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Independent component analysis (ICA), being a data-driven method, has been shown

to be a powerful tool for functional magnetic resonance imaging (fMRI) data analysis.

One drawback of this multivariate approach is that it is not, in general, compatible with

the analysis of group data. Various techniques have been proposed to overcome this

limitation of ICA. In this paper, a novel ICA-based workflow for extracting resting-state

networks from fMRI group studies is proposed. An empirical mode decomposition

(EMD) is used, in a data-driven manner, to generate reference signals that can be

incorporated into a constrained version of ICA (cICA), thereby eliminating the inherent

ambiguities of ICA. The results of the proposed workflow are then compared to those

obtained by a widely used group ICA approach for fMRI analysis. In this study, we

demonstrate that intrinsic modes, extracted by EMD, are suitable to serve as references

for cICA. This approach yields typical resting-state patterns that are consistent over

subjects. By introducing these reference signals into the ICA, our processing pipeline

yields comparable activity patterns across subjects in a mathematically transparent

manner. Our approach provides a user-friendly tool to adjust the trade-off between

a high similarity across subjects and preserving individual subject features of the

independent components.

Keywords: independent component analysis, ICA, empirical mode decomposition, EMD, Green’s-function - based

EMD, fMRI

1. INTRODUCTION

Independent component analysis (ICA) is a data-driven tool that is widely employed for functional
magnetic resonance imaging (fMRI) data analysis. Based on a linear mixture model, either spatially
(McKeown et al., 1998) or temporally (Biswal and Ulmer, 1999) independent components (ICs)
can be obtained with ICA, without the requirement of prior information about anatomical regions
of interest or temporal activation profiles. One problem of ICA is that, because of inherent
indeterminacies, in general, it is not suitable for group studies. Different subjects have different
time courses and spatial maps, and the extracted components will be sorted differently. This can
make it difficult to find comparable activation patterns between subjects and draw inferences from
subject groups. So far, various approaches have been proposed to overcome these shortcomings of
ICA (Calhoun et al., 2009). Combining components obtained by single-subject ICA based on spatial
correlation or clustering was proposed by Calhoun et al. (2001a) and Esposito et al. (2005). Another
possibility is the spatial or temporal concatenation of the individual datasets to obtain components
in a single ICA step from a group dataset, as well as the employment of back-reconstruction
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approaches to obtain subject-specific components (Calhoun
et al., 2001b; Svensén et al., 2002). These concatenation-
based approaches were compared with a simple across-subject
averaging by Schmithorst and Holland (2004). In a sophisticated
approach Beckmann and Smith (2005) proposed a tensorial
extension of ICA. The authors extended the probabilistic
ICA (PICA) model by adding a third dimension representing
subject-related dependencies in addition to the spatio-temporal
dimensions. The model represents a three-way factor analysis
similar to the well-known PARAFAC model (Harshman and
Lundy, 1994).

A popular paradigm used to acquire data for the above-
mentioned exploratory matrix factorization techniques is the so-
called resting-state. Under this paradigm, subjects either rest with
eyes open fixating a fixation cross or with eyes closed. Usually,
subjects are instructed not to fall asleep and to let their mind
wander. Contrary to the simplicity of the paradigm, the generated
database has a complex spatial structure and temporal dynamics,
which arise from low-frequency fluctuations in the BOLD signal
(Biswal et al., 1995; Fox and Raichle, 2007). Furthermore, the
data are characterized by large number of spatial dimensions and
they lack the temporal structure usually found for task-based
fMRI investigations. Because of these two aspects, exploratory
matrix factorization techniques are appropriate to analyze the
large amount of data and to explore the complex spatial and
temporal structure in the data, as shown by Kiviniemi et al.
(2003). In this context, ICA-based pipelines have emerged as a
state-of-the-art approach to investigate rs-fMRI data (Allen et al.,
2011; Remes et al., 2011). This decomposition of resting-state
fMRI data results in a so-called parcellation of the cortex into
brain networks composed of functionally connected brain areas.
In the literature, common brain networks are default-mode,
cognitive control, visual, somatomotor, sub-cortical, auditory, or
cerebellar, depending on the function of the brain areas included
in each network (Allen et al., 2014), which can be successfully
extracted from the data with ICA (Beckmann et al., 2005).

In this paper, a hybrid method is proposed for extracting
resting-state networks (RSNs) from fMRI data based on
constrained ICA (cICA) and empirical mode decomposition
(EMD). This constrained extension of ICA optimizes the
statistical independence and additionally the similarity to a given
reference signal. In the framework of an augmented Lagrangian
approach, the incorporation of a reference into ICA helps more
robust ICs to be obtained while eliminating the ambiguities of
the ICA approach (Lu and Rajapakse, 2006; Lin et al., 2009;
Rodriguez et al., 2014). In this paper, like (Lin et al., 2009), spatial
reference maps were employed to extract resting-state networks
from fMRI data. Besides analyzing temporal time series (Huang
et al., 1998), the EMD framework can be extended for the analysis
of two-dimensional spatial maps (Nunes et al., 2003; Al-Baddai
et al., 2016a,b), and in this study, we focus on the latter variant.
Based on a preliminary study Wein et al. (2019), it is shown
that an EMD-based image decomposition technique, denoted
as Green’s function in tension based bi-dimensional ensemble
EMD (GiT-BEEMD) (Al-Baddai et al., 2016b), produces suitable
references for cICA. This two-dimensional variant of EMD
allows us to decompose images into so-called bi-dimensional

intrinsic mode functions (BIMFs) and can also be used to slice-
wise decompose volumetric fMRI images. Because of its inherent
natural ordering of the extracted intrinsic modes according to
their spatial frequencies, EMD can easily generate prototypical
spatial maps. Similar spatial maps obtained with the EMD for
each subject can be identified and averaged across subjects. In the
next step, these prototypical spatial maps can serve as reference
signals for a constrained ICA applied in parallel to the entire
group of subjects. In this workflow, the references are obtained
from the same dataset as used for the analysis, so no prior
information is required. We extend previous constrained ICA
methods (Lu and Rajapakse, 2006; Lin et al., 2009; Rodriguez
et al., 2014) by showing that intrinsic mode functions generated
by EMD are suitable references which help to extract resting-state
networks in a purely data-driven fashion. The proposed workflow
intrinsically adapts to the statistics of the given data, thereby
avoiding any bias toward external references. We compare our
newmethod to another data-driven ICA approach, an established
group ICA method, based on temporal concatenation (Calhoun
et al., 2001b), using a resting-state fMRI dataset from the
Human Connectome Project (Essen et al., 2012). The potential
benefits of this hybrid cICA-EMD method are emphasized by
showing that this approach allows the user to actively shape the
extracted resting-state networks. The trade-off between enforcing
a certain similarity across subjects and preserving individual
subject features can be determined and can be adapted to
optimally fulfill the requirements of different studies.

2. MATERIALS AND METHODS

The following subsections introduce the dataset employed and
describe the data analysis techniques, which combine cICA and
GiT-BEEMD, as well as the processing steps of the gICA approach
used for comparison. Also, a flowchart of the proposed signal
processing chain is provided.

2.1. Dataset
This study employed a data set from the Human Connectome
Project (Essen et al., 2012). The S1200 release includes data from
subjects who participated in four resting-state fMRI sessions,
lasting 14.4 min each and resulting in 1200 volumes per session.
Customized Siemens Connectome Skyra magnetic resonance
imaging (MRI) scanners at Washington University with a field
strength of B0 = 3 Tesla were employed for data acquisition,
using a multi-band (factor 8) technique (Feinberg et al., 2010;
Moeller et al., 2010; Setsompop et al., 2012; Xu et al., 2012). The
data were collected by gradient-echo echo-planar imaging (EPI)
sequences with a repetition time TR = 720ms and an echo time
TE = 31.1ms, using a flip angle of θ = 52◦. The field of view was
FOV = 208 mm × 180 mm, and Ns = 72 slices with a thickness
of ds = 2 mm were obtained, containing voxels with a size of
2 mm × 2 mm × 2 mm. The preprocessed version, which had
been subjected to motion-correction, structural preprocessing,
and ICA-FIX denoising, was chosen (Jenkinson et al., 2002, 2012;
Fischl, 2012; Glasser et al., 2013; Smith et al., 2013; Griffanti
et al., 2014; Salimi-Khorshidi et al., 2014). In the S1200 release,
the FIX-classifier was trained on a labeled subset of the provided
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FIGURE 1 | The flowchart sketches the main steps of the presented approach: first, reducing the data with PCA, then extracting BIMFs with spatial BEMD from the

reduced data, and then combining the BIMFs of each subject in order to get shared references for cICA, which finally help to obtain comparable ICs across subjects.

data (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). For
comparison of the two approaches, 10 sessions from 10 different
subjects were selected from the database. Gaussian smoothing
with a half-width FWHM = 5 mm was then applied by using
the SPM12 software package1, and the first five images were
discarded to account for magnetic saturation effects.

2.2. A Hybrid cICA-EMD Approach
In this section a new approach to deal with an ICA analysis across
a group of subjects will be described. The flowchart in Figure 1

presents an overview of the various steps of the data analysis. All
processing steps were performed inMATLAB 9.3 Release 2017b.

2.2.1. Preprocessing
The data as obtained from the data repository will be further
pre-processed, as explained in the following.

• In the first step, the voxel time series are linearly detrended
and the voxel values are transformed to have zero mean and
unit variance.

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

• Next a mask common to all subjects is used to exclude
voxels that are located outside of the brain. The mask is
created by employing the GIFT toolbox2, using the “Generate
mask” option.
• The data of subject s is stored in a K × L-dimensional matrix

X(s) containing in its columns xl(k) the temporal evolution of
L brain voxels at K time points.
• Principal component analysis (PCA) related dimension

reduction is then performed based on the singular value
decomposition (SVD) of X(s) = U(s)6(s)V(s)T . If the row
mean of X(s) is removed, then U(s) contains the eigenvectors
of the covariance matrix C(s) ∝ X(s)X(s)T in its columns.
The eigenvectors with the largest eigenvalues indicate the
directions of greatest variance, which are denoted as principal
components (PCs) (Jolliffe, 2014).
• Next, the fMRI images of each subject are projected onto the

firstM = 20 PCs X(s)
M = (U(s)

M )T X(s). This reduces the number
of images per session toM = 20 < K.
• Finally, from the reduced data sets, the image slices are

reconstructed to enter into the GiT-BEEMD analysis, while the

2http://mialab.mrn.org/software/gift/
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reduced dataX(s)
M enters directly into the cICA processing path.

The number of selected principal components M determines
the number of sources, estimated in the cICA step. A relatively
low order ofM = 20 was chosen, to obtain robustly observed,
large-scale resting-state networks (van den Heuvel and Pol,
2010) and tomake it easy to identify extracted networks, which
are suitable for comparison of results in section 3.

2.2.2. Green’s Function-Based Ensemble Empirical

Mode Decomposition
For the next step, the extraction of suitable reference signals
for cICA, the GiT-BEEMD technique was employed (Al-Baddai
et al., 2016b) to extract intrinsic activity patterns from spatial
volumetric fMRI images. The idea of this technique is to
decompose a two-dimensional brain slice I(r) = I(x, y) into
bi-dimensional intrinsic mode functions (BIMFs):

I(x, y) =
J

∑

j=1

bj(x, y) (1)

Here bj(x, y) denotes the j-th BIMF, which is estimated iteratively
as described in Appendix 1, and, in our notation, we include
the residuum r(x, y) as intrinsic mode bJ(x, y). The first extracted
BIMF contains the highest spatial frequency, which will decrease
in every additionally extracted BIMF (Al-Baddai et al., 2016b).

Each brain slice was decomposed into five intrinsic modes
and one residuum by repeating the sifting step five times. The
ensemble step was repeated only twice, whereby noise was either
added or subtracted from the data once at each step. The assisting
noise was generated with a noise amplitude of aη = 0.2. The
tension parameter was initialized to T1 = 0.9 and reduced after
the extraction of the j-th BIMF bj to Tj+1 = Tj −

1
J . This

avoids blob-like artifacts in low frequency modes if the tension

parameter is set too high (Al-Baddai et al., 2016b). An example
of a decomposition is provided in Figure 2. These intrinsic
modes represent characteristic spatial textures of the activity
distribution in the brain. BIMFs with high spatial frequencies (see
BIMF 1 and BIMF 2, for example) show highly localized spatial
activation patterns that, however, are spread all over the brain
slice, while BIMFs with lower spatial frequencies (see BIMF 4
and BIMF 5, for example) concentrate the activity in few highly
localized areas in the brain. In this example, the residuum reveals
focused activity in the temporal brain network. Note that this
reflects the high activity in this area seen in the original activity
distribution of the chosen brain slice. A combination of lowest
spatial frequency intrinsicmode plus the residuum, i. e., b5(x, y)+
b6(x, y) ≡ b56(x, y), was used as reference for cICA in the further
evaluations. The analysis in section 3 reveals that low-frequency
modes are especially suitable to serve as references in order
to obtain consistent resting-state networks across subjects. By
decomposing the activity patterns and pointing toward specific
brain areas, these intrinsic modes can help the ICA to converge
to these specific areas for all subjects. Figure 4 shows that, for
the most demanding similarity constraint, the most consistent
results were achieved by combining BIMF 5 and the residuum
to reference networks. This combination is also depicted in
Figure 2. From all the decomposed two-dimensional slices, the
corresponding modes b56(x, y) were organized into a three-
dimensional data array, which then was concatenated into a 3D
volume intrinsic mode function (VIMF). Decomposing theM =
20 brain volumes per subject in PC subspace results inM VIMFs
per subject. For the next processing steps, the voxels inside of the

brain are sorted into anM × Lmatrix again, denoted as V(s)
M .

In order to extract from each subject RSNs that are consistent
across the proband cohort, corresponding intrinsic modes need
to be identified. As part of the minimal preprocessing pipeline

FIGURE 2 | An example of decomposing a brain slice with GiT-BEEMD in the transverse anatomical plane. The slice was decomposed into five intrinsic modes and

one residuum. Note that BIMF 1 contains the highest spatial frequencies, which gradually decrease for the other extracted BIMFs. Also, the combination of the fifth

BIMF and residuum is illustrated, as this combination is used for further evaluations. A mask was applied after the decomposition to set all intensity values that were

located outside of the scanned brain to zero.
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of the Human Connectome Project (Glasser et al., 2013), the fully
preprocessed fMRI data were transformed to the MNI standard
space for every subject, and therefore a good correspondence of
activity patterns between the healthy subjects was given. Note
that if two different subjects cohorts were to be analyzed, the
reference networks should be formed individually for each group,
because in patients with neurological diseases, resting-state
activity could fundamentally differ from that of healthy controls.
In our work, studying only healthy probands, averaging most
similar modes between subjects yields proper common reference
signals for all subjects that have been employed in a cICA of fMRI
datasets. A visual inspection of the VIMFs of any two randomly
chosen subjects showed that corresponding spatial patterns

might occur in different rows ofV(s)
M . Hence, the extracted VIMFs

first need to be ordered according to their similarity between
subjects. An efficient way to assign similar VIMFs between
subjects is offered by the assignment algorithm proposed by
Munkres (1957) based on the Hungarian method developed
by Kuhn (1955). After computing the proper correspondences
between the VIMFs of all subjects, the references R to be
used in the cICA algorithm are then obtained by averaging the
corresponding VIMFs across all subjects. To summarize, the
reference signals are computed as follows:

1. Initialize the reference as R = V
(1)
M

2. For s = 2, . . . , S, do:

a. Apply the Hungarian algorithm and re-order the rows of

V
(s)
M → Ṽ

(s)
M

b. Update the reference R← s−1
s R+ 1

s Ṽ
(s)
M

To apply the Hungarian algorithm, a cost function 1− ρ(R,V(s)
M )

is defined that, if optimized, results in an ordering of the rows

in V
(s)
M such that the sum of the correlation coefficients between

pairs of rows in the two matrices is maximized. Note that the
algorithm achieves the re-ordering without calculating all M
possible assignments. Finally, each row ofR is normalized, having
entries with zero mean and unit variance, andM = 20 references
for the cICA algorithm are obtained.

2.2.3. Constrained ICA
Sources YM = [y1, . . . , yL], y ∈ R

M can be blindly estimated
from the mixtures XM = [x1, . . . , xL], x ∈ R

M according to:

YM =WXM (2)

with the demixing matrix defined asW = [w1, . . . ,wM]T , where
wT
m are the rows of the demixing matrix and XM collects all L

samples of the projected data after being spatially transformed to
zero mean and unit variance.

Finding a demixing matrix is solved by designing an
optimization problem where inequality and equality constraints
are integrated in an augmented Lagrangian formulation. The
inequality constraint terms in the Lagrange function are re-
written as equality constraints with the help of a slack variable
(Lu and Rajapakse, 2006). After finding the optimal value of
these slack variables, the modified version of the augmented

Lagrangian function is written as

L(W,µ) = J(W)

+

M
∑

m=1

1

2γm

[

(max{0, γmhm(w
T
m)+ µm})

2 − µ2
m

]

(3)

where µm are the Lagrangian parameters, while γm represents
a user-defined penalty. The first term J(W) reflects the cost
function of ICA, and the second term in the Lagrangian is
related with the inequality constraint, which compares the m-th
extracted component with the corresponding reference signal:

h(wT
m) = ςm − ǫ(wT

mx, rm) ≤ 0 (4)

where ǫ(·) is a similarity measure and ςm is a threshold
parameter. Similarity is conventionally expressed either through
a correlation measure E{ymrm} or the mean squared error
E{(ym − rm)2}, with ym = wT

mx. The expected value is
approximated by an average over the available data.

Estimating the demixing matrix W, given the constraint
introduced above, can be achieved in different ways, based either
on negentropy-like cost functions (points 1–3) or on a maximum
likelihood estimate (point 4):

1. Simply one IC, most similar to the given reference signal,
can be extracted. This approach can easily be extended to a
multi-reference cICA. However, this additionally requires a
decorrelation of the weights during each iteration to prevent
different weights from converging to identical estimations (Lu
and Rajapakse, 2006).

2. Lu and Rajapakse (2006) introduced an objective function
for cICA that contained an additional equality constraint to
bound the weights. Later, a simplification was introduced
by Lin et al. (2007) where equality constraints were
omitted; rather, the weight vectors were normalized at each
iteration instead.

3. Also, cICA based on fixpoint learning (Lin et al., 2009)
was proposed, which should overcome the limitations of
the second-order Newton-like learning used in the cICA
algorithm of Lu and Rajapakse (2006).

4. Finally, yet another version, using a cost function J(W)
based on a maximum likelihood estimate has been proposed
(Rodriguez et al., 2014) according to

J(W) ≈ E

{

M
∑

m=1

log(p(wT
mx))

}

+ log | det(W)| (5)

An iterative procedure is then derived to update the
parameters µ = [µ1, . . . ,µM]T and the de-mixing matrix
W. Thereby, a decoupling scheme based on a Gram-Schmidt
orthogonalization is proposed, finally yielding the following
objective function:

J(wm) ∝ E

{

log(p(wT
mx))

}

+ log |dTmwm| (6)

where the decoupling vector dm ∈ R
M×1 is defined through

W̃mdm = 0 and where W̃m ∈ R
(M−1)×M denotes the

de-mixing matrix without entries to them-th row.
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It has been shown by Cardoso (1997) that a maximum likelihood
approach to ICA is equivalent to the seminal Infomax approach
put forward by Bell and Sejnowski (1995). Thus, in analogy to
the maximum likelihood approach, a constrained and decoupled
version of the extended Infomax algorithm can be obtained
(Rodriguez et al., 2014). The extended Infomax algorithm is often
used in an analysis of fMRI data (Correa et al., 2007) and was
also used in this study as the basis of the cICA. A more detailed
description of this algorithm and a proper metacode are given in
Appendix 2 for the convenience of the reader.

The data, projected onto the first M = 20 PCs, and the M
references, transformed to zero mean and unit variance, together
enter the cICA algorithm to finally extract M = 20 ICs. The
weights are initialized with small random values, and the learning
rate for the weights is set to η = 0.5. The scalar penalty
can be set to 3 (Rodriguez et al., 2014). The influence of the
references can be well determined by adjusting the threshold
parameter. Therefore different settings have been studied using
the correlations E{ymrm} as distance measures, and the results
are presented in section 3.

2.3. Group ICA
Generally, fMRI data are compared across a group of subjects
by employing the gICA algorithm put forward by Calhoun and
his group (Calhoun et al., 2001a). This gICA is made available
in the GIFT toolbox3 and was incorporated in this study for
comparison. Voxel time series were preprocessed by variance
normalization through linearly detrending and transforming the
data to zero mean and unit variance. The single-subject data

matrices X
(s)
K×L enter the first PCA step, with the temporal

evolution of L brain voxels at K time points in columns. The
subject datasets were then projected onto the firstM′ = 1.5 ·M =
30 PCs in this step by applying an SVD to the data matrix. This
follows the recommendation of the GIFT toolbox, projecting the
data onto 1.5 times the components used in the group reduction
step. Note that in the latter step, the number of projections was

chosen to be M = 20. The S reduced M′ × L matrices X
(s)
M′

on subject level were concatenated to an (S · M′) × L group

matrix X
(g)
S·M′ entering the second PCA step. The group matrix

is projected onto M = 20 PCs, resulting in a reduced M × L

matrix X
(g)
M . The 20 group spatial maps SM are extracted from

X
(g)
M = ASM by the extended Infomax algorithm (Lee et al., 1999)

and by additionally employing the ICASSO option (Himberg
et al., 2004), running the ICA algorithm ten times with different
initializations to assure greater stability. FinallyM = 20 subject-

specific spatial S(s)M maps were obtained by the GICA3 (Erhardt
et al., 2011) back-reconstruction approach. We compared these
20 brain networks, with the 20 networks we obtained from
our approach. For visualization purposes, M mean networks

〈Sm∗〉, m = 1, . . . ,M were obtained by averaging S
(s)
M over the

subjects, i. e., 〈SM〉 =
1
S

∑S
s=1 S

(s)
M .

3http://mialab.mrn.org/software/gift/

3. RESULTS

The goal of the study was to compare RSNs obtained with
the newly proposed cICA-EMD approach as opposed to
RSNs resulting from the conventional gICA approach. RSNs
denote functionally connected brain areas that, however, are
anatomically separated but maintain a high level of activity in a
resting state of the proband. They are represented in this study
by the ICs extracted with the discussed techniques. In this study,
M = 20 ICs were extracted with either method. Comparable
RSNs obtained by the different approaches were identified by
visual inspection and are depicted in Figure 3. There, references
used for cICA are shown in the first row, while in the second
row, the ICs obtained therewith are presented, computed asmean
ICs over subjects. In the third row of Figure 3, the mean ICs
obtained by gICA are exhibited. The significance of the resulting
ICs was tested with a one-sample student’s T-test by employing
the SPM12 software package4. The resulting spatial maps of t-
values are depicted in the fourth and fifth row in Figure 3. Spatial
maps were thresholded at a significance level of p < 0.001 (t =
4.30, df = 9).

Most prominent brain areas are in IC 10/6 (obtained by
cICA-EMD/gICA), the left inferior parietal lobule, in IC 17/8,
the right angular/supramarginal gyrus, in IC 4/11, the superior
occipital gyrus, in IC 9/13, the right inferior frontal gyrus, in
IC 20/18, the anterior cingulate cortex, in IC 6/1, the precentral
gyrus, in IC 2/9, the paracentral lobule, in IC 8/2, the middle
occipital gyrus, and in IC 3/7, the middle temporal gyrus. The
independent networks obtained represent well-observed RSNs
(van den Heuvel and Pol, 2010) and can be further grouped based
on their functions. The corresponding attentional and default
mode networks are depicted in the first five columns, while the
extracted auditory and sensorimotor networks are shown in the
sixth and seventh column. Next, in the eighth and ninth column,
visual networks are represented, and, in the last column, the
cerebellum is shown. The similarity threshold for cICA was set
to ς = 0.5 in this example. All resting-state networks obtained
with both approaches, including the employed references, are
provided in the Supplementary Material.

The motivation of different group ICA approaches is
to make this explorative analysis technique suitable for
studies where it is necessary to compare extracted networks
between different subjects. This means that issues with
permutation indeterminacy and reproducibility of ICA
have to be overcome to obtain well-comparable networks.
Therefore, a measure of interest for the evaluation of
the two different approaches could be the consistency of
activation patterns across subjects. This consistency was
quantified by measuring how much a resting-state network
(y(s))Tm ∈ R

L from one subject s differs on average from
the mean network 〈y〉Tm = 1

S

∑S
s=1(y

(s))Tm across subjects.

Pearson’s correlation ρ
(

(y(s))Tm, 〈y〉m
)

was used to measure the

correlation between standardized subject networks y
(s)
m and

4https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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FIGURE 3 | RSNs obtained by the two different approaches. The first row shows the references used for cICA, while the second row exhibits mean ICs, averaged

over the subject cohort and computed with the newly proposed cICA-EMD method. These ICs are contrasted in the third row with mean ICs obtained by gICA. In the

fourth and fifth row of this figure, t-values of the RSNs can be found. All depicted slices were chosen such that they intersect the peak activation voxel of the

corresponding ICs obtained by gICA. For visualization purposes, the activations of the networks shown in the first three rows are normalized to zero mean and unit

variance. Furthermore, in accordance with common usage, the voxel intensities Î(r) were thresholded by Î(r) > 2, and in the sixth and ninth column, the threshold was

adjusted to Î(r) > 1.5 for better recognizability of the networks. The color range of the heatmap was adjusted to the largest intensity value in every pictured slice.

the related mean networks 〈y〉Tm. The following consistency
measure is used:

Kper(ym) =
1

S

S
∑

s=1

ρ
(

(y(s))Tm, 〈y〉m
)

(7)

In order to find the most suitable references, the consistency
measure was evaluated for different BIMFs or combinations of
them. Following the process described in section 2.2.2, the GiT-
BEEMD algorithm was used to decompose the activity patterns
of the fMRI data into BIMFs, reflecting intrinsic patterns on
different frequency scales.

Figure 4 depicts the consistency measure, as defined in
Equation 7, with BIMF 1 to 6 used as references and
its dependence on similarity threshold ζ . Extracted BIMFs
were also gradually summed up again, and for the most
demanding threshold, ζ = 0.7, a combination of BIMF
5 + BIMF 6 (the residuum) yielded the best results. This
combination was used for further evaluations of our approach,
and for the comparison with gICA (Calhoun et al., 2001b).
For the comparison, the consistency measure was computed

for all ICs obtained with the cICA-EMD approach and
again for different settings of the similarity threshold ς .
An equivalent procedure was followed using the results
from applying the gICA algorithm. The results are listed in
Table 1.

By adjusting the threshold parameter ς , it is possible
to well determine the influence of the constraint during
the optimization, so choosing a smaller threshold allows for
more variability in the estimated components across subjects.
Increasing the threshold increases the similarity between subject-
specific components and common references. This means that if
the similarity between every subject component and the shared
reference increases, the similarity of components across subjects
will also increase, which is quantified by the consistency measure
in Equation 7. Figure 5 illustrates the behavior of the consistency
at different similarity thresholds ς in comparison to gICA. If the
threshold parameter is set to a value of ς = 0.40, the consistency
is lower than that of gICA. By further increasing this threshold
to a value of ς = 0.60, the consistency of estimated resting-
state networks with the proposed approach starts to exceed that
of gICA.
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FIGURE 4 | The consistency values of obtained resting-state networks with

constrained ICA depending on the different BIMFs used as references. Also

BIMFs were gradually summed up again, and combinations like BIMF 6+ 5 up

to 6+ 5+ . . .+ 1 were evaluated as potential reference signals.

TABLE 1 | Consistency values of ICs obtained by the proposed cICA-EMD

approach for different settings of the similarity threshold ς , as well as the values of

ICs obtained by gICA.

cICA-EMD

Threshold IC #

10 17 4 9 20 6 2 8 3 14

0.40 0.62 0.58 0.63 0.59 0.55 0.56 0.60 0.54 0.60 0.53

0.50 0.67 0.68 0.68 0.68 0.66 0.66 0.69 0.65 0.70 0.59

0.60 0.71 0.76 0.73 0.74 0.71 0.72 0.71 0.73 0.73 0.62

0.70 0.71 0.79 0.75 0.76 0.71 0.73 0.72 0.76 0.76 0.62

gICA

IC #

6 8 11 13 18 1 9 2 7 4

0.73 0.65 0.68 0.70 0.66 0.66 0.66 0.70 0.71 0.60

ICs are sorted as in Figure 3 so that each column shows consistency values of

comparable extracted networks.

4. DISCUSSION

The motivation of this paper was to propose a novel workflow
for extracting resting-state networks that are consistent across
a group of subjects. First, the dimensionality of the fMRI
dataset was reduced at subject level with PCA. Intrinsic modes
were extracted from the data by employing the GiT-BEEMD
algorithm (Al-Baddai et al., 2016b). These subject-specific
intrinsic modes reflect spatial activity patterns at different spatial
frequencies. Hence, for each underlying spatial frequency, a
common reference mode can be formed. It turned out that

FIGURE 5 | Consistency values of the respective ICs. The numbers on the

x-axis refer to the IC number of the cICA-EMD vs. the gICA approach.

low-frequency modes concentrated the activity into spatially
contiguous patterns and were especially well-suited to serve as
reference modes for the extraction of independent components
with a cICA algorithm. Note that if intrinsic spatial modes,
which are naturally ordered according to their dominant local
spatial frequency, are chosen as reference signals within a
cICA, the resulting independent modes are also ordered in
correspondence to their assigned intrinsic modes. Thus, the
natural ordering of the intrinsic modes with respect to their
spatial frequencies helps to overcome the permutation ambiguity
of ICA in extracting consistent resting-state networks across
subjects. Previously, references for constrained ICA had to
be predefined, in the form of temporal activation profiles or
anatomical regions of interest derived from an atlas (Lu and
Rajapakse, 2006; Lin et al., 2009; Rodriguez et al., 2014). In the
absence of any stimulus, like in resting-state fMRI, such temporal
profiles might not be available. Also, in the case of patients
with neurological disorders, spatial priors can be inappropriate.
Atlases are typically defined based on a cohort of healthy subjects,
meaning that reference brain networks defined by the latter
might unduly bias the outcome of the analysis. Therefore it
was our goal to establish a purely data-driven workflow by
hybridizing cICA with EMD and obtaining references from the
same data as used in the study. We demonstrated that our
fMRI data processing pipeline produces commonly observed
resting-state patterns. These functional networks were then
compared to those obtained by the widely used gICA, which
is based on a temporal concatenation of individual datasets
(Calhoun et al., 2001b). It was shown that with the constrained
extended Infomax algorithm (Rodriguez et al., 2014), the
influence of the references upon the estimation of the related
ICs could be controlled well. Based on the mathematically well-
described augmented Lagrangian framework in our workflow,
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it is transparent to the user with respect to how homologous
resting-state networks across subjects are deduced. In the
processing pipeline presented, the cICA-EMD approach also
allowed the optimization procedure to be shaped by adjusting
the threshold parameter, which determines the impact of the
reference on the IC extraction. By choosing a lower threshold,
e.g., allowing for a lower similarity to the references, more
freedom could be given to the exploratory character of ICA
and the formation of subject-specific features. Defining a high
threshold resulted, across subjects, in a higher consistency of
the extracted resting-state networks. These RSNs were even
more consistent than those obtained by the conventional gICA.
Although there is no exact ground truth on how resting-state
networks should ideally look, the threshold can be chosen
in a way such that the obtained networks optimally fulfill
the requirements of a particular study. For example, when
performing a classification task, the threshold can be chosen
to maximize the accuracy of the classifier. Thus, the good
interpretability and high flexibility of the proposed processing
pipeline can offer beneficial properties for application in resting-
state studies. Besides applications of EMD for time series
analysis in functional MRI (Qian et al., 2015; Goldhacker
et al., 2018; Zhang et al., 2018), we showed that spatial
EMD can also be used to extract useful intrinsic patterns
from functional MRI data, representing characteristic resting-
state activations. This could further motivate other researchers
to consider the spatial variant of this technique and to
investigate other applications of this method in the field
of MRI.
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