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Quantitative assessment of tissue microstructure is important in studying human
brain diseases and disorders. Ultra-high field magnetic resonance imaging (MRI) data
obtained using a multi-echo gradient echo sequence have been shown to contain
information on myelin, axonal, and extracellular compartments in tissue. Quantitative
assessment of water fraction, relaxation time (T2*), and frequency shift using multi-
compartment models has been shown to be useful in studying white matter properties
via specific tissue parameters. It remains unclear how tissue parameters vary with
model selection based on 7T multiple echo time gradient-recalled echo (GRE) MRI
data. We applied existing signal compartment models to the corpus callosum and
investigated whether a three-compartment model can be reduced to two compartments
and still resolve white matter parameters [i.e., myelin water fraction (MWF) and g-ratio].
We show that MWF should be computed using a three-compartment model in the
corpus callosum, and the g-ratios obtained using three compartment models are
consistent with previous reports. We provide results for other parameters, such as signal
compartment frequency shifts.

Keywords: myelin imaging, frequency shift, phase unwrapping, white matter, corpus callosum, signal
compartmentalization

INTRODUCTION

Myelin is one of the main components of the white matter tissue in the brain that acts as an
axonal insulator to help conduct neuronal signals (Caminiti et al., 2009). The demyelination has
been associated with different white matter diseases like multiple sclerosis, schizophrenia, brain
stroke, and even Alzheimer’s disease (Moore et al., 2000; Laule et al., 2004; MacKay et al., 2006;
Bejanin et al., 2016; Lehto et al., 2016). Different methods based on magnetic resonance (MR)
such as T1 and T2 relaxation (McDESPOT) (Deoni et al., 2011), diffusion tensor imaging (Billiet
et al., 2015; Davies-Thompson et al., 2016), magnetization transfer ratio (Grossman et al., 1994;
Schmierer et al., 2004), ultra-short echo time (UTE) (Horch et al., 2011; Wilhelm et al., 2012), and
T1-weighted/T2-weighted image ratio mapping methods have been used as a sensitive biomarker
for myelin in multiple sclerosis and schizophrenia (Beer et al., 2016; Granberg et al., 2017) and to
visualize that myelin contrast in the brain (Ganzetti et al., 2014).

Methods based on the spin-spin relaxation time (i.e., T2) mapping (Mackay et al., 1994;
Whittall et al., 1997) using the multi-echo spin echo sequence was used to estimate myelin
water fraction (MWF) in the white matter. The mathematical modeling technique used for
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signal compartmentalization was based on the non-exponentially
decaying T2 curve acquired using a multi-echo spin echo
sequence. This technique dissociates signals from different tissue
compartments (myelin, axonal, or extracellular), wherein the
shortest T2 signal compartment is assumed to be myelin water
(Mackay et al., 1994; Lancaster et al., 2003). The myelin
parameters have been extracted from multi-echo spin echo
magnitude data (Mackay et al., 1994; Laule et al., 2004). The
approach has been used to study different brain diseases, such
as multiple sclerosis and schizophrenia, wherein a statistically
significant reduction in MWF was present (Flynn et al., 2003;
Wright et al., 2016).

However, multi-echo spin echo sequence produces higher
specific absorption rates in tissue due to the use of multiple
refocusing 180◦ pulses. The spin echo data also have a higher
sensitivity to radio frequency (RF) field inhomogeneities, and
generally, a smaller volume coverage with lower resolution can
be achieved. Alternatively, the multi-echo gradient-recalled echo
(GRE) magnetic resonance imaging (MRI) sequence with a single
RF pulse with low flip angles (FAs) can provide an alternative data
collection strategy which overcomes drawbacks associated with
the spin echo sequence. Since the GRE-MRI data are collected
in the T2* regime, different tissue compartment models need
to be developed.

A number of signal compartment models for GRE-MRI
data have been proposed for the mapping of various tissue
parameters (Hwang et al., 2010; Sati et al., 2013; Nam et al.,
2015; Thapaliya et al., 2018). The models consist of the
myelin, axonal, and extracellular signal compartments, and each
compartment has a water fraction, T2

∗ value, and frequency
shift. Note that GRE-MRI data consist of both magnitude and
phase information. Researchers have demonstrated white matter
orientation dependence with respect to the scanner field in the
mapped frequency shift value (Wharton and Bowtell, 2012),
alongside shape and size of fibers (Xu et al., 2017) and their
packing (Chen et al., 2013). Notably, the myelin sheath is a
layered structure which insulates axons, and it is comprised
of lipids (∼70%) and proteins (∼30%) (Morell and Quarles,
1999). The lipid component has greater influence on GRE-
MRI signal phase than the protein component (Lee et al., 2012;
Duyn and Schenck, 2016). As such, the GRE-MRI complex voxel
signal contains important information on tissue organization and
composition from which specific tissue parameters are aimed to
be extracted using multi-compartment modeling approaches.

Five different GRE-MRI signal compartment models have
been developed to study tissue properties, each having a different
number of model parameters. The signal compartment model
proposed by Hwang et al. (2010) assumes three water pools, and
compartments are characterized by water fraction and relaxation
time parameters. This model has seven parameters and can be
extracted by fitting GRE-MRI signal magnitude. The use of this
model results in large residuals, especially when white matter
fiber orientation is perpendicular to the scanner field. Later
work demonstrated a reduction in residuals by incorporating
frequency shift terms for each compartment, leading to a
nine-parameter model, and fitting complex valued signals (Sati
et al., 2013). The main challenge of using this model is the
removal of macroscopic field effects present in phase images

(e.g., phase changes due to air–tissue interfaces, metal–tissue
boundaries) which hinder the computation of compartment
frequency shifts. While several methods have been proposed
to remove macroscopic effects, residual effects remained in the
phase images (Neelavalli et al., 2009; Liu et al., 2011). Instead
of correcting for macroscopic field effects in the raw signal,
Nam et al. (2015) incorporated the macroscopic field effect into
the signal equation, resulting in a 10-parameter model. We
extended the model to 11 parameters in prior work, where the
additional parameter was used to account for the noise floor
in the GRE-MRI data and applied it to regions of the corpus
callosum (Thapaliya et al., 2018). Model variants have been used
to study lesions in relapsing-remitting multiple sclerosis patients
(Li et al., 2015) and dysplastic tissue regions in focal epilepsy
(Thapaliya et al., 2019).

Based on the GRE-MRI signal compartment models published
previously, a number of points remain unclear: (i) how are
tissue parameters influenced by model choice, (ii) how many
compartments and parameters are necessary to obtain a robust
measure of tissue parameters and g-ratio, and (iii) can specific
parameters be the same across different compartments to reduce
model complexity?

MATERIALS AND METHODS

The study was approved by the university human ethics
committee, and written informed consent was obtained from
10 healthy participants (aged 30–41 years). Data were acquired
using a three-dimensional (3D) GRE-MRI sequence on a
7T whole-body MRI research scanner (Siemens Healthcare,
Erlangen, Germany) with a 32-channel head coil (Nova Medical,
Wilmington, DE, United States) using the following sequence
parameters: acceleration factor = GRAPPA 2, echo times from
2.04 to 46.41 ms with echo spacing of 1.53 ms (30 echoes
in total), repetition time (TR) = 51 ms, FA = 20◦, voxel
size = 1 × 1 × 1 mm3, matrix size = 210 × 168 × 144,
and total acquisition time was 6 min 13 s. Individual channel
data were processed by computing a signal phase noise map
by taking the voxel-wise phase difference between any two
channels. The noise map was smoothed using Gaussian filtering,
the variance over a 3 by 3 spatial grid was computed and
thresholded to form a mask where this two-channel information
was averaged. This process was repeated for all two-channel
combinations and summed to produce the combined signal
phase images (Bollmann et al., 2015). A brain mask for each
participant was created using FSL BET (Smith et al., 2004). Phase
unwrapping and background field processing were performed
using iHARPERELLA1 (STI Suite) (Li et al., 2014) to create tissue
phase. We use default parameters [number of iterations = 100;
padsize = (100 100 100)] in iHARPERELLA to process the
acquired data set.

Region-of-Interest Analysis
The corpus callosum was segmented manually into eight
regions of interest (ROIs: rostrum, genu, anterior mid-body,

1https://people.eecs.berkeley.edu/~chunlei.liu/software.html
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posterior mid-body, isthmus, and two splenium regions; see
Figure 1) using a standardized template (Witelson, 1989) and
with the aid of the MIPAV software2 (McAuliffe et al., 2001)
using only the magnitude data from individual participants.
The template contained eight ROIs, but we only used
seven of them. Due to the small number of voxels in the
rostrum, this region was omitted from the analyses. For
additional analyses, the corpus callosum was also segmented
into three primary subregions (genu, mid-body, and splenium)
with each region including at least 30 and a maximum
of 98 voxels. Data from both the seven and three corpus
callosum subregions were used to study tissue parameter
changes with model selection over the corpus callosum.
White matter fiber orientation in each ROI was assumed
to be perpendicular to the scanner magnetic field. During
data acquisition, care was taken to orient the line joining
the ears of each participant perpendicular to the bore of
the scanner. A representative signal for each ROI was
obtained by averaging the complex signals from the adjacent
slices. Signals from three adjacent slices were averaged to
improve signal quality.

2https://mipav.cit.nih.gov

Gradient-Recalled Echo-MRI Signal
Compartment Models
As the model described by Thapaliya et al. (2018) is the most
general, we outline it and state how other models evaluated differ
with respect to it:
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where S represents the complex-valued GRE-MRI signal for
a particular ROI or voxel at echo time t (in seconds), Amy,
Aax, and Aex (in a.u.) represent water fractions for the myelin
(my), axonal (ax), and extracellular (ex) compartments, and
correspondingly T2,my

∗, T2,ax
∗, and T2,ex

∗ (in seconds),
and 1fmy, 1fax, and 1fex (in Hz) are the compartment
relaxation times and frequency shifts. Additionally, C (in
a.u.) is used to adjust for the noise floor in the data, and
1fbg (in Hz) is the background frequency shift term used

FIGURE 1 | Illustration of the location of the eight (left) and three (right) regions of interest (ROIs) in the mid-sagittal plane of the corpus callosum used in the
gradient-recalled echo (GRE)-MRI signal compartment model analysis.

TABLE 1 | Summary of models investigated and parameter settings used for each model indicating where values were either fixed or free (i.e., X).

Model P Amy Aax Aex T2,my* T2,ax
∗ T2,ex

∗ 1fmy 1fax 1fex 1fbg C

Thapaliya 11 X X X X X X X X X X X

Nam 10 X X X X X X X X X X 0

Sati 9 X X X X X X X X X 0 0

3COMP 7 X X X 7 X T2,2∗ X X X 0 0

2COMP 5 X X 0 7 X 0 X X 0 0 0

P represents the total number of free model parameters for a particular model, fixed T2* values are in ms, 1f are in Hz, and C has arbitrary units.

TABLE 2 | Conditions used for the optimization of model parameters.

Amy Aax Aex T2* 1fmy 1fax 1fex 1fbg C

IV 0.1| S(t1)| 0.6| S(t1)| 0.3| S(t1)| 48 30 −2 5 0 0

LB 0 0 0 0 −200 −50 −50 −20 0

UB 2| S(t1)| 2| S(t1)| 2 | S(t1)| 200 200 50 50 20 0.3| S(t1)|

T2* value in ms, 1f in Hz, and C in arbitrary units. S represents the signal, and t1 corresponds to the first echo time. IV, initial value; LB, lower bound; UB, upper bound.
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FIGURE 2 | Myelin water fraction (MWF) results for corpus callosum regions of interest (ROIs) (top) and model fitting error for the different models (bottom). The
mean and standard deviations across participants are provided.

to cater for residual macroscopic field effects in the data.
Table 1 summarizes model variants according to descriptions
by Sati et al. (2013); Nam et al. (2015), Thapaliya et al. (2018),
and two modified models which use parameter reduction
to reduce model complexity. Myelin compartment T2*
value in the 3COMP (three-compartment seven-parameter
model) and 2COMP (two-compartment five-parameter

model—combining intra and extracellular signals into a
single compartment) models was fixed to 7 ms based on previous
findings (Thapaliya et al., 2018). We have not considered the
model by Hwang et al. (2010) as it used GRE-MRI signal
magnitude alone (i.e., 1fmy = 1fax = 1fex = 0), and it has
been shown not to fit the GRE-MRI data as well as the
other models did.
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Signal magnitude and background field-corrected phase
images generated for each echo time were used to form echo time-
dependent complex voxel signals. Voxel signals were averaged in
ROIs to form region-specific temporal complex valued GRE-MRI
signals. For voxel-wise analyses, complex-valued voxel signals
were smoothed using the method of robust smoothing and by
setting the smoothing kernel equal to 0.01 prior to voxel-wise
analysis (Garcia, 2010). Model parameters were estimated using
non-linear fitting in MATLAB R© for both the region-specific and
voxel-level signals. Table 2 provides the initial values, and lower
and upper bounds set in the optimization.

The myelin water fraction was computed using the ratio of
the signal amplitude of the myelin water compartment with
respect to the total signal [i.e., MWF = Amy/(Amy + Aax + Aex)].
Axonal water fraction (AWF) and extracellular water fraction
were calculated in a similar manner.

Estimation of the g-Ratio
The g-ratio is a proxy for myelination and measures the
ratio of inner axon diameter over outer axon diameter (i.e.,
including the myelin sheath). A value close to 1 suggests loss of
myelin, and values less than 1 reflect mean myelination levels.
The g-ratio was calculated according to an established method
(Stikov et al., 2015):

g − ratio =
√

1

1+ kaMWF
kmAWF

,

where MWF and AWF are the myelin and axonal water fractions
obtained using the compartment models, ka and km are scalars
used to adjust between water fractions and volume fractions,
and ka = 0.85 and km = 0.4 (Jung et al., 2016). For the sake
of comparison, and to benchmark methods, we also provide
previously published g-ratios in the corpus callosum (Sati et al.,
2013; Nam et al., 2015; Thapaliya et al., 2018).

Model Selection
Model selection was performed using the corrected version of
the Akaike information criterion (Burnham and Anderson, 2004)
defined as:

AICc = N log
(

RSS
N

)
+ 2P +

2P (P + 1)

N − P − 1︸ ︷︷ ︸
CORRECTION

,

where N is the number of data points used to generate the
metric, RSS is the residual sum of squares, P is the number
of free parameters (see Table 1 for the various models), and
the correction term is required when N/P < 40, and in our
case, it was always applied. For each model, an AICc value is
generated, and the model with the smallest value is the most
parsimonious choice.

RESULTS

Region-Based Model Analysis
Our investigation primarily focused on MWF and g-ratio.
Figure 2 provides the MWF calculated using the various GRE-
MRI signal compartment models (refer to Table 1) and the
fitting error associated with each of the models. The 2COMP
model produced the largest variation in the mean MWF value
across the corpus callosum ROIs, and it also has the largest
inter-participant variation. The 2COMP model leads to around
a factor of two greater fitting error than the other methods.
The 3COMP, Sati, Nam, and Thapaliya methods led to fairly
consistent MWF values with similar fitting errors. A significant
difference between 3COMP and 2COMP in the MWF parameter
was found in the posterior mid-body of the corpus callosum
(p = 0.02). The largest difference between two models was
in the axonal frequency shift (p < 0.005) across all corpus
callosum regions, and significant differences in myelin frequency
shift were also present at the mid-body regions of the corpus
callosum (p < 0.02) (Figure 3). All the tissue parameters
estimated from different modelling techniques are provided as
Supplementary Tables S1–S7.

AICc values are provided in Table 3. Three-compartment
models (3COMP, Sati, Nam, and Thapaliya) outperformed the
two-compartment model (2COMP) for all seven smaller regions,
the three larger regions, and for the whole of the corpus callosum,
irrespective of the number of free model parameters. The three-
compartment models performed similarly, and different models
were better suited for different regions. Based on the whole
corpus callosum, the 3COMP model can suitably capture the
trend in the GRE-MRI complex signal. These findings suggest
that the 2COMP model is inadequate and, hence, will be omitted
from subsequent region-based findings.

The g-ratio results are provided in Figure 4. The g-ratio
estimated from 3COMP, Sati, Nam, and Thapaliya showed similar

TABLE 3 | List of Akaike information criterion (AICc) values obtained for the
different models.

Regions 3COMP Sati Nam Thapaliya 2COMP

Genu 196 190 195 178 239

Rostral body 167 176 181 173 205

Anterior mid-body 179 179 183 170 235

Posterior mid-body 163 168 172 166 220

Isthmus 147 142 146 143 184

Splenium1 148 142 149 129 191

Splenium2 171 142 168 147 193

Genu 213 218 223 214 241

Mid-body 176 176 180 177 193

Splenium 168 173 180 178 197

Whole CC 180 181 185 189 195

Results have been organized to show that all of the three-compartment models
with different number of parameters (3COMP, Sati, Nam, and Thapaliya) can
better capture the trend in the underlying signal than the two-compartment model
(2COMP). Results provided are for the seven smaller regions, three larger regions,
and for the whole of the corpus callosum (CC).
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FIGURE 3 | Myelin (1fmy), and axonal (1fax) frequency shifts generated using 3COMP and 2COMP models over the seven corpus callosum regions. *represents the
significant differences.

values in rostral body and anterior mid-body of the corpus
callosum. The g-ratio estimated from 3COMP yielded higher
values in comparison to other models in posterior mid-body,
isthmus, and splenium1 of the corpus callosum. The g-ratio
estimated from Sati, Nam, and Thapaliya showed similar values
across the subregions of the corpus callosum. The estimation
of the g-ratio from Thapaliya and 3COMP significantly varies
at the posterior mid-body and isthmus of the corpus callosum
(p < 0.01). Comparison of corpus callosum g-ratios obtained
across different studies is summarized in Table 4. It can be
concluded from this table that g-ratios generated using any of the
three-compartment models are consistent with those previously
reported in the literature, and humans generally have smaller
g-ratios than other species listed.

Voxel-Level Maps
Results in Figure 5 confirm that the model fitting error is larger
using two-signal compartments (2COMP) versus three-signal
compartments (3COMP, Sati, Nam, and Thapaliya). Figure 6
shows the voxel-by-voxel fit results for MWF for all models
in the 10 participants. While our AICc findings from Table 3
indicate that three-comparment models are better suited than the
2COMP model, the model selection process is unable to highlight
differences in parameters. As such, percentage difference in the
2COMP MWF parameter with respect to the 3COMP model is
provided as Supplementary Figure S1. The result shows that as
much as 50% difference in the MWF parameter can be present
when the 2COMP model is used. Additionally, Figure 6 suggests
that MWF values tend to be larger around the mid-body of
the corpus callosum and smaller at the posterior and anterior
regions. In some participants, the MWF parameter is also large

TABLE 4 | Summary of g-ratios calculated using the methods assessed here and
those published previously for the corpus callosum in different species and using
different modalities.

Method g-ratio Subject Device

3COMP 0.67 ± 0.08 Human 7T MRI

Sati1 0.64 ± 0.08 Human 7T MRI

Nam2 0.63 ± 0.08 Human 7T MRI

Thapaliya3 0.63 ± 0.05 Human 7T MRI

Mohammadi4 0.68 ± 0.05 Human 3T MRI

Stikov5 0.70 ± 0.04 Macaque monkey 3T MRI

Mason6 0.80 ± 0.01 Mice EM

Benninger7 0.75 ± 0.01 Mice EM

Arnett8 0.76 ± 0.07 Mice EM

Waxman9,# 0.70 ± 0.05 Rabbit EM

1Sati et al. (2013); 2Nam et al. (2015); 3Thapaliya et al. (2018); 4Mohammadi et al.
(2015); 5Stikov et al. (2015); 6Mason et al. (2001); 7Benninger et al. (2006); 8Arnett
et al. (2001); 9Waxman and Swadlow (1976); # implies only the splenium of the
corpus callosum; EM, electron microscopy.

at the splenium of the corpus callosum. MWF results from Sati,
Nam, and Thapaliya are consistent, and some variations are
present in the 3COMP results. The axonal and extracellular water
fraction maps estimated from different models are provided as
Supplementary Figures S2, S3.

Frequency shift parameter results have been provided as
Supplementary Figures S4–S6. Pithily, axonal, and extracellular
frequency shifts tend to be larger around the mid-body
regions, and extracellular frequency shifts are generally larger in
amplitude than axonal frequency shift. Myelin frequency shifts
tend to be larger at the posterior of the corpus callosum and
smaller toward anterior regions.
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FIGURE 4 | Illustration of g-ratio variations calculated using the myelin water fraction (MWF) and axonal water fraction (AWF) model parameters across the corpus
callosum using the various three-compartment models. Mean values were calculated based on data from 10 participants, and error bars represent inter-participant
standard deviations.

FIGURE 5 | Maps of the model fitting error for the models considered. The fitting error is larger for the two-signal compartment model (2COMP) model, which has
two compartments, in comparison with all three-compartment models (3COMP, Sati, Nam, and Thapaliya).
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FIGURE 6 | Myelin water fraction (MWF) maps obtained using the two-signal compartment model (2COMP) and three-signal compartment models (3COMP, Sati,
Nam, and Thapaliya).

Figure 7 presents voxel-level g-ratio findings across the
corpus callosum. The g-ratio estimated using parameters from
the 3COMP model produced higher values (especially for
participants 3–5) in genu and splenium of the corpus callosum
but similar at the middle of the corpus callosum across all
participants and in view of the Sati, Nam, and Thapaliya models.
The g-ratio is generally in the range 0.5–0.75; however, some
voxels have values around 0.4 and few were greater than 0.8.
Extensive variations in g-ratios are potentially due to lower fit
quality due to noise in the GRE-MRI signal.

Frequency Shift Distributions Across the
Corpus Callosum
In this section, we show how frequency shift distributions
generated from data from the three-compartment models
(3COMP, Sati, and Nam) vary across the three subregions of
the corpus callosum. Figure 8 provides the frequency shift
distributions for the myelin, axonal, and extracellular signal
compartments. Myelin frequency shifts are generally larger and
separate out from the axonal and extracellular frequency shifts.

A larger level of overlap exists between axonal and extracellular
frequency shifts.

DISCUSSION

We used multi-echo GRE-MRI data to generate signal
compartment model parameters based on five different models,
each of which having different number of free parameters (5, 7,
9, 10, and 11; Table 1). We found the two-signal compartment
model (five-parameter) was unable to describe the signal
adequately. All of the three-signal compartment models
outperformed the two-signal compartment model, both in
region and voxel-based analyses. The Sati (nine-parameter),
Nam (10-parameter), and Thapaliya (11-parameter) models all
produced slightly better MWF and g-ratio results in comparison
with 3COMP (seven-parameter) model, wherein myelin T2*
value is fixed and axonal and extracellular T2* values are
assumed to be the same.

In vivo human and animal studies have shown that axonal
diameter is larger at the middle of the corpus callosum and lower
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FIGURE 7 | Maps of g-ratio over the corpus callosum estimated using three-signal compartment models (3COMP, Sati, Nam, and Thapaliya) in the 10 participants
(P1–P10).

at both ends (Aboitiz et al., 1992a; Alexander et al., 2010; Zhang
et al., 2011). These findings have been supported by ex vivo
histological studies (Aboitiz et al., 1992a; Sepehrband et al.,
2016). Myelination and thereby the g-ratio indirectly reflect axon
conduction velocity (Tomasi et al., 2012), and axonal density
might also affect the frequency shift parameter and tends to
be lower at the mid-body and higher at the corpus callosum
ends (Schneider et al., 2012). Therefore, GRE-MRI signal
compartment modeling sensitive to white matter properties can
provide key insight into not only normal aging but also white
matter changes due to neurological diseases and disorders.

Region-Based Findings
Myelin water fractions consistent with our findings (Figure 2)
have been reported for the genu, splenium, and across primary
corpus callosum regions (Whittall et al., 1997; Liu et al., 2010;

Guo et al., 2013; Thapaliya et al., 2018). Most recently, Alonso-
Ortiz et al. (2018) used GRE-MRI data to estimate MWF in the
genu and splenium of the corpus callosum. An MWF of 14± 3%
was found in the genu. We found MWF to be 13± 7% (3COMP),
18 ± 11% (Sati), 18 ± 10% (Nam), and 25 ± 7% (Thapaliya). In
the splenium, Alonso-Ortiz et al. reported 18 ± 7% for MWF,
and we found 22 ± 8% (3COMP), 25 ± 6% (Sati), 27 ± 6%
(Nam), and 29 ± 7% (Thapaliya) for the splenium1 region, and
27± 8% (3COMP), 27± 9% (Sati), 28± 8% (Nam), and 30± 9%
(Thapaliya) for the splenium2 region. Values reported here are
slightly different to those reported by Thapaliya et al. (2018),
which can be attributed to different ROI sizes (larger ROIs in this
study). Myelin frequency shift of 3COMP (23.59 ± 9.48 Hz) is
similar to that of Li et al. (2015) for the splenium1 of the corpus
callosum and also 3COMP (21.31± 11.16 Hz) is similar to that of
Thapaliya et al. (2018) for the splenium2 of the corpus callosum.
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FIGURE 8 | Myelin (1fmf), axonal (1fax) and extracellular (1fex) frequency shift distributions for calculated in three corpus callosum sub-regions. Results provided
are for only the three signal compartment models (3COMP, SATI, and NAM).

Voxel-Wise Mapping
The MWF and frequency shift results showed some intersubject
variability, and negative myelin frequency shift in some voxels
was also estimated by both models as previously reported
(Thapaliya et al., 2018). This could be due to the macroscopic
field homogeneity which becomes more pronounced in voxel-
level analysis, wherein low signal-to-noise ratios are present
in comparison with region-based analysis (Nam et al., 2015).
Another reason for intersubject variability could be due to the
differences in the fiber composition of individuals (Aboitiz et al.,
1996). In addition, frequency shifts have been shown to be
affected by fiber orientation and compactness (Wharton and
Bowtell, 2012); MWF differences could be due to the variation
in axonal diameter in fiber bundles (Schneider et al., 2012) and
fiber counts which change with aging (Aboitiz et al., 1996). Our
number of participants did not allow us to consider the effects of
age and gender on MWFs, which in fact vary between males and
females (Liu et al., 2010), ultimately affecting g-ratio.

g-Ratio
Larger g-ratios estimated at the center of the corpus callosum
(Figure 7) are similar to those reported in a different study
(Mohammadi et al., 2015). The mid-body large values appear
to reflect a larger mean axon diameter (Aboitiz et al., 1992b;
Schneider et al., 2012). In healthy cat tissue, it was also shown that
an increase in g-ratio corresponds to an increase in axon diameter

(Berthold et al., 1983). In our study, we did not adjust for brain
volume, and it has been established that larger white matter
fiber bundles occur in larger brains (Olivares et al., 2001), and
g-ratio increases with fiber diameter (Guy et al., 1989). Electron
microscopy studies conducted on mice and rabbits additionally
imply that g-ratio values could vary across the corpus callosum
(Waxman and Swadlow, 1976; Arnett et al., 2001; Mason et al.,
2001; Benninger et al., 2006). While our results are slightly
different to those reported by others (refer to Table 4), differences
may arise from the amount of fibers projecting to different
cortical regions and cortical region size with respect to species-
specific brain function (Bonzano et al., 2008; Hofer et al., 2008).

Frequency Shift Distributions
It has been reported that variations in frequency shifts across
the subregions of the corpus callosum could be due to the
variation of axonal geometry (Björnholm et al., 2017) and mean
axonal diameter in fiber bundles (Schneider et al., 2012). The
distribution of frequency shift estimated using the various three-
signal compartment models showed distinct frequency shift
peaks (Figure 8). The myelin frequency shift had the widest
distribution of values, and frequency shift results agree with
frequency shift distribution predictions based on simulations
(Sati et al., 2013). The axonal (-10 to 10 Hz) and extracellular
frequency shift (-5 to 15 Hz) ranges overlap to some extent,
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making it difficult to distinguish axonal and extracellular
frequency shifts without additional information.

Technical Considerations
Apart from myelin, both iron and protein content can also
affect the signal decay (Duyn et al., 2007) in white matter.
Iron and myelin co-localize in white matter with a similar
signal decay (Fukunaga et al., 2010; Denk et al., 2011). In
this study, we only considered a myelin compartment and
we did not account for a separate iron compartment which
affects the proper estimation of myelin content (Birkl et al.,
2019). In addition, signal decay is affected by fiber orientation
and thereby influences the model parameters (Lee et al., 2010;
Wharton and Bowtell, 2012). Furthermore, frequency shift and
relaxation time are also affected by tissue, iron, and myelin
compactness (Chen et al., 2013; Kor et al., 2019). Since the
fibers are fairly perpendicular to B0 in the corpus callosum, we
chose the corpus callosum as a test case to study the effect of
tissue parameters using different modeling techniques. Extending
the models to a whole-brain analysis would be very desirable
but would mean that this effect needs to be included in the
models, which would lead to increasing model complexity and
reducing robustness further, an investigation that would be very
valuable and interesting but beyond the aim of this study.
The g-ratio estimated by signal compartmentalization largely
depends on the proper estimation of MWF and AWF. T1 effects
can potentially influence the calculation of signal compartment
fractions (Oh et al., 2013); however, the effect likely cancels out
in the g-ratio calculation. The use of a short TR can lead to an
overestimation of the MWF (Du et al., 2007). Furthermore, it is
difficult to distinguish between the axonal and extracellular signal
compartments based on T2* values (Xu et al., 2017) and similar
frequency shifts (Figure 8), hence why the g-ratio might be under
or overestimated depending on how axonal and extracellular
compartments are decided. Skinner et al. (2007) also showed that
varying echo spacing in multi-echo spin echo data will affect the
estimation of MWF. However, varying echo spacing in multi-
echo gradient echo data has not been studied to date. Therefore,
the effect of echo spacing in MWF using multi-echo gradient
echo data is still unknown. However, it has been shown that
the number of echoes in multi-echo gradient echo data used to
estimate the three-compartment model affects tissue parameters
(Nam et al., 2015).

Tendler and Bowtell (2019) found that the frequency shift
could be impacted by residual phase offsets in the GRE-MRI
signal. West et al. (2019) showed that careful consideration
should be made for the choice of optimization method used to
generate model parameters.

CONCLUSION

We investigated the utility of existing GRE-MRI signal
compartment models for the characterization of the corpus
callosum. We implemented existing three-signal compartment
models and evaluated whether the number of parameters can be
reduced while maintaining robust mapping of MWF and g-ratio.

We found the reduced five parameter two-signal compartment
model to be inadequate. Three-signal compartment models were
able to produce comparable MWF and g-ratio maps. Based
on our findings, it also appears that at least a three-signal
compartment model with seven free parameters is required.
Through compartment modeling, the additional estimation
of compartment frequency shifts may lead to improved
characterization of white matter, in turn allowing estimation of
myelin loss and changes in myelination.
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