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Introduction: Metabolic brain network analysis based on graph theory using FDG PET
imaging is potentially useful for investigating brain activity alternation due to metabolism
changes in different stages of Alzheimer’s disease (AD). Most studies on metabolic
network construction have been based on group data. Here a novel approach in building
an individual metabolic network was proposed to investigate individual metabolic
network abnormalities.

Method: First, a weighting matrix was calculated based on the interregional effect
size difference of mean uptake between a single subject and average normal controls
(NCs). Then the weighting matrix for a single subject was multiplied by a group-based
connectivity matrix from an NC cohort. To study the performance of the proposed
individual metabolic network, inter- and intra-hemispheric connectivity patterns in the
groups of NC, sMCI (stable mild cognitive impairment), pMCI (progressive mild cognitive
impairment), and AD using the proposed individual metabolic network were constructed
and compared with those from the group-based results. The network parameters
of global efficiency and clustering coefficient and the network density score (NDS)
in the default-mode network (DMN) of generated individual metabolic networks were
estimated and compared among the disease groups in AD.

Results: Our results show that the intra- and inter-hemispheric connectivity patterns
estimated from our individual metabolic network are similar to those from the group-
based method. In particular, the key patterns of occipital-parietal and occipital-
temporal inter-regional connectivity deficits detected in the groupwise network study
for differentiating different disease groups in AD were also found in the individual
network. A reduction trend was observed for network parameters of global efficiency
and clustering coefficient, and also for the NDS from NC, sMCI, pMCI, and AD. There
was no significant difference between NC and sMCI for all network parameters.

Conclusion: We proposed a novel method in constructing the individual metabolic
network using a single-subject FDG PET image and a group-based NC connectivity
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matrix. The result has shown the effectiveness and feasibility of the proposed individual
metabolic network in differentiating disease groups in AD. Future studies should
include investigation of inter-individual variability and the correlation of individual network
features to disease severities and clinical performance.

Keywords: individual metabolic network, FDG-PET, Alzheimer’s disease, progressive MCI, stable MCI

INTRODUCTION

Alzheimer’s disease (AD) is a major neurodegenerative disease
with clinical characteristics of memory and cognitive decline due
to structural and functional changes in the brain. Early detection
of AD, even before the transitional stage of mild cognitive
impairment (MCI), is necessary and important for potential
disease prevention and treatment. To capture the structural
and functional changes in the brain due to disease, various
tracers in positron emission tomography (PET) were investigated
for imaging neuropathological changes using amyloid and
tau PET imaging (Iturria-Medina et al., 2014; Oxtoby et al.,
2017; Hanseeuw et al., 2019) and for imaging metabolism
(Kuang et al., 2019).

In addition to the imaging quantitation, brain network
analysis based on graph theory using neuroimaging methods
provides network information about brain organization and
has recently become a potentially useful diagnostic tool for
investigating functional or structural connectivity changes in
neurodegeneration (Raj et al., 2015; Garbarino and Lorenzi, 2019;
Garbarino et al., 2019). In particular, metabolic network analysis
using FDG PET provides functional interregional connectivity
information and has been reported to offer differential diagnosis
power for different disease groups in AD (Seeley et al., 2009;
Sanz-Arigita et al., 2010; Huang et al., 2018). However, unlike
fMRI (Zhou et al., 2012), which includes time-series information,
metabolic networks derived from static FDG PET scans are
usually constructed from group data (He et al., 2008; Seo et al.,
2013; Duan et al., 2017; Huang et al., 2018), and only group-
level network properties can be studied (Kuang et al., 2019).
However, to investigate individual brain abnormalities and inter-
subject variability, an individual brain network is necessary for
single subjects. To solve this problem, a few methods for deriving
individual brain networks have been proposed and most of them
involved morphological network construction using T1-weighted
MR images based on regional distance measurements (Raj et al.,
2010; Zhou et al., 2011; Tijms et al., 2012; Kong et al., 2015; Li
et al., 2017), regional morphological distributions (Kong et al.,
2015), network diffusion models (Raj et al., 2012), or multi-
voxel nodes (Tijms et al., 2012). Only a few approaches for
constructing individual metabolic networks have been proposed
recently based on multi-voxel cubes (Yao et al., 2016), multimodal
connectivity (Iturria-Medina et al., 2018), or regional intensity
relations (Li et al., 2018).

In this study, we proposed a novel approach for constructing
individual metabolic networks using a static FDG PET image for
single subjects. The method is based on calculating a weighting
matrix from the interregional effect size (ES) difference between
a single subject and average normal controls (NCs), and then

imposing the weighting matrix on a group-based connectivity
matrix of a NC cohort. To study the performance of the
proposed method, inter- and intra-hemispheric connectivity
patterns in groups of NC, stable mild cognitive impairment
(sMCI), progressive mild cognitive impairment (pMCI), and
AD patients were constructed using the proposed individual
metabolic network and compared with those from the group-
based results. In addition, to illustrate the potential application,
the network parameters, including the small-world network
properties of network efficiency, clustering coefficient, gamma,
and lambda in an individual network, and the network density
score (NDS) of each generated network in the default-mode
network (DMN) were calculated and compared among the
AD disease groups.

MATERIALS AND METHODS

Subjects
Data were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database1. The ADNI was launched in 2003
as a public–private partnership with the primary goal of
testing whether serial magnetic resonance imaging (MRI), PET,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
MCI and early AD. ADNI (ADNI ClinicalTrials.gov identifier:
NCT00106899) is the result of the efforts of many coinvestigators
from a broad range of academic institutions and private
corporations, with subjects recruited from over 50 sites across
the United States and Canada. Details of the ADNI-1 and ADNI-
2 protocol, timelines, study procedures, and biomarkers can be
found in the ADNI-1 and ADNI-2 procedures manual2. For
up-to-date information, see www.adni-info.org.

To select age-matched subjects with significant clinical
performance in different disease groups, PET data of 100 subjects
consisting of 39 women and 61 men, 45 sMCI and 55 pMCI, and
100 AD subjects were included in this study. The demographic
data was listed in Table 1. The definition of sMCI is for subjects
with stable diagnosis of MCI at least for 36 months and pMCI
if progression to AD within 12 months after baseline but no
reversion to MCI or NC later.

All image processing was performed using PMOD image
analysis software (version 3.7; PMOD Technologies Ltd, Zurich,
Switzerland). PET image was first spatially normalized into the
Montreal Neurological Institute (MNI) space based on the FDG-
template from the PMOD. Regional SUV ratio (SUVR; standard

1adni.loni.usc.edu
2http://www.adni-info.org/
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TABLE 1 | Summary of subject information.

Variable Mean (±SD)

NC sMCI pMCI AD

No. subjects 100 45 55 100

Gender (male/female) 61/39 32/13 34/21 58/42

Age (years) 75.6 (±4.3) 77.1 (±7) 75.4 (±6.4) 76 (±6.7)

Education (years) 15.1 (±3.2) 14.8 (±3.3) 15.8 (±2.9) 15.5 (±3.1)

MMSE 29.1 (±0.9) 27 (±4.6) 26 (±2.7) 21.9 (±4)

Global CDR 0.01 (±0.1) 0.47 (±0.1) 0.51 (±0.1) 0.93 (±0.5)

Group demographics and clinical data upon 6-month follow-up.

uptake value ratio) was calculated by using the whole cerebellum
as the reference region (Hsiao et al., 2013). Finally, each subject’s
regional SUVR for each AAL structure was extracted to construct
the SUVR data matrix with a size of 1 × N, where “N” is the
number of AAL structures including 90 regions (Jack et al., 2008).
More details about the data processing information can be found
in Huang et al. (2018). The details about the PET FDG imaging
protocols can be obtained from the ADNI website3.

Individual Metabolic Brain Network
The group-based metabolic network represents the average
metabolic connectivity within a group (Huang et al., 2018), but
loses the individual network information. In order to solve this
problem, here we derived an individual metabolic network based
on the ES difference of regional SUVR between a single subject
and a NC group. The procedure is described below.

An ES is to measure the amount of association between two
variables or differences between two groups in an experiment
(Wilkinson, 1999; Nakagawa and Cuthill, 2007; Ellis, 2010; Kelley
and Preacher, 2012). For example, Cohen’s d is defined as the
difference between two group means divided by the standard
deviation of the data as d = x̄1−x̄2

s , where s is the pooled standard
deviation (Brand et al., 2011).

Here, to derive the individual network, we first modified a
treatment effect measure from an independent-group pretest-
posttest design (Becker, 1988; Morris and DeShon, 2002; Kadel
and Kip, 2012) to calculate the regional difference between the
single-subject SUVR deviation from the mean SUVR value of
normal subjects in two regions. Let xi and xj be regional SUVRs
for regions i and j from one subject, X̄NC,i and X̄NC,j be the
mean regional SUVR of the normal group, and si and sj be the
corresponding standard deviations of the regional SUVRs. Then,
the ES difference of the SUVR deviation between the i-th and j-th
regions from corresponding regions in the normal group can be
calculated as

ES
(
i, j
)
=

xi − X̄NC,i

si
−

xj − X̄NC,j

sj
. (1)

For calculating the ES in the dependent paired group, Cohen
(1988) suggested using the following pooled standard deviation,

sp(i, j) =

√
s2
i+s2

j
2 . Using the pooled standard deviation and taking

3www.loni.ucla.edu/ADNI

the absolute value of the difference, the corresponding ES
difference between regions i and j in Eq.1 can be then modified as

ESD(i, j) =

∣∣(xi − X̄NC,i)− (xj − X̄NC,j)
∣∣

sp
(
i, j
) . (2)

The ESD (i, j) can be calculated for all pairs of ROI (i, j) to obtain a
final ESD matrix (90× 90). By viewing ESD (i, j) as z score (Kim,
2015) and applying simple Fisher transformation (Fisher, 1921)
of z = 1

2 ln
(

1+R
1−R

)
, one can obtain

R =
exp (2z)− 1
exp (2z)+ 1

,

where R is the correlation coefficient. By applying the Fisher
transformation, the correlation coefficient value R (i, j) between
i-th and j-th regions can then be derived as

R
(
i, j
)
=

exp
(
2× ESD

(
i, j
))
− 1

exp
(
2× ESD

(
i, j
))
+ 1

, (3)

where 0 < R (i, j) < 1. A stronger difference of SUVR variation
between two regions infers a higher ESD (i, j) value, which
leads to a smaller single-subject regional correlation coefficient.
However, the transformation formula (Eq. 3) will generate a
higher value for R (i, j). Thus, to adjust this, we then applied the
1-R (i, j) as a weighting factor W (i, j) for the regional correlation
coefficient between the single subject and the NC group as W (i,
j) = 1-R (i, j). The final individual correlation matrix for a single
subject with element M (i, j) between regions i and j was then
calculated as

M(i, j) =W
(
i, j
)
�MNC(i, j) (4)

where MNC (i, j) is the group-based correlation coefficient
between the i-th and j-th regions of the NC group, and W
(i, j) = 1−R (i, j). The final individual correlation coefficient
matrix (i.e., connectivity matrix) for a single subject can then be
computed as W

⊙
MNC, where MNC is the group-based regional

correlation coefficient matrix of the NC group, W is the weighting
matrix, and

⊙
indicates an element-by-element multiplication.

As shown in Figure 1, the final processing workflow of the
individual metabolic network construction first calculates the
individual weight matrix (W) and regional SUVR correlation
coefficient matrix (MNC) from the normal group, and then
multiplies both W and MNC to obtain the final individual
correlation coefficient matrix M. The processing steps were
summarized as follows:

0. Perform spatial normalization and SUVR calculation for
all FDG PET images.

1. Create correlation coefficient matrix of the NC group
(MNC).

2. Calculate the mean (X̄NC) and standard deviation (s) SUVR
images in the NC group.

3. For given FDG image x from a subject, calculate the ES [ESD
(i, j)] in Eq. 2.

4. Apply Fisher transformation to obtain correlation
coefficient R in Eq. 3.
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FIGURE 1 | Schematic workflow for calculating an individual matrix of correlation coefficients by first calculating the individual weighting matrix (W) and correlation
coefficient matrix (MNC) from the normal group, and then multiplying both W and MNC to obtain the final individual correlation coefficient matrix.

5. Calculate the weighting matrix W = 1−R.
6. Multiply W by MNC in Eq. 4 to obtain the final individual

correlation coefficient matrix M.

Small-Worldness Analysis
To evaluate the network efficiency of our proposed individual
brain network approach, small-world metrics were calculated
(Latora and Marchiori, 2001; Achard and Bullmore, 2007; Wu
et al., 2013). Here, we first measured the small-world parameters
of the global efficiency, clustering coefficient, lambda, and gamma
to evaluate the performance of individual brain networks for NC,
pMCI, sMCI, and AD subjects.

The clustering coefficient is applied to measure the degree of
connectivity among adjacent nodes. For any node, it is calculated
as the number of edges that exist between its nearest neighbors.
For a network with N nodes, the mean clustering coefficient C
of the network is the average of the clustering coefficient over
all nodes

C =
1
N

∑
i

Ei

Di (Di − 1) /2
, (5)

where Di is the number of all possible edges (neighbors) linking
to the node i and Ei is the number of edges with direct links to
node i.

Global efficiency (Eg) is a measure of the structure of a
network (Wu et al., 2013) and can be computed as

Eg =
1

N(N − 1)

∑
i6=j

1
dij

, (6)

where dij is the shortest path length between nodes i and j.

A network could be defined as small-world network when
gamma � 1, lambda∼1, and sigma > 1. The two small-
world characteristics for lambda and gamma are defined as
λ = L/Lr and γ = C/Cr separately, where Lr and Cr indicates
the clustering coefficient and the path length of the matched
random networks. To achieve statistical significance, random
networks were repeated for the network performance evaluation
in this study 200 times (Chung et al., 2016; Chen et al.,
2018; Yao et al., 2018). The measurement for lambda and
gamma was conducted using the open toolkit GRETNA4 (Wang
et al., 2015) and the Brain Connectivity Toolbox (BCT5)
(Rubinov and Sporns, 2010).

Network Density Scores
To investigate the performance of the proposed individual
networks in different groups, the NDS of each generated
network was calculated and compared. Here we only
consider the subnetwork of the default mode network
(DMN). For a given subject, the subnetwork was constructed
from the subject’s binary matrix for a specified threshold
(Qin et al., 2015).

The NDS was defined as the number of intra-network edges
divided by all possible connections as

CX =
1

nX (nX − 1) /2

∑
i, j=1:nX

ci, j, (7)

4https://www.nitrc.org/projects/gretna/
5http://www.nitrc.org/projects/bct/
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where nX is the number of nodes within an intra-network X and
ci,j is the binary connectivity value between the i-th and j-th ROI
after thresholding. For each pair of subnetworks between X and
Y, the inter-network connectivity score was defined as

CX, Y =
1

nXnY

∑
i∈X, j∈Y

ci, j (8)

Statistical Analysis
ANOVA with post hoc Student’s t-test was applied to compare the
network performance among the four groups, where the post hoc
test (multiple comparisons) was used to identify the significant
pair(s) and a significant p-value of the post hoc test indicates
at least one pair with statistically significant mean difference.
All the statistical analyses were performed by using the SPSS
package (SPSS Statistics for Windows, version 17.0, 2008), and
significance testing of p < 0.05 and p < 0.01 was applied.

RESULTS

Inter-Hemispheric Correlation
Coefficients Matrices
To build a connectivity network, a connectivity matrix is usually
converted to a binary matrix by a threshold (Huang et al., 2018),
where the links above the threshold are represented by one
(presence of edge) and those below it are represented by zero

(absence of edge). Here, to reduce the complexity of visualizing
the connectivity network, the lowest threshold value for the
connectivity map in the NC containing 90 nodes was selected for
all groups in this study, and this led to the threshold of 0.4354,
which was applied for all subsequent processing. Note that all the
group-level analysis result was performed based on our previous
work (Huang et al., 2018).

To compare with the conventional group-based connectivity
matrix, Figure 2 displays the group-based conventional inter-
hemispheric connectivity matrices of the correlation coefficients
from the NC, sMCI, pMCI, and AD groups (first row)
(Huang et al., 2018), the average individual inter-hemispheric
connectivity matrices obtained by the proposed method from
the NC, sMCI, pMCI, and AD groups (second row), and
the anecdotal single-subject connectivity matrices from single
NC, sMCI, pMCI, and AD subjects (third row). From the
group-based connectivity matrices in the first row, the main
connection differences among the groups are in the temporal,
parietal, and occipital lobes. Similar results can be observed in
the average single-subject connectivity matrices in the second
row, and also the anecdotal single-subject matrices in the third
row for NC, sMCI, pMCI, and AD, respectively. From all
the matrices, the connectivity matrix for NC displays more
connections with statistical significance as compared to AD,
where AD shows a more obvious decrease in connections
between the frontal lobe and other regions. The connectivity
patterns are similar for both sMCI and NC, while the

FIGURE 2 | Matrices of correlation coefficients between the right and left hemisphere (ordinate) brain regions. The inter-hemispheric connectivity is illustrated from
the matrices of correlation coefficients between the right hemisphere (abscissa) and left hemisphere (ordinate) brain regions for NC, sMCI, pMCI, and AD, as
obtained via the conventional group-based method (first row), average individual connectivity matrices (second row), and anecdotal single-subject connectivity
matrices (third row) with the proposed method. The last column illustrates the plots for number of edges (connectivity) vs. varying thresholds at each disease group
for the corresponding matrix of correlation coefficients.
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FIGURE 3 | The axial view of mean individual inter-hemispheric brain connectivity graphs of NC, sMCI, pMCI, and AD constructed using the proposed individual
network approach. The inter-hemispheric connectivity graphs were visualized for four groups and obtained by thresholding the average correlation coefficient matrix
from individuals of each group using the threshold of 0.4354, since this value offers the highest correlation coefficient with all connections (90 nodes) in NC. The
inter-hemispheric connections are indicated by black lines and nodes are represented by different colors (deep blue for frontal; light blue for temporal; green for
parietal; red for occipital; pink for thalamus, pallidum, caudate, putamen, amygdala; yellow for hippocampus; deep yellow for other regions).

pattern of connectivity reduction in pMCI falls between
those of sMCI and AD.

Moreover, the last column in each row illustrates the plots
for number of edges (connectivity) vs. varying thresholds at
each disease group for the corresponding matrix of correlation
coefficients from each row. Under the same threshold, NC
displays more connections as compared to other groups
and is followed by sMCI and pMCI, while AD shows
significant reduction of connectivity for both group-level and
individual networks.

Inter-Hemispheric Connectivity Network
Figure 3 illustrates the axial view of the average individual inter-
hemispheric connectivity network built from a binary matrix as
measured from the same correlation coefficient threshold for all
four groups, and obtained from the connectivity matrices in the
second row of Figure 2. The connections are displayed by black
lines and nodes are shown by the color dots (deep blue for frontal;
light blue for temporal; green for parietal; red for occipital;
pink for thalamus, pallidum, caudate, putamen, amygdala; yellow
for hippocampus; deep yellow for other regions). The sMCI
subjects show similar patterns of inter-hemispheric connectivity
to those in NC, but with slightly reduced inter-lobe connections.
However, as compared to pMCI, the network connectivity
for sMCI was significantly higher in the frontal and parietal-
frontal lobes. The AD group showed significantly reduced
connections in all regions among the four groups. As shown in
Supplementary Table 1, the resulting number of edges in the
inter-hemispheric connectivity network for each group is 213,
207, 142, and 61 for NC, sMCI, pMCI, and AD, respectively.
One can observe a significant reduction of inter-hemispheric
connections in pMCI and AD.

Intra-Hemispheric Connectivity Network
Figure 4 shows the lateral view of the average individual
intra-hemispheric connectivity network for each group, as
built from the connectivity matrices in the second row of
Figure 2. Significant intra-hemispheric connectivity reductions
in the frontal, temporal, parietal, and occipital regions were

FIGURE 4 | The lateral view of mean individual intra-hemispheric connectivity
graphs of NC, sMCI, pMCI, and AD. The intra-hemispheric connectivity
graphs were visualized for four groups and obtained by thresholding the
correlation coefficient matrix using the threshold of 0.4354. The
intra-hemispheric connections are indicated by black lines and nodes are
represented by different colors (deep blue for frontal; light blue for temporal;
green for parietal; red for occipital; pink for thalamus, pallidum, caudate,
putamen, amygdala; yellow for hippocampus; deep yellow for other regions).

observed for both pMCI and AD, and in particular between
the temporal and parietal regions, frontal and temporal regions,
and also temporal and occipital regions. The intra-hemispheric
connectivity pattern was similar for both sMCI and NC, except
for the slightly reduced connection between parietal and occipital
found in sMCI. As shown in the Supplementary Table 1, the
resulting number of edges in the intra-hemispheric connectivity
network using the individual method is 161, 143, 103, and 77 for
NC, sMCI, pMCI, and AD, respectively.

Metabolic Connectivity Network
Differences
The small-worldness characteristic parameters were calculated
from the proposed individual connectivity networks for each
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FIGURE 5 | This illustrates the bar plots of the global efficiency, clustering coefficient, gamma and lambda calculated from each individual metabolic network for NC,
sMCI, pMCI, and AD. A reduction trend was observed for both global efficiency and clustering coefficient starting from NC, sMCI, pMCI, and AD, while a reverse
reduction trend for gamma and lambda values. *p < 0.05, **p < 0.01.

subject, and scatter plots were plotted for each group as
shown in Figure 5. Reduction trends in global efficiency and
clustering coefficients were observed for NC, sMCI, pMCI,
and AD. Global efficiency and clustering coefficients were
statistically different between NC and AD, and also between
NC and pMCI (p < 0.01, uncorrected). However, neither global
efficiency or clustering coefficients were statistically different
when comparing sMCI to NC.

Network Density Score Differences
Figure 6 shows the bar plots of NDS score in the DMN
subnetwork calculated from the proposed individual network for
the four groups. The result shows that the mean NDS decreased
in the DMN subnetwork from NC to AD. Also, no significant
NDS differences were observed between NC and sMCI, or
between pMCI and AD.

DISCUSSION

In this study, we developed a novel approach for building
an individual metabolic network using a single-subject FDG

PET image and NC database. The results show the feasibility
of the proposed individual brain network for generating
network properties and differentiating different disease groups
of dementia, including NC, sMCI, pMCI, and AD. The
proposed individual metabolic network also produced similar
network features to those derived from the group-based brain
metabolic network (Huang et al., 2018). In particular, the
key patterns of occipital–parietal inter-regional connectivities
detected in the group-based network study for differentiating
different disease groups in AD were also found in the
individual network.

Our proposed method for individual network construction
is based on the multiplication of a weighting factor and the
group-based connectivity matrix calculated from a group of
normal subjects. Under normal conditions, the structure of the
brain network is a stable and highly relevant link. When the
metabolism of the brain changes in a subject due to disease,
the network link will change accordingly. Each region may
exhibit different levels of variation in metabolism, and that
leads to deviation from the normal value in the control group.
Thus, the weighting factor for adjusting the average normal
group link was based on the ES difference of the regional
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FIGURE 6 | This shows the mean network density scores (NDS) of the default
mode network intra-subnetwork from a Student’s t-test with significance
indicated by *p < 0.05 and **p < 0.01.

SUVR deviation of a single subject from the NC group. This
was first modified from a method for evaluating the overall
treatment effect of different treatments using an independent-
group pretest-posttest design (Becker, 1988), where different
groups receive different treatments (e.g., experimental and
control groups), and outcomes are measured both before and
after the treatment. The ES within each treatment condition
is calculated, and then the ES difference between the control
group and the experimental group, as in our equation, is applied
to compute the overall treatment ES (Becker, 1988; Morris
and DeShon, 2002). In our approach, after a simple Fisher
transformation, the ES difference was converted into a correlation
value, and then a weighting factor. The idea is that the higher
the inter-regional SUVR effect-size difference between the single-
subject and the normal group, the lower the similarity of the
regional correlation coefficient in a given subject to that of
the normal group.

In our previous group-based network study (Huang et al.,
2018), we found two key patterns in identifying whether
MCI presents a high risk of progression to AD or not,
namely parieto-occipital connectivity for sMCI and pMCI,
and temporal-occipital connectivity for NC and MCI. The
pattern of parieto-occipital connectivity was also observed in
the individual metabolic network. For example, the connectivity
density between parietal and occipital lobes was slightly higher
in NC and pMCI but not in sMCI (Figure 4); a similar result
was also shown in the group network (Huang et al., 2018).
However, there is only a slight increase but no significant
connectivity between the frontal and parietal connection in sMCI
as compared to NC. Interestingly, the possible compensatory
effect of increased left frontal connectivity in AD from the
group-based network was also shown in the individual one
(Figure 4 and Supplementary Table 1). For the average
number of edges for inter- and intra-hemispheric networks
for individual metabolic networks, as shown in Supplementary

Table 1, there were much fewer inter- and intra-hemispheric
connections in the AD group as compared to other groups.
Similar results can be viewed in the connectivity graphs
shown in Figures 3 and 4. More study on individual network
connectivity pattern for each single subject is necessary and is
the future goal.

Connection efficiency of network structure, clustering
efficiency of average network clustering, lambda, and gamma
can be used to characterize the patterns of network connectivity
(Rubinov and Sporns, 2010). Our results showed that the
global efficiency and clustering coefficient using the individual
metabolic network method display reduction trends for NC,
sMCI, pMCI to AD, and a reverse reduction trend for gamma
and lambda. This falls in line with previous studies showing
network efficiency reductions in MCI as compared to NC
(Achard and Bullmore, 2007; Bullmore and Sporns, 2012) and a
decrease in the clustering coefficient in AD when (Yong et al.,
2009) using fMRI analysis.

The activity in the default mode network (DMN), which
represents the resting state of the brain, has been proved to be
a sensitive and specific biomarker for AD using fMRI (Greicius
et al., 2004). Koch et al. (2012) observed declining trends in
DMN connectivity in NC, MCI, and AD. The DMN derived from
our individual network also displayed the same decreasing trend
among the NC, sMCI, pMCI, and AD disease groups (Figure 6).

Although the correlation of node connections based on
mutual information (MI) can show a nonlinear relationship
(Wang et al., 2016; Jiang et al., 2017), there are also reports that
FDG has strong connectivity in some areas (Huang et al., 2018).
Through MI calculations, these connections are less likely to be
highlighted, and our correlation matrix makes it is clear that there
are areas of higher correlation.

A metabolic network may provide probable imaging
biomarkers of neurodegenerative disease to identify those at
higher risk in developing neurodegenerative disorders (Wu et al.,
2013). For conventional network analysis based on correlation
coefficient matrix, a threshold is needed. However, an optimal
choice of threshold value is challenging and it is possible to
miss important diagnosis information after thresholding. Since
our individual method provides more convenient and powerful
diagnosis power for clinical application, analysis based on
threshold-free approach as in Kuang et al. (2019) might help
to preserve more information. Future work should include the
investigation of the threshold-free analysis.

For our current study, age-matched NC subjects and disease
groups were used for constructing the NC group data and for
evaluation of the individual network. In theory, a connectivity
pattern is age-dependent; therefore, future work should study the
age effect of group NC connectivity matrices in the individual
networks of different age groups. One of the limitations in
this work is the small sample size, and future work should
include more subjects to investigate individual metabolic network
variability and derive the connectivity spectrums in different
groups for clinical diagnosis purposes. Another limitation is
the segmentation or parcellation error introduced by the spatial
normalization method based on FDG-template as compared
to MRI-based approach in this study. Finally, our proposed
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individual network approach can be applied to other PET tracers
for molecular connectivity (Sala and Perani, 2019).

CONCLUSION

We proposed a novel method for constructing an individual
metabolic network using a single-subject FDG PET image
and a NC FDG PET database. The result has shown the
effectiveness and feasibility of the proposed individual metabolic
network in differentiating different AD disease groups. Future
studies should investigate inter-individual variability and the
correlations of individual network features to disease severities
and clinical performance.
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