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Magnetoencephalography (MEG) and electroencephalography (EEG) are contemporary

methods to investigate the function and organization of the brain. Simultaneously

acquiredMEG-EEG data are inherently multi-dimensional and exhibit coupling. This study

uses a coupled tensor decomposition to extract the signal sources from MEG-EEG

during intermittent photic stimulation (IPS). We employ the Coupled Semi-Algebraic

framework for approximate CP decomposition via SImultaneous matrix diagonalization

(C-SECSI). After comparing its performance with alternative methods using simulated

benchmark data, we apply it to MEG-EEG recordings of 12 participants during IPS

with fractions of the individual alpha frequency between 0.4 and 1.3. In the benchmark

tests, C-SECSI is more accurate than SECSI and alternative methods, especially

in ill-conditioned scenarios, e.g., involving collinear factors or noise sources with

different variances. The component field-maps allow us to separate physiologically

meaningful oscillations of visually evoked brain activity from background signals. The

frequency signatures of the components identify either an entrainment to the respective

stimulation frequency or its first harmonic, or an oscillation in the individual alpha band

or theta band. In the group analysis of both, MEG and EEG data, we observe a

reciprocal relationship between alpha and theta band oscillations. The coupled tensor

decomposition using C-SECSI is a robust, powerful method for the extraction of

physiologically meaningful sources frommultidimensional biomedical data. Unsupervised

signal source extraction is an essential solution for rendering advancedmulti-modal signal

acquisition technology accessible to clinical diagnostics, pre-surgical planning, and brain

computer interface applications.

Keywords: alpha band, electroencephalography, frequency entrainment, magnetoencephalography, simultaneous

diagonalization, steady-state evoked response, tensor, theta band
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1. INTRODUCTION

Magnetoencephalography (MEG) and electroencephalography
(EEG) are contemporary methods to investigate the function
and organization of the brain. They, respectively, measure the
magnetic flux and the electric potential at the head surface
that are generated by simultaneous neuronal activity inside

the brain. MEG-EEG data are inherently multi-dimensional,
typically including the dimensions time, space (channels),
modality (MEG, EEG), participant, and experimental condition.

Simultaneously acquired MEG and EEG signals capture aspects

of the same electric activity over time and can, therefore,
exhibit coupling.

Tensor algebra has applications in signal processing, data
analysis, blind source separation, and many more (Cichocki
et al., 2015). The multidimensional signals are decomposed
into rank one components according to the Canonical Polyadic
(CP) decomposition (Kolda and Bader, 2009). Roemer and
Haardt (2008, 2013) present a Semi-Algebraic framework
for approximate CP decomposition via SImultaneous matrix
diagonalization (SECSI) for the efficient and robust computation
of the an approximate low-rank CP decomposition of noise
corrupted data.

Many combined signal processing applications benefit from
a coupled analysis based on the coupled CP decomposition
(Becker et al., 2012; Acar et al., 2013, 2015; Rivet et al.,
2015; Naskovska et al., 2017b; Sørensen and De Lathauwer,
2017a; Zou et al., 2017). The coupled CP decomposition jointly
decomposes heterogeneous tensors that have at least one factor
matrix in common. Detailed analysis of the computation of
the coupled CP decomposition based on Alternating Least
Squares (ALS) is presented in Farias et al. (2016) and Cohen
et al. (2016). Farias et al. (2016) and Cohen et al. (2016)
show that the computation of the coupled CP decomposition
based on ALS is sensitive to different noise variances in the
different tensors. An extension of the SECSI framework (Roemer
and Haardt, 2008, 2013) to the coupled SECSI (C-SECSI)
framework is proposed in Naskovska and Haardt (2016). The
C-SECSI framework efficiently approximates the coupled CP
decomposition of two noisy tensors that have at least one mode
in common even in ill-posed scenarios, e.g., if the columns of
a factor matrix are highly correlated. Moreover, the C-SECSI
framework offers adjustable complexity-accuracy trade-offs and
efficiently decomposes tensors with different noise variances
without performance degradation.

Human scalp EEG signals contain characteristic frequencies,
which can be partly related to cognitive processes. Their power
and synchronization can vary with wakefulness, attention, age,
disease, and in response to a sensory input (Klimesch, 1999).
The dominant frequency peak in the spectrum is called the
alpha rhythm and is traditionally expected between 7.5 and
12.5 Hz in adults (Klimesch, 1999). The second strongest is
the theta rhythm, typically between 4 and 7.5 Hz. Whereas the
frequencies of alpha and theta covary, their band powers are
related to each other in a reciprocal way (Klimesch, 1999). Both,
alpha and theta bands, are specifically related to cognitive and
memory performance. Good performance at rest is associated

with a tonic increase in alpha together with a decrease in theta.
During event processing, a strong decrease in alpha together
with an increase in theta indicates good performance (Klimesch,
1999). Desynchronization in the lower alpha band indicates
attention, whereas a desynchronization in the upper alpha band is
associated with semantic memory performance. Synchronization
of theta reflects episodic memory and successful encoding of new
information (Klimesch, 1999).

Intermittent photic stimulation (IPS) is a stimulation of the
brain with repetitive light flashes that can drive oscillations in
the brain. This is called the photic driving (PD) effect. The
PD effect is widely used to assess effects of medication and
for neurological diagnostics of, for example, epilepsy (Kalitzin
et al., 2002). IPS can cause a frequency entrainment and a
resonance effect. Frequency entrainment is characterized by the
synchronization of brain rhythms to the photic stimulation
(da Silva, 1991; Notbohm et al., 2016). The resonance effect is
characterized by an increased amplitude of brain rhythms, such
as alpha and theta, when the stimulation frequency coincides with
their intrinsic frequencies. Photic driving has been reported to
appear with stimulation frequencies up to 90 Hz (Herrmann,
2001). The strongest resonance appears around the individual
alpha frequency (Mangan et al., 1993; Klimesch, 1999; Herrmann,
2001; Lazarev et al., 2001). A secondary resonance can be
observed in the individual theta band of adults (Mangan et al.,
1993; Klimesch, 1999) and more pronounced in children and
adolescents (Klimesch, 1999; Lazarev et al., 2001).

Schwab et al. (2006) have performed the first investigation of
frequency entrainment using simultaneously recorded MEG and
EEG signals during IPS with frequency fractions of the individual
alpha rhythm of each participant. In a subsequent comparable
experiment, Salchow et al. (2016) have shown that a strong
alpha resonance exists for a rod-type photo-receptor cell input
at stimulation frequencies close to the individual alpha frequency
peak and in the theta band. In this study, we consider the same
experiment as in Salchow et al. (2016) using a time-frequency
transformation (Wacker et al., 2011).

The objective of this study is to extract and differentiate
signal sources from simultaneous MEG-EEG recordings
during intermittent photic stimulation using a coupled tensor
decomposition. We evaluate the capability of the proposed
approach by comparing it to alternative methods using
simulated benchmark data.

2. METHODS

2.1. Tensor Algebra and Notation
Scalars are denoted either as capital or lower-case italic letters
A, a. Vectors, matrices, and tensors are denoted as bold-
faced lower-case a, capital A, and bold-faced calligraphic
letters A, respectively. The superscripts T, H,−1, and + denote
transposition, Hermitian transposition, matrix inversion, and
Moore-Penrose pseudo matrix inversion, respectively. The
operators ‖.‖F and ‖.‖H symbolize the Frobenius norm and the
higher order norm, respectively. Moreover, an n-mode product
between a tensor A ∈ C

I1×I2...×IN and a matrix B ∈ C
J×In is

denoted byA ×n B, for n = 1, 2, . . .N (Kolda and Bader, 2009).
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A super-diagonal or or identity N-way tensor with dimensions
R × R . . . × R is denoted as IN,R. The n-mode unfolding of a
tensor A is symbolized as [A](n), and the n-th 3-mode slice is
denoted with An = A(.,.,n). Fundamental tensor algebra concepts
and definitions are provided in Kolda and Bader (2009), De
Lathauwer et al. (2000), Cichocki et al. (2015), Comon et al.
(2009), and Sidiropoulos et al. (2017).

The CP tensor decomposition is an extension of the
Singular Value Decomposition (SVD) tomultidimensional arrays
(tensors). It decomposes a tensor into the minimum number of
rank one components. For a low-rank tensor X0 ∈ C

M1×M2×M3

with rank R the CP decomposition is

X0 = I3,R ×1 F1 ×2 F2 ×3 F3,

where F1 ∈ C
M1×R, F2 ∈ C

M2×R, and F3 ∈ C
M3×R are the

factor matrices (Kolda and Bader, 2009; Cichocki et al., 2015).
In contrast to the SVD, the factor matrices resulting from the
CP decomposition are not necessarily unitary, implying that
the underling rank one components are not orthogonal to one
another. Moreover, the CP decomposition is essentially unique
under mild conditions.

Due to the uniqueness properties, the factor matrices of a
CP decomposition can be identified up to a permutation and
one complex scaling ambiguity per column. There are many
different types of algorithms for the computation of the CP
decomposition that can be categorized as follows: Alternating
Least Squares (ALS), Gradient Descent (GD), Quasi-Newton
and Nonlinear Least Squares (NLS) based algorithms as well as
semi-algebraic approaches.

If two low-rank noiseless tensors X
(1)
0 ∈ C

M1×M
(1)
2 ×M

(1)
3 and

X
(2)
0 ∈ C

M1×M
(2)
2 ×M

(2)
3 have the first mode in common, then they

have a coupled CP decomposition defined as

X
(1)
0 = I3,R ×1 F1 ×2 F

(1)
2 ×3 F

(1)
3

X
(2)
0 = I3,R ×1 F1 ×2 F

(2)
2 ×3 F

(2)
3 , (1)

where, F1 ∈ C
M1×R, F

(i)
2 ∈ C

M
(i)
2 ×R and F

(i)
3 ∈ C

M
(i)
3 ×R,

i = 1, 2 are the factor matrices and R is the rank of
the tensors. The coupled CP decomposition has even more
relaxed uniqueness conditions than the CP decomposition. Some
uniqueness properties for the coupled CP decomposition are
available in Sørensen et al. (2015) and Zou et al. (2017).

The coupled CP decomposition jointly analyzes
heterogeneous data sets or signals and identifies their shared
underlying components. The facts that the heterogeneous
signals can have different nature and dimensions and that
the uniqueness properties are relaxed make the coupled CP
decomposition a very practical tool for array (Sørensen et al.,
2015, 2018; Sørensen and De Lathauwer, 2017a,b), audio (Zou
et al., 2017), and biomedical signal progressing (Becker et al.,
2012; Acar et al., 2013, 2015; Papalexakis et al., 2014; Rivet et al.,
2015; Naskovska et al., 2017a,b; Van Eyndhoven et al., 2017).

Another extension of the SVD to multidimensional arrays
is the higher order SVD (HOSVD) or Multi-linear SVD (De
Lathauwer et al., 2000). The factor matrices resulting from the

HOSVD are unitary matrices and they represent a unitary basis
of the n-mode unfolding of the tensor, for n = 1, . . .N (for
N-way tensors). Similar to the concept of truncated SVD, for
a noise corrupted tensor a truncated HOSVD can be defined.
The truncated HOSVD is a practical tool for noise suppression,
dimension reduction, and signal subspace estimation (Haardt
et al., 2008).

In case of noise corrupted tensors the truncated
coupled HOSVD,

X(1) = X
(1)
0 +N(1) ≈ S[s],(1) ×1 U

[s]
1 ×2 U

[s],(1)
2 ×3 U

[s],(1)
3

(2)

X(2) = X
(2)
0 +N(2) ≈ S[s],(2) ×1 U

[s]
1 ×2 U

[s],(2)
2 ×3 U

[s],(2)
3 ,

(3)

can be calculated jointly, for the common mode using the
economy-size SVD,

[

[X(1)](1) [X(2)](1)
]

= U
[s]
1 · 6

[s]
1 · V

[s]H
1 .

In (2) and (3), S[s],(1) and S[s],(2) ∈ C
R×R×R are the truncated

core tensors and the loading matrices U
[s]
1 ∈ C

M1×R, U
[s],(i)
2 ∈

C
M

(i)
2 ×R and U

[s],(i)
3 ∈ C

M
(i)
3 ×R have unitary columns and span an

estimate of the column space of the n-mode unfolding ofX(i), for
n = 1, 2, 3 and i = 1, 2, respectively.

2.2. Computation of the Coupled CP
Decomposition
In order to compute the factors corresponding to the coupled
CP decomposition, the existing algorithms for the computation
of the CP decomposition have to be modified. For instance, the
ALS algorithm can be extended to a coupled ALS (C-ALS) by
taking into account that the common factor matrix can be jointly
computed by means of concatenation. Another weighted version
of the coupled ALS using normalization that can even support
hybrid and noisy coupling is proposed in Farias et al. (2016). For
the purpose of dimensionality reduction a compression based on
the HOSVD can be used as a preprocessing step for ALS (Cohen
et al., 2016). These ALS based algorithms are easy to implement,
however, they have no convergence guarantee and can require
many iterations.

Alternatively, the coupled CP decomposition can be
computed based on a line search. The line search based
algorithm CCP-MINF is available in Tensorlab 3.0 (Vervliet
et al., 2016). Additionally, a NLS-based algorithm is available in
Tensorlab 3.0 (Vervliet et al., 2016). The CCP-NLS algorithm
is an iterative algorithm that computes updates of the factor
matrices based on a Newton descent, which includes a linear
approximation of the Hessian. A further approach is the
semi-algebraic computation of the CP decomposition, which
involves converting the CP model into a simultaneous matrix
decomposition (SMD) followed by diagonalization in order to
obtain the factor matrices (Sørensen et al., 2015; Naskovska and
Haardt, 2016). The coupled SECSI algorithm (Naskovska and
Haardt, 2016) is an efficient extension of SECSI (Roemer and
Haardt, 2008, 2013; Roemer et al., 2012) that uses the tensor
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structure to construct not only one but the full set of possible
SMDs jointly for both tensors.

The C-SECSI approach provides an estimate of the factor
matrices using the joint HOSVD followed by the whole set of
possible SMDs. Eight initial estimates of the factor matrices
I, . . . , VIII are obtained, if the two tensors have one factor matrix
in common (Naskovska and Haardt, 2016). The computation of
only two initial estimates of the factor matrices of two tensors
X(1) and X(2) that have the first mode in common is visualized
in Figure 1. These estimates are depicted by the two parallel
branches in Figure 1, as well as an indication whether they are
estimated from a transformmatrix, from the diagonalized tensor,
estimated via Least Squares (LS) or a joint LS fit. Note that
these two estimates are obtained by diagonalizing the third mode
of the core tensors resulting from the joint HOSVD, where T1

and T2 represent the transform matrices. Similarly, another two
estimates of the factor matrices are obtained by diagonalizing
the second mode of the core tensors. The diagonalization along
the first mode (common mode) results in another four SMDs.
However, since the common mode is in the diagonal elements,
these SMDs cannot be combined. Therefore, they are solved
separately and result in four additional initial estimates of the
factor matrices.

From all these initial estimates of the factor matrices the one
of major interest is the common factor matrix F̂1. The first four
estimates of the common factor matrix (from F̂1,I to F̂1,IV) are
obtained either from the common transform matrices or via a
joint LS fit. On the other hand, the last four estimates (from F̂1,V

to F̂1,VIII) are separately obtained from the diagonal elements
of the diagonalized tensor. Therefore, the first four solutions
are coupled and the last four are uncoupled. The final solution
is then chosen for each of the tensors separately based on a
heuristic that uses an accuracy-complexity trade-off (Roemer and
Haardt, 2013; Naskovska and Haardt, 2016). Here, we use the
reconstructed paired solutions (REC PS), with which the final
solution is selected out of the eight estimates I − VIII based
on the reconstruction error (Roemer and Haardt, 2013). The
reconstruction error is calculated according to

erec =

∣

∣

∣

∣

∣

∣
X̂−X

∣

∣

∣

∣

∣

∣

2

H

||X||2H
,

where X̂ denotes the estimated tensor and X denotes the input
tensor. Note that whenX is a noisy observation as in Figures 14,
15, i.e.,X = X0 +N, we refer to this refer to this error as residual
and denote it as RES.

To evaluate the reliability of the C-SECSI framework, we
check whether the same (coupled) solution is chosen for both
tensors (Naskovska et al., 2017a). Therefore, we define the
reliability in percent

REL =






1−

1

2
·

∣

∣

∣

∣

∣

∣
F̂
(2)
1 · P − F̂

(1)
1

∣

∣

∣

∣

∣

∣

2

F
∣

∣

∣

∣

∣

∣
F̂
(1)
1

∣

∣

∣

∣

∣

∣

2

F






· 100%, (4)

FIGURE 1 | The C-SECSI framework for the computation of the coupled CP

decomposition of two tensors X
(1) and X

(2) that have the first mode in

common.
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as a similarity measure of the final estimates of the common
factor matrices. Here, P is a permutation matrix of size R×R that
resolves the permutation ambiguity of the CP decomposition.

Moreover, F̂
(1)
1 and F̂

(2)
1 are the final estimates of the common

mode assigned to the tensors X(1) and X(2), respectively. This
reliability measure has a maximum if the final estimates result
from a coupled solution and the assumed rank is correctly
approximated. Therefore, the reliability can be used to control
the tensor rank of the coupled approximate CP decompositions.
Note that for tensor rank one the reliability is always 100%. This is
due to the fact that for rank one tensors the C-SECSI framework
does not calculate any SMD. In this case, only one final
estimate of the factor matrices is provided directly from the joint
truncated HOSVD.

2.3. Measured MEG-EEG Signals
With ethics approval (Faculty of Medicine of the Friedrich-
Schiller-University Jena, Germany), simultaneous MEG-EEG
was performed on 12 healthy participants, aged between 21 and
42 years (median 26 years) during stimulation with flickering
light (Salchow et al., 2016). The light stimulus was delivered
through optical fibers from light emitting diodes outside the
recording room. Light diffusers approximately 10 cm in front
of the participants eyes provided a luminance of 0.0003 cd/m2.
Throughout the exposure, the eyes of the participants were
closed. TheMEG provided 102magnetometers and the EEG used
128 electrodes.

The purpose of the experiment was to investigate the
behavior and interactions of oscillators in the healthy brain by
systematically probing them with a controlled visual stimulation
input. The frequency is a principle parameter of an oscillator.
Therefore, a series of frequencies covering the alpha and theta
bands was used to sample the brain’s response pattern across
the frequency dimension. The measured response is expected
to contain multiple superimposed sources, some of which will
be oscillatory. In a first step, the individual alpha rhythm was
measured during 60 s of MEG at rest. The individual alpha
frequencies fα were then calculated by means of the averaged
Discrete Fourier Transform (DFT) from the occipital MEG
channels. The resulting alpha frequencies for Participants 1 to 12
are, in this order, 9.6, 10.7, 10.4, 10.8, 10.7, 10.8, 7.5, 10.8, 11.0,
10.7, 12.2, and 10.3 Hz.

IPS was then conducted at frequencies of fs = [0.40 0.45
0.50 0.55 0.60 0.70 0.80 0.90 0.95 1.00 1.05 1.10 1.30 1.60 1.90
1.95 2.00 2.05 2.10 2.30] · fα . However, because there was no
evidence of entrainment for stimulation frequencies larger than
1.30·fα (Salchow et al., 2016), we used only the first 13 stimulation
frequencies in this study, i.e., from 0.40 · fα until 1.30 · fα .

Each stimulation frequency was performed in 30 stimulation
trains, each consisting of 40 periods with an pulse/cycle duration
of 0.5. Between each train there was a resting period of four
seconds. From one frequency block to the next one, there was a
resting period of 30 s. To avoid an ordering effect, the sequence of
the stimulation frequencies was permuted and not known to the
participant. Further details regarding the experiment including
an analysis are provided in Salchow et al. (2016).

FIGURE 2 | Visualization of the MEG and EEG tensor per participant and

stimulation frequency.

2.4. Signal Processing and Decomposition
The MEG and EEG signals were averaged for each stimulation
frequency. A small number of non-functional EEG channels were
excluded, which were typically at the inferior posterior edge of
the EEG caps, where the variable head shape and/or thick hair
layer results in the cap being too loose to fixate the electrodes
and stabilize the electrolyte gel. These channels were identified
based on their non-physiological signals, e.g., constant value, very
strong noise or large artifacts. One technically faulty MEG sensor
was excluded.

A complex Morlet wavelet decomposition was used to
obtain an estimate of the instantaneous frequencies across
the stimulation time range of the MEG and EEG signals.
Wavelet frequencies of 1,000/256 Hz, 1,000/255 Hz,. . .,
1,000/1 Hz were used during the decomposition. The
wavelet coefficients between 3.77 Hz (1,000/265 Hz) and
15.15 Hz (1,000/66 Hz) were selected for the further
analysis, thereby including the alpha and theta band.
Figure 2 shows an example of the wavelet coefficients for
each of the MEG and EEG channels arranged as slices in a
three-way tensor.

As a result we have different complex tensors with
dimensions frequency × time × channels for each
stimulation frequency, measurement mode (MEG or EEG)
and participant. The frequency and time dimensions
correspond to the discretized values resulting directly from
the wavelet transform. The frequency dimension contains
200 discrete frequency values from 3.77 Hz (1,000/265 Hz)
to 15.15 Hz (1,000/66 Hz). The time dimension, however,
varies from around 5,000 ms up to 20,000 ms depending
on the corresponding stimulation frequency. Furthermore,
the channel dimension represents the number of MEG
and EEG channels, which varies across participants
and conditions.

Next, the MEG and EEG signal tensors were jointly
analyzed with the C-SECSI framework for each participant
and stimulation frequency, respectively. The coupled CP
decompositions were originally computed for different ranks.
However, the reliability and the residual indicated that the
tensor rank is overestimated for values equal to or larger
than three (Naskovska et al., 2017a). Therefore, we assumed
a tensor rank of two, R̂ = 2. We assumed that the
frequency mode is common for both, the MEG and the
EEG signal tensor. Before the computation of the coupled
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CP decomposition, each of the tensors was normalized
by calculating

T′
MEG =

TMEG

‖TMEG‖H
and T′

EEG =
TEEG

‖TEEG‖H
.

This normalization of the tensors made the different amplitude
scales and units (fT and µV) of the MEG and EEG
signals compatible.

2.5. Analysis of Components
The joint MEG-EEG signal decomposition based on the coupled
CP decomposition resulted in three factor matrices for the MEG
and three factor matrices for the EEG signal tensor [c.f. Equation
(1)] for each participant and each stimulation frequency. Each
factor matrix consisted of two columns corresponding to the two
components due to the assumed rank R̂ = 2.

The stimulation experiment provides us with a known
reproducible visual response pattern that exhibits physiological
integrity. However, the success of an individual experiment
depends on the attention and compliance of the participant
and varies across the series of repetitive stimulation. We aim
to analyze the response of the brain to visual stimulation and,
therefore, we need to determine the experiments in which that
response was in fact successfully stimulated. For this purpose,
the topographic distributions of the signals (field-maps) were
labeled independently by three experienced professionals (SL,
UG, DS). The measured MEG and EEG signals were converted
to field-maps by calculating the root of the mean of the
square (RMS) of the values in each channel. The components
were displayed as field-maps by taking the channel factor
matrix. We used three categories: (1) containing primarily only
visual response patterns, (2) containing some visual response
patterns and some other activity, and (3) containing no visual
response patterns. For each participant, the labeler identified the
participant-specific variation of the visual response pattern in
position, orientation, symmetry and amplitude due to individual
cortical folding, head shape and EEG cap/MEG placement. This
could most easily be observed for stimulation close to the
individual alpha frequency, where the response was typically
strong and clear. Each labeler then labeled all data of that
participant sequentially. The labeling sets were unified with a
majority vote (if all three raters different, use Category 2). A
majority was obtained in 96% of cases, including 88% perfect
agreement and 8% with a deviation of one category step by
one of the three labelers, e.g., if the dataset is between two
categories. Note that this labeling takes into account the spatial
characteristics of visual response signals and is more specific than
a simple amplitude or power threshold in the alpha frequency
band. Secondly, it accommodates the inclusion of sources with
frequencies other than the alpha frequency, especially in the
theta band.

For the group analysis of the brain oscillations during
successful photic stimulation without confounding factors, we
use only Category 1. For each component, the principal
frequency, i.e., the maximum of the frequency signature, was
determined as the obtained frequency of this component.

In order to separate the components reflecting recruitment
to the stimulation frequency from other components, we
differentiate two groups: The recruited group contains the
components, whose obtained frequency is very close to the
stimulation frequency or its second harmonic (Herrmann,
2001; Lazarev et al., 2001) with a maximum deviation of
±0.05fs and ±0.05 · 2 · fs, respectively. The non-recruited
group consists of the remaining components. All frequencies
are expressed in fractions of the individual alpha frequency of
the participant to account for the inter-individual differences
(Klimesch, 1999).

3. RESULTS

3.1. Benchmark Performance With
Simulations
In order to systematically compare the C-SECSI decomposition
approach with other methods (Roemer and Haardt, 2008,
2013; Cichocki et al., 2015) on the algorithmic level,
we use a set of simulations covering a broad range of
tensor properties.

3.1.1. Reliability
Figure 3 visualizes the typical reliability as a function of
the assumed rank R̂. These curves result from Monte Carlo
simulations with 1,000 realizations, for real valued tensors
of dimensions 8 × 8 × 8, which spans open a tensor
space with sufficient points per dimension to include complex
multidimensional patterns. The entries of the factor matrices
are drawn from a zero-mean Gaussian random process with
variance one. Afterwards, the tensors are computed according
to the coupled CP decomposition in Equation (1), allowing us
to control the exact rank of the tensors. Additionally, a white
Gaussian noise was added resulting in SNR1 (Signal to Noise
Ratio) and SNR2.

SNR1 = 10 log10
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The SNR values in the simulations have been chosen to include
realistic levels during physiological measurements, such as
−0.5 dB for brain signals below noise level, 0 dB for brain signals
at noise level and 5 dB for brain signals above noise but still
impacted by it. The true tensor rank and the corresponding
SNRs are indicated in the legend, while the assumed rank R̂ is
varied from two to six, given that several brain regions can be
involved in performing a cognitive function. The true tensor rank
for each curve is additionally indicated with a marker above the
curves. It is clear that we have a reliability maximum when the
assumed rank equals the correct tensor rank. Moreover, the SNR
influences the reliability measure due to the dependency of the
estimates on the SNR.

Figure 4 depicts the reliability when the two tensors have
different numbers of components. For instance, for the blue
curve the first tensor has rank 4, while the second tensor has rank
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FIGURE 3 | Reliability as a function of the assumed rank R̂ for different SNRs.

FIGURE 4 | Reliability as a function of the assumed rank R̂ for different ranks.

2. This implies that the tensors share only two components, and
the first tensor has two additional components. In this case, the
reliability has local maxima for both ranks.

3.1.2. Accuracy
When performing a signal analysis using the CP decomposition,
we are interested in the factor matrices, because their columns
represent the signatures of the underlying components for the
corresponding dimensions. Therefore, an important measure for
the comparison of the algorithms is the total squared factor

FIGURE 5 | CCDF of the TSFE for real-valued tensors X1 and X2 with

dimensions 40× 4× 10, tensor rank R1 = R2 = 3, factor matrices with

mutually correlated columns designed as sine functions, and

SNR1 = SNR2 = 25 dB.
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where MPD(R) is a set of permutation matrices P of size R × R,
R is the tensor rank, and N is the tensor dimensionality.

In Figure 5 we compare the performance of C-SECSI
(Naskovska and Haardt, 2016), SECSI (Roemer and Haardt,
2013), C-ALS, CCDP-NLS and CCDP-MINF (Vervliet et al.,
2016) for two real-valued tensors of size 40 × 4 × 10, R1 =

R2 = 3, with first mode in common. The three signatures
of the first factor matrix represent the first 40 samples of sine
functions, sin(2π tf1 +

π

3 ), sin(2π tf2)e
t10Hz, and sin(2π tf3)e

−t3Hz

with f1 = 10 Hz, f2 = 20 Hz, and f3 = 30 Hz, which are in the
physiological frequency range for brain signals. The second and
the third factor matrices are drawn from a zero-mean Gaussian
random process with variance one. Moreover, the third factor
matrices have collinear columns with a correlation factor of 0.9.
The Complementary Cumulative Distribution Function (CCDF)
of the TSFE for a SNR equal to 25 dB is depicted in Figure 5.
The vertical lines represent the mean value of the error for each
curve. SECSI and C-SECSI do not have outliers even for such an
ill-conditioned scenario in contrast to the other algorithms.

The total mean squared factor errors (TMSFE) for different
noise variances when using the uncoupled SECSI framework vs.
the C-SECSI framework are presented in Figure 6. Both tensors
X1 andX2 with common first mode have dimensions 40×4×10
and tensor ranks R1 = R2 = 3. The tensors are designed in
the same manner as for Figure 5. However, only the third factor
matrix of the second tensor X2 has mutually correlated columns
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FIGURE 6 | TMSFE as a function of the SNR for complex-valued tensors X1

and X2 with dimensions 4× 8× 7, tensor rank R1 = R2 = 3, where the

second tensor has third factor matrix with mutually correlated columns.

FIGURE 7 | TMSFE as a function of the SNR2 for complex-valued tensors X1

and X2 with dimensions 3× 8× 7, tensor rank R1 = R2 = 3, and SNR1 = 30

dB.

with a correlation coefficient of ρ = 0.98. This highly correlated
factor matrix causes the tensor X2 to be ill-conditioned. The
Figure 6 shows that using the coupled algorithm improves
the estimation accuracy of the ill-conditioned tensor without
corrupting the well-conditioned tensor.

3.1.3. Normalization
In Figure 7 we show that the C-SECSI framework, unlike other
algorithms, can jointly decompose coupled tensors even if they
are affected by noise with different variance. The tensors X1 and
X2 with common first mode have dimensions 3 × 8 × 7, and
tensor ranks R1 = R2 = 3. The factor matrices contain complex

values drawn from a zero mean circularly symmetric complex
Gaussian random process with variance one. The first tensor has
a constant SNR1 of 30 dB, while the SNR2 of the second tensor
is varied from 0 to 60 dB. These results are averaged over 3,000
realizations. “C-ALS normalized” denotes the C-ALS algorithm
with additional normalization with respect to the different noise
variances. C-SECSI outperforms the “C-ALS normalized.”

Further details on the importance of normalization and
compression with the HOSVD for ALS are available in Cohen
et al. (2016). However, the results in Figure 7 show that
normalization with respect to the noise variance is not required
when computing the coupled CP decomposition using the C-
SECSI framework.

3.2. Decomposition of Measured MEG-EEG
Data
3.2.1. Visual Response Rates
The labeling of visual response topographies in the RMS field-
maps shows that 74% of the MEG measurements and 89% of
the EEG measurements contain some visual response pattern
(Categories 1 and 2). After the decomposition, there is some
visual response pattern in at least one of the components in
73% of MEG measurements and 96% of EEG measurements.
Clear visual response patterns (Category 1) are observed in 42%
of the MEG data sets before the decomposition and 63% after
the decomposition. Of the EEG data sets, 72% show clear visual
response patterns before the decomposition and 85% after the
decomposition. Within the components exhibiting a clear visual
response pattern (Category 1), 32% of MEG components and
49% of EEG components belong to the recruited group, meaning
that their dominant frequencymatches the stimulation frequency
or its first harmonic. The remaining data sets formed the non-
recruited group, containing signal sources that had a dominant
frequency that was different from the stimulation frequency.

3.2.2. Characteristics of Estimated Components
The estimated factor matrices from the coupled CP
decomposition for Participant 1 and stimulation frequency
1.1fα are shown in Figure 8. Additionally, the figure depicts the
field-maps of the RMS of the measured signal for both, MEG
and EEG (column 1). The RMS field-maps represent the power
distribution of the measured signals before the decompositions.
Columns 2 and 3 show the field-maps for the channel signatures
for components 1 and 2, respectively. The frequency and time
signatures are provided in columns 4 and 5. The stimulation with
1.1fα produces the strongest response for Participant 1. Note
that fα is estimated from a resting state measurement and may,
therefore, slightly differ during PD. In the RMS maps of MEG
and EEG, we can see a clear occipital activation due to the PD
(visual response Category 1). Both components are located in
the occipital area as well and present two frequencies or narrow
frequency distributions close to the individual alpha frequency
of 9.6 Hz. Component 2 is common between the MEG and
the EEG signals and matches closely the stimulation frequency
(recruited). In the time domain (column 5) it is dominant and
displays an onset, plateau, and offset phase. Component 1 is a
visual response as well, but has a different obtained frequency
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FIGURE 8 | RMS, channel, frequency, and time signature for Participant 1 and stimulation frequency 1.1fα .

(non-recruited) that is closer to the individual alpha frequency.
In the time domain it is stronger in the onset phase of the
stimulation train and diminishes after that.

The result of stimulating the same participant with 0.55fα ,
in the theta band, is shown in Figure 9. This stimulation
produced an increased response as well, which was not as
strong as that of 1.1fα . The two components are both in
the occipital region, show visual response patterns, and are
both of comparable strength over the time course. Figure 10
shows the input frequency distribution of the MEG over time
(bottom left) of an indicative channel (top right), the time
signatures of the resulting components aligned above and
the frequency signatures aligned on the right. Component 1
presents closely the stimulation frequency (recruited), which
is visible in the frequency distribution during the stimulation
train. Component 2 presents closely the harmonic 2 · 0.55fα
of the stimulation frequency (recruited). Figure 11 shows that
both of these frequencies appear in the MEG and EEG signals.
Component 1 of the EEG signal extendsmore centrally (Figure 9,
row 2 column 2), which is consistent with the topography of theta
band activity (Klimesch, 1999, p. 180).

Figure 12 shows an example of the separation of a visual
response from a superimposed other source in Participant 1
at the stimulation frequency 0.7fα . The field-map of the
MEG signals shows no clear visual response pattern (visual
response Category 3). However, Component 2 reveals the visual

response at the stimulation frequency (recruited). The other,
more complex and temporally variable source is found in
Component 1. Figure 13 shows the frequency distributions of
the input MEG signal of a frontal channel primarily capturing
the activity of Component 1 (left sub-figure) and an input
MEG channel primarily capturing the activity in Component 2
(right sub-figure). The components reflect the primary frequency
aspects, keeping in mind that the decomposition captures
the primary aspects present across channels and time. The
time signature of Component 2 matches the stimulation train,
which further confirms that it is a stimulation response.
The time signature of Component 2 is irregular and present
after the stimulation train. This further confirms that it
is not a direct stimulation response. The decomposition of
the EEG signals differentiates two sources, which are both
at the stimulation frequency (recruited). Component 1 is
confined to the occipital region and dominates the time
course, while Component 2 (red) includes a small fraction
of activity in the theta band, extends more central and is
more distributed.

The components of unsuccessful stimulation experiments,
during which no consistent visual response could be elicited (data
not shown), isolate the main patterns in the respective frequency
distribution. These may be transient in time or only present at
a short time point on the time axis, which is captured by the
time signatures. The topographies of the signals and components
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FIGURE 9 | RMS, channel, frequency, and time signature for Participant 1 and stimulation frequency 0.55fα .

are broader and not restricted to the occipital regions of the
visual cortex. The signals may be generated by resting-state
brain rhythms.

3.2.3. Group Analysis of Obtained Frequencies
In order to evaluate the responses of all participants together,
we take the obtained frequencies, the maxima of the frequency
signatures, of only the components with primarily only visual
response patterns (Category 1) and differentiate the two
conditions, recruited and non-recruited components. The MEG
group analysis is shown in Figure 14 and the EEG group analysis
in Figure 15. The second and third rows show the component
weights as violin plots with the median curve, while the fourth
row shows the corresponding reliability distribution and the fifth
row shows the residual for each stimulation frequency.

The upper plots of both, Figures 14, 15, depict two dashed
reference lines each representing the stimulation frequency fs
and its harmonic 2fs. Components very close to this line are
recruited (marker X) and all others non-recruited (marker O).
The results show that entrainment can appear for all of the
stimulation frequencies up 1.1fα , although in each participant
only a subset of stimulation experiments was successful in
producing an entrainment.

The non-recruited components (dotted line denotes median)
most commonly show frequencies of (0.4±0.1)fα for stimulation

frequencies between 0.4fα − 1.0fα . Between stimulation
frequencies 1.0fα − 1.3fα , response frequencies around
(1.0 ± 0.05)fα are more common. Few components appear
outside this pattern with response frequencies of (0.6 − 0.7)fα .
Note that the non-recruited components appear during flicker
stimulation and have a clear visual response pattern. The group
analysis identifies two reoccurring response frequency ranges of
(0.4± 0.1)fα , a theta band response, and (1.0± 0.05)fα , an alpha
band response.

It is important to note that in the components of a single
measurement there are only either recruited components or non-
recruited components, not both. The only rare exceptions are
cases, in which the response frequency changed mid-way in the
series of trials and both were superimposed during averaging.
In all data sets with clear visual response pattern (Category 1)
without recruitment, either the alpha or the theta band response
is present, not both. Rare exceptions are again where the response
frequency changes mid-way in the series of trials and both are
superimposed during averaging.

The weights represent the power of each component using
its norm and indicate its dominance. The violin plots of the
weights in Figures 14, 15 show that the recruited components
are dominant compared to the non-recruited frequencies. A
comparatively high reliability and a low residual give strongest
confidence in the components and their obtained frequencies
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FIGURE 10 | Relation between frequency distribution (bottom left) of an indicative MEG channel (top right) and the time (top left) and frequency (bottom right)

signatures of the components of Participant 1 at stimulation frequency 0.55fα .

FIGURE 11 | Relation between frequency distribution (bottom left) of an indicative EEG channel (top right) and the time (top left) and frequency (bottom right)

signatures of the components of Participant 1 at stimulation frequency 0.55fα .
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FIGURE 12 | RMS, channel, frequency, and time signature for Participant 1 and stimulation frequency 0.7fα .

FIGURE 13 | Relation between frequency distributions of one indicative MEG channel of component 1 (left sub-figure) as well as one indicative MEG channel of

component 2 (right sub-figure) and the time and frequency signatures of Participant 1 at stimulation frequency 0.7fα .

for stimulation frequencies around 0.5fα and fα . This is
where the MEG and EEG signals have two components in
common (REL = 100%). For the rest of the stimulation
frequencies, the MEG and EEG signals have only one
common component.

4. DISCUSSION

4.1. Evaluation of C-SECSI Approach
We propose to compute the coupled CP decomposition based
on the C-SECSI framework (Naskovska and Haardt, 2016). The
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FIGURE 14 | Scatter plot of the normalized frequencies obtained from the analysis for MEG data, violin plots of the weights of the recruited and non-recruited

components, reliability, and residual as function of the normalized stimulation frequency.

C-SECSI framework for three-way tensors with one mode in
common computes eight initial estimates, four of which are
coupled and four uncoupled. The final estimate is then chosen
based on the minimum reconstruction error for both tensors
independently. Therefore, C-SECSI computes the coupled CP
decomposition under the constraint that one of the modes
is coupled, but it still computes uncoupled estimates. This is
very practical for the analysis of biomedical data, where the
coupling is assumed but not yet proven.Moreover, for comparing
the independently chosen final estimates we have defined the
coupling reliability in Equation (4). The benchmark results
(Figures 3, 4) show that the reliability measure can be used
to control the rank estimate of the coupled decomposition.
This is a very important feature of C-SECSI, because the
rank estimate is a very challenging problem, especially for

noisy measurement signals. The C-SECSI framework has higher
accuracy in ill-conditioned scenarios such as computing the
coupled CP decomposition with a collinear factor. In both
accuracy tests (Figures 5, 6), we obtained a higher accuracy than
with the traditional SECSI framework proposed in Roemer and
Haardt (2008, 2013) and alternative methods. Another advantage
of the C-SECSI framework is that it can decompose tensors
that are corrupted by noise with different variances without any
additional normalization or estimation of the SNR (Figure 7).

4.2. Decomposition of MEG-EEG Data
The application of the coupled CP decomposition to
simultaneously recorded MEG-EEG signals demonstrates its
capability of extracting physiologicallymeaningful signal sources,
in this case oscillators during photic driving. The coupled CP
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FIGURE 15 | Scatter plot of the normalized frequencies obtained from the analysis for EEG data, violin plots of the weights of the recruited and non-recruited

components, reliability, and residual as function of the normalized stimulation frequency.

decomposition allows us to decompose these multidimensional
heterogeneous signals into their most prominent components
and residual signal. Small overestimations of the rank lead to
less prominent signal patterns being extracted from the residual
and represented as a component. The underlying components
are extracted while preserving the original multidimensional
structure of the signals (frequency × time × channels, c.f.
Figure 2) under the assumption that they have a common
frequency mode.

4.2.1. Field-Maps
The overall rate of response in terms of a spatial activation pattern
in the field-maps is comparable to preceding studies (Schwab
et al., 2006; Salchow et al., 2016), which used entrainment

measures to detect responses. This study, however, includes all
frequencies within the wavelet frequency window around the
alpha and theta band. We found a high response rate close to
the individual alpha frequency, an intermediate rate in the theta
band, and a low response rate otherwise. This is in agreement
with Salchow et al. (2016), Schwab et al. (2006), andHalbleib et al.
(2011). The EEG data present more frequent response patterns
than theMEG data. This could be due to the different sensitivities
to the angles and the depths of the sources in the brain (Hunold
et al., 2016).

The tensor decomposition with rank 2 extracts the two
primary components of the data in frequency × time × channel
space and, thereby, eliminates further sources that could
otherwise confound the analysis. The component topographies
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are either physiologically meaningful, i.e., representing a visual
response, or represented some other clearly distinguishable
source of similar strength. This allows us to isolate the
stimulus response. In turn, this substantially improves the
identifiability of visual response patterns in MEG components
and to a lesser degree in EEG components. The example in
Figure 12 demonstrates how a visual response component can be
uncovered and isolated from an unclear MEG data set.

4.2.2. Time Courses
The time signatures of the recruited components demonstrate
the three phases: onset, plateau, and offset (e.g., Figure 9). This
is in good agreement with previous studies (Schwab et al., 2006;
Salchow et al., 2016). However, the decomposition additionally
allows us to separate signal components with a weaker or
instable time course (e.g., Figure 12). Further, it highlights
changes over time, such as a component that is only present
during the onset phase and diminishes after that (e.g., MEG in
Figure 8). This component-wise time course display allows the
user to gain insight into the stationarity and effectiveness of the
stimulation experiment.

4.2.3. Frequencies
The decomposition of the data tensor allows us to extract
the main components with their frequency signatures. In
this stimulation experiment, the frequency signatures primarily
contain one or sometimes two peaks, which reflect the resonance
to the stimulation frequency and/or intrinsic frequencies within
the alpha and theta bands. Note that in general, each frequency
signature can contain multiple frequency contributions, if they
are related to each other in the data tensor. MEG and EEG signals
do not always have all frequency components in common, this
can be explained by the different sensitivities to the angles and
the depths of the sources in the brain (Hunold et al., 2016) and
has been observed in preceding tensor decomposition studies
(Naskovska et al., 2017a,b).

The decomposition is able to separate sources at different
frequencies that show the same or a similar topographical
distribution in the field-map, even if the frequency peaks
partly overlap (e.g., Figure 8). The existence of such similar
topographies, indicating a similar physical distribution of the
activity in the brain, during the plateau phase for different
frequencies has been reported and described in more detail
by Halbleib et al. (2011). The strongest resonance frequency
peak during stimulation is in many cases slightly above the
alpha frequency peak at rest, i.e., 1fα − 1.1fα . This can be
understood from the observation that the signal contribution to
the alpha band above the peak frequency, the upper alpha, and
the signal contribution below the peak, the lower alpha, respond
independently (Klimesch, 1999). Our results indicate that the
strongest resonance in this case may be produced by stimulation
in the upper alpha range. A desynchronization of the lower alpha
band is associated with attention (Klimesch, 1999). The attention
of the participantmay, therefore, play a role in the composition of
the power distribution in the alpha band as well. In the example
in Figure 8, Component 2 (red) reflects the resonance frequency
in the upper alpha range, while Component 1 (blue) reflects the

remaining signal contributions to the alpha band, primarily in
the lower alpha range. The separation is more pronounced in the
MEG data than the EEG data in this case.

During stimulation with a frequency of approximately fs =

0.5fα , we can differentiate two components, one with a frequency
peak at the stimulation frequency fs and one with its harmonic
2fs ≈ fα , e.g., in Figure 9. This is in agreement with Salchow
et al. (2016), who determined alpha entrainment from the 2fs ≈
fα peak amplitude. The critical feature of this case is that the
frequency peaks match closely the stimulation frequency and its
harmonic (dashed lines in Figures 14, 15).

4.3. Oscillators During Photic Stimulation
4.3.1. Recruitment
The unsupervised tensor decomposition of MEG-EEG signals
isolates components that are characterized by one frequency
peak, respectively, which is sustained through all or part of the
stimulation train. These can be understood as oscillations.Within
the components displaying clear visual response topographies
(Category 1), approximately one third of the MEG components
and approximately half of the EEG components are recruited to
the stimulation frequency or its first harmonic (Figures 14, 15).
This concurs with the entrainment reported in previous
studies (Mangan et al., 1993; Klimesch, 1999; Herrmann, 2001;
Schwab et al., 2006; Salchow et al., 2016). Using photopic
stimulation conditions, Herrmann (2001) additionally describes
entrainment for higher harmonics. The observation that in
a single experiment we can only observe either a recruited
oscillation or a non-recruited oscillation, but not both, suggests
that the oscillators underlying the non-recruited oscillations
are entrained to the stimulation frequency in the recruited
case. This is supported by Wacker et al. (2011) and Halbleib
et al. (2011), who point out that these recruited oscillations
are not purely synchronized stimulus responses, but reflect a
driven oscillator in the brain that maintains the oscillation for
several cycles after the stimulation has ended. Notbohm et al.
(2016) further strengthen this hypothesis using jittered flash
stimulation experiments.

4.3.2. Intrinsic Oscillations
The successful visual stimulation also identifies components
with non-recruited frequencies, which are approximately two
thirds of the MEG components and approximately half of the
EEG components. These can be considered intrinsic oscillations
(da Silva, 1991), because they are produced without a match
in stimulation frequency and occur across participants. They
appear primarily in two frequency bands, 0.9fα − 1.1fα , the
alpha band, and 0.3fα − 0.5fα , the theta band (Figures 14, 15).
Although MEG and EEG have partly different sensitivities, the
group analysis across participants of both modalities confirm
this finding. The presence of alpha band responses during
stimulation with other frequencies is confirmed by Herrmann
(2001). Theta band oscillations during photic stimulation
have been described in children (Lazarev et al., 2001) and
in students (19–24 years; Mangan et al., 1993) similar to
our participants.
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4.3.3. Resonance
The response amplitude in the tensor components resonates for
stimulation frequencies in the alpha band and the theta band.
Resonance is also observed for stimulation close to half of the
individual alpha frequency, which may partly coincide with the
theta band response. The resonance to stimulation in the alpha
band and half of it is in good agreement with existing literature
(Herrmann, 2001; Schwab et al., 2006; Salchow et al., 2016).
The resonance in the theta band is confirmed and described
by Mangan et al. (1993), Lazarev et al. (2001), and Klimesch
(1999). In agreement with these studies, our results show that
the resonance extends to stimulation frequencies that are a small
fraction above and below the respective intrinsic frequency peak.

4.3.4. Connections
The observation that in the non-recruited case we observe either
a component in the alpha band or a component in the theta band,
not both, indicates a reciprocal relation between the two bands. In
fact, such a reciprocal relation in band power has been reported
in the EEG literature and summarized in a comprehensive review
by Klimesch (1999). Our study confirms this observation inMEG
signals. da Silva (1991) hypothesizes that the brain contains a
system of connected neural oscillators with individual resonance
frequencies that respond to photic driving. Our results support
this hypothesis and suggest alpha and theta oscillators that
can resonate with photic driving. When an entrainment to a
stimulation frequency takes place, then the recruited frequencies
dominate the signals.

4.4. Future Work and Applications
The time-frequency-channel tensor in this study translates well
to other studies in neuroscience in that it uses typical data
dimensions of time, e.g., a measurement, channels, e.g., a set
or array of sensors, and a series of features or parameters,
e.g., frequencies. The decomposition method can be applied to
the unsupervised discovery of patterns in data of exploratory
studies in the future. The component analysis can be extended
by performing source reconstructions of the components. This
could reveal the locations of the underlying brain activity regions.
It could also allow for quantitative measures of the physiological
integrity of the components. This may help in providing new
insight into the brain’s organization and function. Future work
could involve higher-order tensors, for example, by including
the participant as one dimension of a population tensor. The
necessary cross-participant co-registration and normalization
should be investigated and validated.

The tensor decomposition approach can be of high practical
value when integrated into brain-computer-interfaces, such as
a speller application for paralyzed users (Rezeika et al., 2018).
Such spellers detect user selections from the brain’s response
to steady state visual stimulation. Using the selections, the user
can navigate through a list of letters on a screen and produce
a message. Another practical use is in neurofeedback systems,
which decompose and display features of the measured brain
activity on-line to the user and allow the user to train control
over beneficial brain states. In the clinical setting, it can augment

and further contribute to diagnostics. It can lead to improved
treatment outcome of brain disorders, for example, by locating
epileptic network nodes in the epileptic brain.

Beyond neuroscience, the tensor decomposition method is
highly applicable to machine learning tasks in big data in
general, specifically the discovery of multi-dimensional patterns
(Stoudenmire, 2018; Klus and Gelβ, 2019).

5. CONCLUSION

The tensor decomposition with C-SECSI is able to separate
physiologically meaningful oscillations of visually evoked brain
activity from background signals. The component frequencies
identify either an entrainment to the respective visual stimulation
frequency or its first harmonic, or an oscillation in the individual
alpha band or theta band. In the group analysis of both, MEG and
EEG data, a reciprocal relationship between alpha and theta band
oscillations is present. The coupled tensor decomposition using
the C-SECSI framework is a robust, powerful method for the
unsupervised extraction and separation of meaningful sources
from multidimensional biomedical measurement data.
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