derived neuronal projections are
functionally similar to the rat axonal transcriptome of cortical
neurons (Bigler et al., 2017).

The use of microfluidic technology has been particularly
useful in neuroscience research. Microfluidic platforms have
allowed researchers to address specific questions related to axonal
guidance, synapse formation, and cargo transport within axons,

and led to the development of three-dimensional (3D) CNS
models for pharmacological testing and drug screening (Neto
et al., 2016). Human iPSC-derived MNs grown in a culture device
with permeable inserts were observed to produce large amounts
of enriched axonal material that can be harvested for RNA
isolation and sequencing (Maciel et al., 2018). Transcriptome
profiling has revealed axonal and somatodendritic compartment-
specific expression.

Recently, Nijissen and colleagues developed a refined method
named Axon-seq, combining microfluidics, RNA sequencing,
and bioinformatics analysis (Nijssen et al., 2018). These results
demonstrated that the transcriptome of the axon compartment
is quite different from that of the soma and includes a smaller
number of mRNAs. They identified up to 5,000 mRNAs in mouse
and human stem cell-derived MN axons; the functions of the
majority of these are oxidative energy and ribosome production.
Axons contain transcription factor mRNAs, implicating local
functions. Investigation into the response of degenerated ALS
motor axons to the SOD1-G93A mutation identified 121 ALS-
dysregulated transcripts. Among these, Nrp1 and Dbn1 are
involved in axonal function, and Nek1 is a known ALS-causative
gene (Brenner et al., 2016; Kenna et al., 2016; Nijssen et al.,
2018). Axon-seq is an advanced technique for sequencing the
RNA in axons, and thus can provide enhanced knowledge about
peripheral nerve biology to explain the vulnerability/resilience of
MN (Nijssen et al., 2017; Allodi et al., 2019) and to identify the
treatment of MN diseases.

Development of a Microfluidic Device for
Larger-Scale Omics Analysis
Despite the improvement offered by the microfluidic device,
harvesting a sufficient volume of lysate from the axon
compartment remains challenging. In the process of improving
the dimensions of the well and materials, a novel microfluidic
device was developed by the authors of this study (Table 3).
The device enabled comparison of two sets of isogenic FUS-
mutant iPSC-derived MNs generated using genome editing
technology (Joung and Sander, 2013; Okano and Yamanaka,
2014), and provided observations of increased branching in FUS-
mutant MN axons compared with those in isogenic controls
(Akiyama et al., 2019). This phenotype was confirmed using
other ALS-causative mutations, including SOD1 and TARDBP.
Combining this innovative microfluidic device (Kawada et al.,
2017) with hiPSC-derived MN organoids further revealed the
entire in vitro profile of the human MN axons. This technique
identified increased Fos-B mRNA as a binding partner of FUS
and as a causative event for aberrant axon morphology both
in vitro and in vivo.

Morphological changes in MN axon branching have been
found to precede MN death in the mutant SOD1-G93A
transgenic mouse model (Tian et al., 2016), and abnormal neural
branching has been detected in zebrafish that overexpress mutant
FUS (Armstrong and Drapeau, 2013). Improvements in axon
morphology following suppression of abnormally upregulated
Fos-B in FUS mutants suggested a novel therapeutic candidate for
FUS-mutant ALS.
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TABLE 3 | Comparison of our microfluidic devices with those of previous studies.

Neuron device Modified boyden Nerve organoid
device

Company Xona Microfluidics Corning Jiksak
Bioengineering

Dimension 2 D 2 D 3 D (axon bundle)

Cell type Primary mouse
motor neuron

Primary mouse
motor neuron

iPSCs derived
motor neuron

Pore size 1∼3 um 3 um 150∼200 um

Axon length 150 um NA 10,000 µm (1 cm)

Retrievable
neurons

∼10*3 5 × 10*5 10*4-

RNA 20 pg- 0.3 ng/µl 12 ng (l ng/µl) -

References Briese et al., 2016;
Bigler et al., 2017;
Nijssen et al., 2018,
etc.

Rotem et al., 2017;
Maciel et al., 2018,
etc.

Akiyama et al.,
2019; Kawada
et al., 2017

Previous studies have also reported that upregulation of
Fos-B mRNA is associated with increases in spines (Lafragette
et al., 2017; Cahill et al., 2018) and growth cones (Anastasiadou
and Knoll, 2016). δFos-B modulates immature spines of the
nucleus accumbens in a model of drug addiction (Grueter
et al., 2013). Certain chemical stimulators such as kainic
acid lead to neurodegeneration via upregulated expression
of immediate early genes, including that of Fos-B (Pereno
et al., 2011). The hyperexcitability hypothesis is a major
theme in proposing the pathomechanism of ALS (Wainger
et al., 2014). A recent report of activator protein-1 (AP-1)
and MN degeneration in the mutant SOD1-G93A transgenic
mouse model has attracted attention (Bhinge et al., 2017).
Additionally, the suppression of dual leucine zipper kinase,
the upstream signal protein for c-Jun (AP-1 family member),
may become a therapeutic target for ALS (Bhinge et al.,
2017). Although substantial differences have been reported
in SOD1-ALS compared with FUS-ALS and TARDBP-ALS
(Fujimori, 2018), SOD1-, TARDBP-, and FUS-mutant MNs
have common features, suggesting a role for AP-1 in the
neurodegeneration observed in ALS. The Fos-B protein
accumulates abnormally in the MNs of ALS patients, including in
sporadic cases. Thus, Fos-B appears to be a potential therapeutic
target molecule.

The novel microfluidic device described in the preceding
paragraph comprises a large canal that enables the collection of
sufficient samples of isolated MN axons for RNA sequencing
(Kawada et al., 2017). This device has proven useful in
visualizing the global profile of the axon compartment.
Although other types of microfluidic devices, some of which
are specific to cell fraction analysis, are available on the
market (Briese et al., 2016; Rotem et al., 2017), they are
typically restricted by the limited amount of specimen obtained
(Table 3). As only a very small amount of specimen can
be analyzed, variation in conditions, such as cell purity
and culture procedures, may influence the results. Kawada’s
microfluidic device enables analysis with fewer technical
biases because it involves the collection of large amounts

of macroscopically observable axon bundles. RNA profiles
from the axon samples have reproduced the previously
reported profiles of the MN axon (Briese et al., 2016;
Rotem et al., 2017), justifying the methodology of this novel
device. Furthermore, the data obtained may provide important
resources for the subcellular fractional analysis of stem cell-
derived MN axons.

Are These mRNAs Translated in Axons?
An important question is whether these mRNAs are translated in
axons or transported to the nucleus/cell body. The importance
of axonal translation for CNS maintenance is under debate
(Spaulding and Burgess, 2017). Several types of mature
polarized cells utilize asymmetrical mRNA localization as a
means of synaptic communication with other types of cells
(Xing and Bassell, 2013). In vivo, the longest axons, such as
those of mature sensory and motor peripheral neurons, rely
most strongly on mRNA transport and local translation to
maintain homeostasis.

Upregulation of ribosome synthesis in axons has been found
to occur early in the pathogenesis of both mutant SOD1-G93A
transgenic mouse models and human ALS autopsy samples,
which suggests the involvement of Schwann cells in ALS
pathology and in aberrant axonal RNA metabolism (Verheijen
et al., 2014). Gene expression analyses of the anterior branch
of human obturator MNs biopsied from patients with ALS
demonstrated upregulation of a cluster of genes that play
important roles in biological processes involving RNA processing
and protein metabolism (Riva et al., 2016).

Direct evidence for neurodegeneration has been obtained
from the observation of mRNA transport dysregulation
due to mutations in the RBP SMN1, which causes SMA
(Wang et al., 2016b). SMN is present ubiquitously, and
its deletion is lethal. However, MNs are more sensitive
to SMN reduction than other cell types, possibly because
reduced SMN decreases the axonal localization of several
mRNAs (Rage et al., 2013) and inhibits the activity of the
mammalian target of rapamycin in axons (Kye et al., 2014).
An additional role for SMN is in the regulation of axonal
localization and local translation of growth-associated protein
43 (GAP43) mRNA in growth cones (Fallini et al., 2016).
The overexpression of two mRNA-binding proteins, HuD
and IGF2 mRNA-binding protein 1, restores the mRNA and
protein levels of GAP43 and has been shown to rescue the
axon outgrowth defects in the neurons of an SMA patient
(Fallini et al., 2016).

In previous studies, protein interaction screening intended
to elucidate FUS-mutant phenotypes also identified several
molecules that interact with FUS, including SMN (Yamazaki
et al., 2012; Groen et al., 2013). Aberrant distribution of SMN in
cytosolic FUS accumulations induces SMN reduction in axons.
Accumulation of mutant human FUS induces an integrated
stress response and reduces protein synthesis in nearby axons
(Lopez-Erauskin et al., 2018).

Non-nuclear pools of splicing factor, proline-glutamine rich
(SFPQ) are essential for normal motor development via local
mRNA maintenance or processing, and the coiled-coil domain
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of SFPQ is required for axonal localization (Thomas-Jinu et al.,
2017). The RBPs modulate nuclear processing, intracellular
transport, and local translation of target mRNAs for an accurate
spatial and temporal gene expression. SFPQ functions as an RBP
because it binds to and modulates numerous neuronal mRNAs,
including in cells, such as dorsal root ganglion neurons. SFPQ,
which has been identified by subcellular compartmentalization
analysis (Cosker et al., 2016; Takeuchi et al., 2018), has been
found to orchestrate spatial gene expression, which is essential
for axonal viability.

Local translation is also involved in several
neurodevelopmental disorders (Batista and Hengst, 2016).
Local translation defects are associated with fragile X mental
retardation and autism spectrum disorders (Kelleher and Bear,
2008). Fragile X mental retardation protein, which is present in
dendritic spines, growth cones, and axons, modulates plasticity
(Bassell and Warren, 2008) and the presynaptic proteome
(Christie et al., 2009; Akins et al., 2012). In mouse brain slices,
loss of the fragile X mental retardation protein was found
to perturb the development of presynaptic nerve terminals
(Hanson and Madison, 2007).

Degeneration of motor axons results from mutations in
various tRNA synthetases, which is consistent with the notion
that local translation of transported mRNA is necessary for
axonal homeostasis (He et al., 2015; Storkebaum, 2016).
Recently, cytoplasmic polyadenylation element-binding protein
4 was found to orchestrate the dysregulation of mRNA
expression in autism (Parras et al., 2018). Identification of a
master regulator of RNA metabolism would be beneficial in
understanding and treating for both diseases that affect MNs and
psychiatric diseases.

Nascent chain tracking is a novel technique for visualizing
local translation. This method uses multi-epitope tags and
antibody-based fluorescent probes to quantify the dynamics of
protein synthesis at the level of individual mRNAs (Morisaki
et al., 2016). Due to its sensitivity and versatility, nascent chain
tracking is a useful tool for quantifying mRNA translation
kinetics. Synaptic activity can induce mRNA localization and
the local translation of β-actin, which stabilizes expanding
synapses at dendritic spines (Wu et al., 2016a; Yoon et al.,
2016). Real-time visualization of mRNA translation in the
axonal compartment is an innovative method enabling analysis
of axonal pathology in vivo (Wang et al., 2016a; Yan et al.,
2016). The inducible fluorescent probe can be regulated in
time and space in neurons and is used to examine the
maturation of miRNA. The local maturation of miRNA by
synaptic stimulation results in a spatially restricted protein
synthesis reduction from the mRNA (Sambandan et al., 2017).
The proteomics approach described in a later section adds to the
understanding of the global change of nascent proteins produced
in the axon fraction.

Role of Intra-Axonal Transcription
Factors
Why transcripts for nuclear proteins are localized to the distal
axons is a big question raised by the omics analysis. Fos-B, a

mediator of abnormal axonal branching in FUS-mutated MNs,
is a transcription factor. Another research group also reported
dysregulated transcription factors in ALS MNs (Nijssen et al.,
2018). In determining the role of transcription factors in the
axon compartment, a comprehensive transcription of the action
fraction has identified mRNAs encoding a larger amount of
transcription factors and co-factors (Ji and Jaffrey, 2014). One
example is that of axonal STAT3, which is translated locally,
activated upon nerve injury, and is transported retrogradely
with dynein and importin α5, modulating the survival of
peripheral sensory neurons (Ben-Yaakov et al., 2012). Recently,
Tp53inp2 was reported to be an atypical mRNA regulating axon
growth by enhancing the NGF-TrkA pathway independently
with translation (Crerar et al., 2019). Importantly, data have
indicated that axonal degeneration shared early molecular change
in the neurodegenerative process of neurological disorders in
aged populations (Dadon-Nachum et al., 2011; Tagliaferro and
Burke, 2016; Salvadores et al., 2017).

In the brain of a person with Alzheimer’s disease, inhibition
of local translation of Atf4 mRNA overproduction eliminates
amyloid β-induced cell loss (Baleriola et al., 2014; Peng et al.,
2016). Atf4 mRNA translation is controlled by phosphorylation
of elongation initiation factor 2a, pivotal for an integrated
stress response (Batista and Hengst, 2016). The role of axonal
transcription factors in relation to translated proteins and non-
translated RNA requires further elucidation.

Interaction Among the Mechanisms
Already Described
The hallmark feature in the majority of autopsy cases of ALS
is nuclear depletion and cytoplasmic accumulation of TDP-
43 in degenerated neurons (Kim and Taylor, 2017). Thus,
dysfunctional trafficking between the nucleus and cytoplasm
likely plays a role in the pathology of ALS (Nedelsky
and Taylor, 2019) and may also be important in normal
physiological aging, Huntington’s disease, and Alzheimer’s
disease (Nedelsky and Taylor, 2019). RBPs with prion-like
domains (PrLDs) undergo liquid-liquid phase separation to
form functional liquids, which can be converted into abnormal
hydrogels that contain pathological fibrils that are often seen
in neurodegenerative diseases. TDP-43, FUS, heterogeneous
nuclear ribonucleoprotein A1 (hnRNPA1), and hnRNPA2 are
nuclear RBPs with PrLDs that are incorrectly sent to cytoplasmic
inclusions in neurodegenerative diseases. Mutations in PrLDs
increase the rate of fibril formation and initiate disease (Guo
et al., 2018). Karyopherin-β2, also known as transportin-1,
binds the proline-tyrosine NLS and then blocks and reverses
FUS, TATA-box-binding protein associated factor (TAF) 15,
Ewing sarcoma RBP1 (EWSR1), hnRNPA1, and hnRNPA2
fibril formation. Importin-α and karyopherin-β1 also block
and reverse TDP-43 fibril formation. Phase separation, like
stress granule formation, is an emerging property of proteins
containing PrLD such as FUS (Guo et al., 2018; Hofweber
et al., 2018; Qamar et al., 2018; Yoshizawa et al., 2018).
T-cell-restricted intracellular antigen-1 (TIA1) mutations were
found to delay stress granule disassembly and to promote
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the accumulation of granules harboring TDP-43 (Mackenzie
et al., 2017). C. elegans TIAR-2/TIA protein functions cell
autonomously to inhibit axon regeneration (Andrusiak et al.,
2019). One of the important roles of phase separation is
transcription enhancement (Sabari et al., 2018), which might
be related to local translation/transcription. The association
between axonal dysfunction and these cytoplasmic events,
including phase separation, has not yet been elucidated.

There is emerging evidence of interactions among different
processes of axonal pathology in ALS. Annexin A11 (ANXA11),
a phosphoinositide-binding protein associated with the RNA
granule, has the role of a molecular tether between lysosomes and
RNA granules. Such tethering is impaired by the ALS-associated
ANXA11 mutation (Smith et al., 2017; Liao et al., 2019). Late
endosome bearing mRNA encoding mitochondrial functional
molecules stops at mitochondria and these mRNAs are translated
on Rab7a endosomes locally in the axon (Cioni et al., 2019).

In summary, exactly how these complex mechanisms are
influenced by each other is still unknown. There is a need
for understanding how cytoskeletons are maintained, and
how molecules are transported/metabolized/synthesized, or
abolished when unnecessary. Elucidating the interaction of these
mechanisms might answer the vital question of why MNs are
vulnerable in ALS.

Advanced Omics Analysis and Further
Consideration
Conducting a comprehensive analysis of the newly produced
proteome from limited samples of subcellular compartments that
are uncontaminated by the somatodendrite remains a major
technical problem (Eichelbaum and Krijgsveld, 2014). Stable
isotope labeling of amino acids in cell culture (SILAC) has
been combined with single-well solid phase-enhanced sample
prep. Using this method, the newly produced proteome of
isolated retinal axons was obtained rapidly (in approximately
5 min) (Cagnetta et al., 2018). Treating axons treated with
stimuli such as netrin-1, brain-derived neurotropic factor,
and Sema3A, has demonstrated distinct proteomes with more
than 100 different nascent proteins. Compartment analysis
using pulsed SILAC may be applied to ALS cells with a
sophisticated culture device.

Using an axon-TRAP-RiboTag approach in mice, the dynamic
translatome of axons in the retina in vivo matches the
subcellular function (Shigeoka et al., 2016). The translatome
of the embryonic and postnatal axons includes a changing,
enriched set of genes with axon-specific roles. Thus, specific
steps in axon wiring, such as axon growth, elimination of
unnecessary axons, and synaptogenesis, may be present. Adult
axons harbor a complicated translatome that plays a role in axon
survival, neurotransmission, and neurodegenerative diseases.
Mating of several ALS mouse models can help in precisely
understanding mRNA dysregulation. Further transcriptome
and proteome analyses using labeled growth cones of single
projections in the mouse cerebral cortex in vivo may also
be of use (Poulopoulos et al., 2019). Spatial transcriptomics is
another method for elucidating gene expression in the mouse

spinal cord over the disease course, and in postmortem tissue
from patients with ALS (Maniatis et al., 2019). Another
important approach is the single-cell transcriptomics of nerve
organoids in vitro (Quadrato et al., 2017); pseudo-time
analysis or single-cell trajectory analysis can help establish the
relationship between the cause and effect of the transcriptome
of the organoids (Xiang et al., 2017; Klaus et al., 2019).
Sophisticated neuromuscular co-culture organoids would be
beneficial for these studies.

Stimulated Raman scattering microscopy is a new technique
for chemical imaging that can be used to map the distribution of
various molecules–including lipids, proteins, and nucleic acids–
in live cells and tissues, as determined by their intrinsic molecular
vibration (Freudiger et al., 2008). The authors of this review
used this type of imaging to visualize peripheral degeneration in
several ALS mouse models and human postmortem tissue (Tian
et al., 2016). Non-labeled live imaging of motor axons may assist
in monitoring the time course of axonal pathology in vivo.

In clinical settings, the strength-duration time constant,
which represents the hyperexcitability of an MN axon, is
significantly increased in patients (Kanai et al., 2006, 2012;
Geevasinga et al., 2015). Hyperexcitability is thought to be
the target of MN death in ALS (Wainger et al., 2014).
In cell culture settings, the shortened isoform of TDP-43
is upregulated by neuronal hyperactivation (Weskamp et al.,
2019). The role of these short isoform of TDP-43, which
might be the product of dysregulation of RNA metabolism,
should be considered in the axon fraction. Recent studies
have revealed the importance of stathmin-2 (STMN2), a
regulator of microtubule stability, in the pathomechanism
of TARDBP mutation (Klim et al., 2019; Melamed et al.,
2019). The expression of a microtubule regulator, STMN2,
is decreased following TARDBP knockdown, when TDP-43
is mis-localized, and in MNs from patients and the spinal
cord of postmortem samples. The reduced function of TDP-43
results in the loss of STMN2 due to altered splicing. This is
functionally important, as STMN2 is necessary for the outgrowth
and regeneration of MN axons. Post-translational STMN2
stabilization rescues neurite outgrowth and axon regeneration
deficits by TDP-43 depletion (Klim et al., 2019). A reduction
in TDP-43 inhibits axonal regeneration of iPSC-derived MNs,
whereas rescue of the expression of STMN2 restores the
axonal regeneration capacity (Melamed et al., 2019). The effect
of the short form of TDP-43 or cryptic exons under the
control of TDP-43 (Ling et al., 2015) should be examined in
the axon fraction.

CONCLUDING REMARKS

As described in the preceding section, advanced omics
approaches, in vivo analysis, and axon–cytoplasmic interactions
should be examined as the next steps in investigating
axonal pathology in neurodegenerative disease research.
The novel concept of microfluidic devices, including the
nerve organoid device presented by the authors of this review,
should be applied to other neuron types, co-culture systems,
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or proteomics analyses using human pluripotent cells, because
this technique may help elucidate the resilience of long MN and
the pathomechanism of ALS.
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