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Metabolomics is increasingly used to observe metabolic patterns and disease-specific
metabolic biomarkers. However, serum metabolite analysis of moyamoya disease
(MMD) is rarely reported. We investigated serum metabolites in MMD and compared
them with those of healthy controls (HCs) using a non-targeted gas chromatography–
mass spectrometry (GC–MS) approach to identify metabolic biomarkers associated with
MMD. Forty-one patients with MMD diagnosed by cerebral angiography and 58 HCs
were recruited for our study. Comparative analyses (univariate, multivariate, correlation,
heatmaps, receiver operating characteristi curves) were performed between MMD
patients and HCs. Twenty-five discriminating serum metabolic biomarkers between
MMD patients and HCs were identified. Compared with HCs, MMD patients had higher
levels of phenol, 2-hydroxybutyric acid, L-isoleucine, L-serine, glycerol, pelargonic acid,
L-methionine, myristic acid, pyroglutamic acid, palmitic acid, palmitoleic acid, stearic
acid, octadecanamide, monoglyceride (MG) (16:0/0:0/0:0), and MG (0:0/18:0/0:0), and
lower levels of L-alanine, L-valine, urea, succinic acid, L-phenylalanine, L-threonine,
L-tyrosine, edetic acid, and oleamide. These metabolic biomarkers are involved in
several pathways and are closely associated with the metabolism of amino acids,
lipids, carbohydrates, and carbohydrate translation. A GC–MS-based metabolomics
approach could be useful in the clinical diagnosis of MMD. The identified biomarkers
may be helpful to develop an objective diagnostic method for MMD and improve our
understanding of MMD pathogenesis.

Keywords: moyamoya disease, gas chromatography–mass spectrometry, biomarkers, serum, metabolomics

INTRODUCTION

Moyamoya disease (MMD) is a chronic, rare cerebrovascular-occlusive disease with a poor
prognosis and considerable regional and racial differences (Kuroda and Houkin, 2008). The
occurrence and development of MMD is multifactorial, and the underlying etiological and
pathogenic mechanisms remain largely unclear (Huang et al., 2017). Most studies have focused
on geographical distributions, sex predispositions, clinical manifestations, and age-specific
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characteristics (Okazaki et al., 2019; Sato et al., 2019). Basic
research, including genomic and proteomic approaches, has
been extensively conducted in the past 60 years. However, the
physiological and metabolic mechanisms remain unclear.

China, especially southwest Shandong, has a large number
of affected patients. MMD incidence peaks in children aged 5–
9 years and adults aged 40–50 years with a female/male ratio
of ∼2 and familial occurrence of 15% (Scott and Smith, 2009).
The most common symptoms of MMD are headache, transient
ischemic attack, infarction, and intracerebral hemorrhage. MMD
often results in death, and early diagnosis is important. Cerebral
angiography is the “gold standard” for diagnosis (Lee et al.,
2013). However, cerebral angiography has flaws such as an
inherent risk of anaphylaxis and nephropathy due to the use
of contrast medium. The identification of new biomarkers to
assist physicians in timely MMD diagnosis is needed to decrease
morbidity and mortality.

Metabolomics is a promising approach that can identify
metabolic patterns and disease-specific metabolic markers. This
pivotal tool for biomarker discovery has improved the diagnosis
of psychiatric illnesses (Cai et al., 2012), atherosclerosis (Chen
et al., 2015), coronary artery disease (Turer et al., 2009), cerebral
infarctions (Jung et al., 2011), and intracranial tumors (Pandey
et al., 2017). However, information on metabolite profiles for
MMD is limited. Only one metabolomic study on MMD patients
has been conducted, and it focused on identifying metabolites
in cerebrospinal fluid (CSF) using nuclear magnetic resonance
(NMR) spectroscopy (Jeon et al., 2015). Therefore, more
metabolomics studies are urgently needed to better understand
the physiological and metabolic mechanisms involved
in MMD.

We sought to elucidate the metabolic mechanisms underlying
the occurrence and development of MMD. A GC–MS-based
metabolomics approach coupled with uni- and multivariate
analyses was employed to identify metabolic biomarkers
associated with MMD. These results could help guide the
development of an objective diagnostic method for MMD and
provide insights into MMD pathogenesis.

MATERIALS AND METHODS

Participants
Forty-one patients diagnosed by cerebral angiography as MMD
and 58 HCs treated at the Jining First People’s Hospital,
Jining Medical University between January 2018 and June 2019
were recruited for our study. Patients with MMD are often
accompanied by basic diseases, such as hypertension, diabetes,
and coronary artery disease. In order to make our research more
rigorous, MMD patients with other types of diseases were not
included in our study. In addition, the patients with MMD that
we recruited were hospitalized patients who had a light diet 3 days
before the operation. Similarly, 3 days’ diet of healthy people
was recorded before we recruited to minimize the errors caused
by these factors. Blood samples from all MMD patients were
collected and subjected to centrifugation at 5,000 rpm for 10 min
at room temperature and then stored at−80◦C until analyses.

Materials and Instruments
Heptadecanoic acid (purity: ≥98%; lot no. SLBX4162), as an
internal standard (IS), was from Sigma-Aldrich (St Louis,
MO, United States). Methanol was of chromatographic grade
and purchased from Thermo Fisher Scientific (Waltham, MA,
United States). Water was purchased from Hangzhou Wahaha
Company (Hangzhou, China). Pyridine (lot no. C10486013)
was from Shanghai Macklin Biochemical (Shanghai, China).
O-Methyl hydroxylamine hydrochloride (purity, 98.0%; lot no.
542171) was obtained from J&K Scientific Industries (Ambala,
India). N,O-Bis(trimethylsilyl)trifluoroacetamide with 1% of
trimethylchlorosilane (BSTFA + 1% TMCS) (v/v; lot no.
BCBZ4865) was purchased from Sigma-Aldrich.

Preparation and Derivatization of
Samples for GC–MS
Serum samples were processed according to the following
procedure. First, 350 µl of methanol (containing 100 µg/ml of
IS) was added to 100 µl of serum, vortexed, and centrifuged at
14,000 rpm for 10 min at 4◦C. The supernatant was transferred to
a 2-ml tube and evaporated to dryness at 37◦C under the gentle
flow of nitrogen gas. After the extracts had been dried, 80 µl of
O-methyl hydroxylamine hydrochloride (15 mg/ml in pyridine)
was added and mixed. The solution was incubated for 90 min at
70◦C. Subsequently, 100 µl of BSTFA + 1% TMCS was added to
each sample, followed by incubation for 60 min at 70◦C. Samples
were then detected by GC–MS.

GC–MS
GC–MS was done on a 7890B GC system equipped with a 7000 C
mass spectrometer. Separation was conducted on an HP-5MS
fused-silica capillary column (30 m × 0.25 mm × 0.25 µm) with
high-purity helium as the carrier gas at a constant flowrate of
1.0 ml/min. Each 1-µl aliquot of derivatized solution was run
in split mode (50:1), with helium as the carrier gas and a front
inlet purge flow of 3 ml/min; the gas flowrate was 1 ml/min. The
GC temperature program was set to begin at 60◦C for 4 min,
increased to 300◦C at 8◦C/min, with a final 5-min maintenance
at 300◦C. The temperatures of the injection, transfer line, and ion
source were 280, 250, and 230◦C, respectively. Electron impact
ionization (−70 eV) was used, with an acquisition rate of 20
spectra/s in the MS setting. MS detection was conducted by
electrospray ionization (ESI) in full-scan mode from mass/charge
(m/z) values of 50–800.

In general, 20 µl of each serum sample from MMD and HCs
was obtained and then vortexed and mixed. Thus, this is the
so-called quality control (QC) sample. Fifteen samples and five
QCs were performed for 1 day (one batch), and 15 samples run
randomized while the five QCs were distributed evenly among
the 15 samples. At last, nine samples and five QCs were done.
The peak area and retention time (RT) of the IS (heptadecanoic
acid) were applied to evaluate the stability of the sample injection.

Multivariate Statistical Analyses
GC–MS equipped with Unknowns Analysis and Agilent
MassHunter Quantitative Analysis (for GC–MS) was used to
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process the GC data. This process enabled deconvolution,
alignment, and data reduction to produce a list of m/z and RT
pairs, with the corresponding intensities for all detected peaks
from each data file in the dataset. The resulting table was exported
into ExcelTM (Microsoft, Redmond, WA, United States), and the
normalized peak area percentages were used as the percentage
of corresponding intensities of each peak/total peak area. The
resulting three-dimensional dataset including peak index (RT–
m/z pairs), sample names (observations), and normalized peak
area percentages was imported into SIMCA-P 14.0 (Umetrics,
Umeå, Sweden) for statistical analyses. Center scaling, unit
variance scaling, and pareto scaling are commonly used to
perform the normalization data. In our paper, we adopted the
pareto scaling. Too many missing values will cause difficulties
for downstream analysis. There are several different methods for
this purpose, such as replace by a small values, mean/median,
k-nearest neighbor (KNN), probabilistic principal components
analysis (PPCA), Bayesian PCA (BPCA) method, and singular
value decomposition (SVD) method to impute the missing
values (Kumar et al., 2017; Do et al., 2018). In our work,
the default method replaces all the missing values with small
values (the half of the minimum positive values in the original
data) assuming to be the detection limit, and the data were
not transformed.

A modified multicriteria assessment strategy was used to
select variables. The assessment was used to reduce the number
of variables and explore those that were most sensitive to
interventions. The statistically significant threshold of variable
importance in projection (VIP) values from the orthogonal
partial least squares discriminant analysis (OPLS-DA) model was
>1.0, and two-tailed Student’s t test differences of p < 0.05 were
considered significant. “Fold change” was defined as the average
mass response (area) ratio between two groups. Analyses of
correlations, heatmaps, receiver operating characteristic (ROC)
curves, and pathways were done using MetaboAnalyst 4.0.1 All
results were shown in the “metabolome” view.

RESULTS

Basic Participant Characteristics
Overall, 41 patients with MMD and 58 HCs were included in the
analyses. Detailed information on the demographical and clinical
characteristics of these participants is summarized in Table 1.

MMD patients were not significantly different from HCs with
regard to age, sex, body mass index (BMI), tobacco smoking, or
alcohol consumption (all p > 0.05). The types of MMD onset
were cerebral infarction (39 cases) and hemorrhage (2 cases).
In addition, there were 34 cases of bilateral MMD and 7 cases
of unilateral MMD.

Metabolomics Analyses
Representative GC–MS total ion current (TIC) chromatograms
of the QC serum sample showed strong signals (Figure 1). In
addition, the relative standard deviation (RSD) in intra- and

1www.metaboanalyst.ca/

TABLE 1 | Clinical characteristics of the participants.

No. of patients(%)

MMD HCs p value

Variables n = 41 n = 58

Age Mean ± SD,
age (years)

42.94 ± 14.18 41.76 ± 11.06 0.6430

Sex, n(%) 0.9605

Male 21(51.2) 30(51.7)

Female 20(48.8) 28(48.3)

BMI Mean ± SD,
BMI (kg/m2)

23.48 ± 2.81 24.59 ± 3.91 0.1030

Smoking, n(%) Smoking (%) 11(26.8) 15(25.9) 0.9142

Drinking, n (%) Drinking (%) 8(19.5) 11(19.0) 0.9458

Type of onset,
n (%)

NA

Infarction 39(95.1)

Hemorrhage 2(4.9)

Pathogenic
site, n(%)

NA

Bilateral 34(82.9)

Unilateral 7(17.1)

interday of the peak area and retention time (RT) of the IS were
<15%, indicating that the analytical instrument operated within
acceptable standard variations.

After analyses of unknown compounds and quantitative
analyses, 114 metabolites were identified in each serum sample
and then used in the subsequent multivariate analysis. The PCA
scores plot for HCs and MMD patients were R2X = 0.816,
Q2 = 0.301. The pairwise PLS-DA score plots also suggested
that the MMD patients were statistically different from the
HCs: R2X = 0.579, R2Y = 0.836, and Q2 = 0.603. OPLS-DA
analyses were carried out to maximize discrimination. The results
suggested that this model was efficient and clearly separated
the MMD patients and HCs (R2X = 0.823, R2Y = 0.913, and
Q2 = 0.783). Values approaching 1.0 indicate a stable model with
predictive reliability. Additionally, a permutation test with 200
iterations verified that the constructed OPLS-DA model was valid
and not overfitted, as the original R2 and Q2 values to the right
were significantly higher than the corresponding permutated
values to the left: R2 = 0.289, Q2 = −0.556. They are shown
in Figure 2.

Identification of Potential Biomarkers
Twenty-four metabolites to distinguish between the HCs and
MMD patients were identified (VIP > 1, p < 0.05) (Table 2).
Compared with HCs, patients with MMD were characterized
by higher levels of phenol, 2-hydroxybutyric acid, L-isoleucine,
L-serine, glycerol, pelargonic acid, L-methionine, pyroglutamic
acid, myristic acid, palmitoleic acid, palmitic acid, stearic
acid, octadecanamide, monoglyceride (MG) (16:0/0:0/0:0),
and MG (0:0/18:0/0:0), as well as lower levels of L-alanine,
L-valine, urea, succinic acid, L-threonine, L-phenylalanine,
L-tyrosine, edetic acid, and oleamide. Their relationships
were revealed by correlation analyses (Figure 3A). To better
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FIGURE 1 | A representative gas chromatography–mass spectrometry (GC–MS) total ion chromatogram (TIC) of the quality control (QC) serum sample.

FIGURE 2 | Multivariate statistical analysis between the control group and moyamoya disease (MMD) group. (A) Principal components analysis (PCA) scores plot;
(B) partial least squares discriminant analysis (PLS-DA) scores plot; (C) orthogonal PLS-DA (OPLS-DA) scores plot; and (D) statistical validation of the OPLS-DA
model through 200 × permutation testing.

understand the metabolic differences between patients with
MMD and HCs, data on identified metabolites were analyzed
using clustering heatmaps. Even though sample clusters

overlapped slightly, as shown in Figure 3B, most samples clearly
grouped into two differentiated clusters, in agreement with
OPLS analyses.
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TABLE 2 | List of assigned statistically significant metabolites between moyamoya disease (MMD) and healthy control (HC) group.

Metabolites HMDB RT (min) VIP p value FDR Fold change

Phenol HMDB0000228 9.144 1.144 8.00E-07 2.04E-06 1.601

L-alanine HMDB0000161 10.344 1.414 2.27E-10 1.27E-09 0.235

2-hydroxybutyric acid HMDB0000008 10.882 1.374 9.39E-10 4.78E-09 1.885

L-isoleucine HMDB0000172 11.765 1.221 1.05E-07 3.45E-07 2.162

L-valine HMDB0000883 12.632 1.470 2.80E-11 2.24E-10 0.127

Urea HMDB0000294 13.030 1.432 1.17E-10 7.31E-10 0.382

L-serine HMDB0000187 13.372 1.118 1.54E-06 3.76E-06 1.775

Glycerol HMDB0000131 13.779 1.658 5.71E-15 1.60E-13 1.811

Succinic acid HMDB0000254 14.359 1.158 5.63E-07 1.50E-06 0.666

Pelargonic acid HMDB0000847 15.090 1.092 2.85E-06 6.64E-06 1.991

L-threonine HMDB0000167 14.059 1.303 9.39E-09 4.04E-08 0.086

L-methionine HMDB0000696 15.945 1.207 1.56E-07 4.61E-07 1.845

Pyroglutamic acid HMDB0000267 17.317 1.678 1.96E-15 1.10E-13 4.578

L-phenylalanine HMDB0000159 19.372 1.465 3.45E-11 2.41E-10 0.141

Myristic acid HMDB0000806 22.216 1.041 9.07E-06 2.03E-05 1.314

L-tyrosine HMDB0000158 22.811 1.476 2.25E-11 2.10E-10 0.228

Palmitoleic acid HMDB0003229 26.512 1.165 4.67E-07 1.31E-06 1.336

Palmitic acid HMDB0000220 24.630 1.507 6.21E-12 6.96E-11 1.437

Stearic acid HMDB0000827 26.837 1.606 7.63E-14 1.42E-12 1.510

Edetic Acid HMDB0015109 28.943 1.207 1.55E-07 4.61E-07 0.413

Octadecanamide HMDB0034146 28.331 1.523 3.22E-12 4.50E-11 3.034

Oleamide HMDB0002117 28.624 1.240 6.11E-08 2.28E-07 0.333

MG(16:0/0:0/0:0) HMDB0011564 30.402 1.257 3.73E-08 1.49E-07 1.424

MG(0:0/18:0/0:0) HMDB0011535 32.140 1.307 8.37E-09 3.91E-08 1.457

FDR, false discovery rate; fold change, MDD/healthy; RT, retention time; VIP, variable influence on projection.

ROC Curve Analyses
Further selection of potential indicator was performed by ROC
analysis. Using different models, the value of the sensitivity and
the area under the ROC curve (AUC) of these biomarker panels
were both ≥0.8 (Figure 4A). An area of 1 represents a “perfect”
test, so we obtained “good” efficiency for a clinical diagnosis for
this set of metabolite biomarkers.

Analyses of Metabolic Pathways
We identified several pathways that may be significant (raw
p < 0.5, impact >0) (Table 3). Nine pathways had the
greatest significance: aminoacyl-tRNA biosynthesis: valine,
leucine, and isoleucine biosynthesis; propanoate metabolism;
phenylalanine metabolism; cysteine and methionine metabolism;
alanine, aspartate, and glutamate metabolism; phenylalanine,
tyrosine, and tryptophan biosynthesis; tyrosine metabolism; and
glycerolipid metabolism (Figure 4B). The detailed results of the
pathway analyses are shown in Table 3, with a summary shown
in Figure 5.

DISCUSSION

Moyamoya disease is a multifactorial disorder that likely presents
unique pathophysiological profiles in each individual. Genetics,
proteomics, and imaging have been used to discover markers for
MMD (Araki et al., 2010; Maruwaka et al., 2015). However, there
is no existing marker that could aid the diagnosis of MMD.

GC–MS-based metabolomics was applied to profile metabolic
biomarkers in the serum of 41 MMD patients and 58 HCs. Our
study is the first to identify serum biomarkers in MMD patients.
Novel biomarkers may assist researchers in understanding MMD
pathogenesis and provide new therapeutic strategies.

Owing to high separation efficiency, sensitivity, specificity, and
throughput, as well as the development of various derivatization
technologies, GC–MS has become important for the application
of metabolomics. However, a single technology that can cover
all metabolites in biological systems is lacking, and each
technology has its own technical advantages and disadvantages.
We discovered more metabolites than that in an NMR study
of CSF samples of MMD patients (Jeon et al., 2015). There
are several reasons for this diffidence, such as different matrix,
different controls, and different instrument analysis. Twenty-
four discriminating metabolites between HCs and MMD patients
were identified using GC–MS analysis and used to establish
a biomarker panel using logistic regression. The AUC was
≥0.8 for all samples (Figure 4A), indicating a “good” classifier
of MMD patients and HCs. Furthermore, the mechanism of
MMD could be obtained by assessing the pathways underlying
these biomarkers.

As seen in Figure 3B, these discriminating metabolites were
involved in nine significantly different pathways related to the
metabolism of amino acids, lipids, carbohydrates, and translation
of carbohydrates.

Overall, 20% of the human body is composed of amino acids
and their metabolites that are basic substrates and regulators in
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FIGURE 3 | (A) Correlation analysis of the differential metabolites in moyamoya disease (MMD) patients and healthy controls (HCs). (B) Heat map for identified
metabolites in MMD patients and HCs. The color of each section is proportional to the significance of change of metabolites (red, upregulated; blue, downregulated).
Rows, samples; columns, metabolites.
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FIGURE 4 | (A) Receiver operating characteristic (ROC) curves were for the sets of biomarker metabolites. (B) Summary of pathway analysis with MetaboAnalyst
4.0. (a) Aminoacyl-tRNA biosynthesis; (b) valine, leucine, and isoleucine biosynthesis; (c) propanoate metabolism; (d) phenylalanine metabolism; (e) cysteine and
methionine metabolism; (f) alanine, aspartate, and glutamate metabolism; (g) phenylalanine, tyrosine, and tryptophan biosynthesis; (h) tyrosine metabolism; and (i)
glycerolipid metabolism.

TABLE 3 | Results from pathway analysis from MetaboAnalyst 4.0.

Pathway name Total Expected Hits Raw p Holm adjust FDR Impact

Aminoacyl-tRNA biosynthesis 75 0.72 8 2.05E-07 1.64E-05 1.64E-05 5.63E-02

Valine, leucine, and isoleucine biosynthesis 27 0.26 3 1.92E-03 1.50E-01 5.12E-02 2.65E-02

Propanoate metabolism 35 0.33 3 4.09E-03 3.15E-01 8.18E-02 1.34E-03

Phenylalanine metabolism 45 0.43 3 8.33E-03 6.33E-01 1.33E-01 1.19E-01

Cysteine and methionine metabolism 56 0.53 3 1.52E-02 1.00E + 00 2.03E-01 5.00E-02

Alanine, aspartate, and glutamate metabolism 24 0.23 2 2.12E-02 1.00E + 00 2.43E-01 5.70E-02

Phenylalanine, tyrosine and tryptophan biosynthesis 27 0.26 2 2.65E-02 1.00E + 00 2.65E-01 8.00E-03

Tyrosine metabolism 76 0.73 3 3.40E-02 1.00E + 00 2.91E-01 4.72E-02

Glycerolipid metabolism 32 0.31 2 3.64E-02 1.00E + 00 2.91E-01 2.28E-01

The Raw p is the original p value calculated from the enrichment analysis; the Holm p is the p value adjusted by Holm–Bonferroni method; the FDR p is the p value
adjusted using false discovery rate.

many metabolic pathways. Amino acid levels in patients with
various diseases often differ from those of healthy individuals.
Alterations in plasma concentrations of amino acids have been
reported in liver fibrosis, non-small-cell lung cancer, aortic
dissection, first-episode psychosis, and type-2 diabetes mellitus
in patients with coronary artery disease (Yang et al., 2013; Leppik
et al., 2018).

We found that levels of a panel of amino acids (L-alanine,
L-isoleucine, L-valine, L-serine, L-threonine, L-methionine, L-
phenylalanine, and L-tyrosine) were significantly different in
MMD patients relative to HCs. Levels of L-alanine, L-valine,
L-threonine, L-phenylalanine, and L-tyrosine were decreased in
MMD patients, whereas L-isoleucine, L-serine, and L-methionine
levels were increased. Such alterations of several amino acids
suggest that amino acid metabolism is disturbed in MMD.

The synthesis of L-alanine is derived from pyruvate by alanine
aminotransferase directly involving in gluconeogenesis and the
alanine–glucose cycle and regulates glucose metabolism (Chen
et al., 2017). Like gamma-aminobutyric acid, taurine, and glycine,
L-alanine is an inhibitory neurotransmitter in the brain and is
involved in lymphocyte reproduction and immunity. L-Alanine
is disturbed in serum of MMD patients, but the association
between L-alanine and MMD has not been investigated. Our
study did not elucidate how altered levels of L-alanine affect
MMD development; more studies are needed. L-Isoleucine and
L-valine are branched chain amino acids (BCCAs). They are
critical to human life and are particularly involved in stress,
energy generation, and muscle metabolism (Zheng et al., 2017;
Zhenyukh et al., 2017). The biosynthesis of L-isoleucine is
initiated by the L-threonine deaminase reaction, whereas the

Frontiers in Neuroscience | www.frontiersin.org 7 April 2020 | Volume 14 | Article 308

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00308 April 19, 2020 Time: 12:19 # 8

Geng et al. Metabolomic Study on Moyamoya Disease

FIGURE 5 | Schematic diagram of the proposed metabolic pathways in moyamoya disease (MMD) compared to healthy controls (HCs). Red and blue represent up-
and downregulated metabolites, respectively.

pathway toward L-valine starts from pyruvate. Acetohydroxyacid
synthase, ketol acid reductoisomerase (KARI), dihydroxyacid
dehydratase (DHAD), and branched chain amino transferase
(BCAT) were the four enzymes operating in L-isoleucine and
L-valine biosynthesis (Galili et al., 2016). Abnormal changes in
L-isoleucine and L-valine levels have been documented in first-
episode psychosis (Leppik et al., 2018). Our study suggested that
abnormal changes in L-isoleucine and L-valine levels are also
associated with MMD.

Like glutamate, aspartate, and glycine, L-serine can act as
an excitatory and inhibitory neurotransmitter (Yu et al., 2017;
Martin et al., 2018). As seen in Figure 5, phosphoenolpyruvate
(PEP) is one of the precursors to the shikimate pathway;
in addition, PEP is also derived from oxaloacetate by
phosphoenolpyruvate carboxykinase (PEPCK) in glycolysis; thus,
they are linked to each other. L-Serine may be derived from the
biosynthesis of the glycolytic intermediate 3-phosphoglycerate,
which participates in cell proliferation and is necessary for
specific functions in the central nervous system. Altered levels
of L-serine in patients with psychiatric disorders underscore the
amino acid’s importance in brain development and function.
Thus, L-serine level alterations may be involved in MMD
pathogenesis by affecting brain development and function.
L-Threonine is an essential amino acid in humans, and severe
deficiency causes neurological dysfunction (Liu et al., 2010). In
our study, L-threonine level was lower in serum of MMD patients

compared to HCs, indicating that L-threonine was altered in
serum of MMD patients. Alterations in the ratio of L-tyrosine
and L-phenylalanine levels could be a sign of compromised
function of the dopaminergic system, which may be partly
associated with MMD pathogenesis.

Collectively, our findings indicate that altered levels of amino
acids could be linked to MMD. The precise mechanism by which
amino acid levels influence the genesis and development of
MMD should be investigated further. Pyroglutamate is converted
to urea over glutamate and allantoin reactions; additionally, L-
arginine could be converted to urea via urea cycle. Altered levels
of pyroglutamate and urea were found in MMD. A panel of
fatty acids (succinic acid, myristic acid, palmitoleic acid, palmitic
acid, stearic acid, oleamide, octadecanamide, and pelargonic acid)
could be used to distinguish between MMD patients and HCs.
Succinic acid is an intermediate of the tricarboxylic acid (TCA)
cycle (Bechthold et al., 2010; Lauritzen et al., 2014). Levels
of succinic acid were significantly decreased in MMD patients
compared with HCs. Lower levels of TCA-cycle intermediates
may indicate alterations in the cycle. The TCA cycle is the core
of cellular respiratory machinery and produces energy to power
manufacture of compounds needed to defend against oxidative
stress. Oxidation of fatty acids in mitochondria is responsible for
approximately half of the total amount of adenosine triphosphate
generated. Fatty acids also serve as the “building blocks” of
cellular membranes after their esterification into phospholipids
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and are involved in signal transduction. Altered levels of fatty
acids would lead to decreased energy production. However,
whether such lower energy levels are associated with an increased
risk of MMD is unknown.

The OPLS-DA method was used to analyze metabolic features
and maximize discrimination between classes of compounds
(Westerhuis et al., 2010). This approach reduced the effects of
variability of non-relevant metabolites and helped identify serum
metabolites contributing to differences between MMD patients
and HCs. The reliability of OPLS-DA results was confirmed by
correlation analyses and heatmaps.

Our study had two main limitations. First, MMD is an
uncommon disease. We recruited 41 MMD patients, which
may have introduced selection bias because of interindividual
differences. Second, we only used a metabolomics approach,
and the possibility that single-omic data restricted interpretation
of our results cannot be excluded. Proteomics and genomics
analyses are needed to confirm our findings.

In summary, we used a GC–MS platform to characterize the
metabolic profiles of serum from MMD patients. Our analysis
revealed important candidate metabolic biomarkers for MMD.
Verification and validation studies with larger independent
samples are necessary to demonstrate the utility of these
metabolites as potential disease markers and to elucidate the
pathophysiological mechanisms underlying MMD.
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