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In recent years, traditional methods such as power spectrum and amplitude analysis
have been used to research the emotional electroencephalogram (EEG). The brain
network method is also used in emotional EEG research, which can better reflect
the activity of brains. A minimum spanning tree (MST) represents the key information
flow in the weighted brain network, and it provides a sensitive method to capture
subtle information in network organization while effectively avoiding the shortcomings
of traditional brain networks. The DEAP dataset provides electroencephalogram (EEG)
data for four categories of emotions: high arousal and high valence (HAHV), high arousal
and low valence (HALV), low arousal and high valence (LAHV), and low arousal and
low valence (LALV). Phase lag index (PLI) weighted matrices were calculated in five
frequency bands. On this basis, the minimum spanning trees were constructed. At
the same valence level in the gamma (γ) band, HAHV and HALV showed significant
higher mean PLI (MPLI), maximum degree (Degreemax) and leaf fraction and significant
lower diameter and eccentricity than LAHV and LALV. At the same arousal level in
the γ band, HALV showed significant higher MPLI, Degreemax and leaf fraction and
significant lower diameter and eccentricity than HAHV. These results indicate that the
low-arousal showed more line-shaped configurations than the high-arousal. Additionally,
in the high-arousal condition, a shift toward more star-shaped trees from high-valence to
low-valence supports the trend toward randomness of the brain network with negative
emotions and that the brain is more activated when faced with negative emotions.
From a brain network perspective, this phenomenon provides a theoretical basis for
negative bias.

Keywords: emotion, negative bias, functional connectivity, graph theory, minimum spanning tree

INTRODUCTION

Emotion processing is one of the advanced cognitive functions of the human brain. Increasing
attention has been paid to the study of the influence of different emotions on the human
brain. Electroencephalogram (EEG) and event-related potential (ERP) recording can capture
and assess neural responses to affective events with a high temporal resolution and are widely
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used in emotional research. In general, affective content can
produce stronger emotional effects than neutral content can
(Olofsson et al., 2008). Many studies have demonstrated this
using synchronicity (Zhang et al., 2012), amplitude (Pegg et al.,
2019) and other characteristics. Furthermore, some studies find
that bad moods have a larger impact than good moods and
that events involving unpleasant emotions remain more salient
in people’s minds than events involving pleasant emotions do
(Baumeister et al., 2001; Amrisha et al., 2008). When studying
emotional facial expression, Li found that the coherence of
negative emotion was greater than that of positive emotion in
both the low and high γ bands (Li et al., 2015). Zhu L found
that the phase lock value of positive video stimulation was
significantly lower than that of negative stimulation in the β and
γ bands (Zhu et al., 2018).

At present, traditional EEG analysis methods, including
methods that focus on the power spectrum (Liu et al., 2018),
coherence (Zhang et al., 2012; Mu et al., 2017) and phase lock
value (Zhu et al., 2018), are widely used. The brain regions
coordinate and cooperate with each other to form a complex
brain network, and the development of graph theory provides
a perfect tool for brain network analysis (Rubinov and Sporns,
2010; Calhoun et al., 2018). Graph theory can sensitively capture
subtle changes in the network and has revealed fundamental
mechanisms of functional brain organization in EEG analysis
(Fraschini et al., 2016). Li used traditional graph theory to
find that the number of active brain network connections

during negative stimuli was greater than the number of active
connections during positive stimuli (Li et al., 2015). These results
concerning topological structure provided new evidence that
healthy controls had a negative bias in terms of the functional
connectivity of brain networks.

Although traditional graph theory provides a new perspective
and means of discovery in brain network analysis, the
methodology used in traditional graph theory has some problems
that cause the same research conditions to result in different—
or even opposite—conclusions (Tijms et al., 2013; van Diessen
et al., 2015). In particular, a traditional unweighted network
involves threshold selection but provides no reasonable way to
select the threshold. Improper threshold selection may lead to
false links or cause the loss of important information (van Wijk
et al., 2010). Even the use of weighted rather than unweighted
graphs does not provide an optimal solution because measures
computed on these graphs are influenced by the large number
of noisy connections and by the average functional connectivity
strength (Tewarie et al., 2014). However, a minimum spanning
tree (MST) effectively avoids the problems of weighted and
unweighted brain networks (Eric et al., 2013; Tewarie et al.,
2015). An MST connects all nodes in the network without
forming a cycle, and it generates the strongest subconnection.
The MST represents the key information flow in the weighted
network (it includes the high-probability connections of all the
shortest paths in the network) (van Dellen et al., 2014). In
recent years, scholars have applied the MST method to study

FIGURE 1 | Arousal–valence plane. The valence dimension evaluates the degree of positivity or negativity of the emotion; the arousal dimension describes the
intensity of activation associated with the emotion. Liking is encoded by color: dark red is low liking and bright yellow is high liking. Dominance is encoded by symbol
size: small symbols stand for low dominance and large for high dominance (Koelstra et al., 2012).
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epilepsy (van Diessen et al., 2016), children’s brain development
(Boersma et al., 2013), motor imagination (Demuru et al., 2013)
and other fields. Moreover, compared with traditional network
methods, the MST method has superior sensitivity to small
differences in the brain network (Demuru et al., 2013; van
Diessen et al., 2016), providing a new tool for research on
complex brain networks. To date, there have been few reports
on using an MST to analyze the differences between different
emotions. The MST method is used in this study to explore
the differences in brain network topology when subjects are in
different emotional states.

MATERIALS AND METHODS

EEG Data Acquisition
All of the subjects comes from the Dataset for Emotion
Analysis using the Physiological and Audiovisual Signals (DEAP)
database. The DEAP database is an open database for emotion
recognition research based on physiological signals (Koelstra
et al., 2012). The database contains EEG data collected from
32 subjects as they watched 40 music videos. These videos had
obvious emotional stimulation effects and the duration of each
video was 1 min.

Data Preprocessing
The EEG data were acquired from the DEAP data collection
website. The raw EEG data were preprocessed in a series of
steps that included down-sampling to 128 Hz, electro-oculogram

(EOG) removal and filtering at 4.0–45.0 Hz. The length of each
sampling period was 63 s and the first 3 s was a baseline period,
which was followed by 60 s of EEG data collected as the subject
watched a video.

Each video has two VAD (valence, arousal, dominance)
values, one from the behavioral experiment and the other
provided by the subjects during the EEG acquisition: while
they watched the video, the participants evaluated the video
in each VAD dimension using a 9-point scale according to
their emotional experiences. Arousal ranged from inactive
(e.g., uninterested, bored) to active (e.g., alert, excited),
whereas valence ranged from unpleasant (e.g., sad, stressed)
to pleasant (e.g., happy, elated). Based on the A and V
values, these videos were divided into four types: high
arousal/high valence (HAHV) meaning happy and excited, low
arousal/high valence (LAHV) meaning calm and chill, low
arousal/low valence (LALV) meaning sad and depressed and
high arousal/low valence (HALV) meaning angry and shocked
(Koelstra et al., 2012).

After the online behavior experiment, 40 music videos were
selected from 120 videos because the AV value of these 40
videos was more extreme, showing that they provided a better
stimulation for emotion (Figure 1). However, a video scoring
near one of the coordinate axes could not be accurately classified
into one of the selected emotion categories. Thus, in this
experiment (Kuai et al., 2017), scores of 1–4 were used as low
scores, and scores of 6–9 were used as high scores. In the scoring
process, subject number 23 divided the 40 music videos into
three categories instead of four, so the EEG data recorded by

TABLE 1 | MST descriptive statistics.

Symbol Concept Explanation Formula

N Nodes Number of nodes in MST –

M Links Number of links in the MST –

ki Degree Number of links for a given node. Degreemax represents the maximum
of all node degrees. It may be considered a feature of “hubs,” i.e.,
crucial regions in the functional brain network.

ki =
∑

j∈N aij

Lf Leaf fraction Measured based on the leaf number (the number of nodes that have
only one connection). In the formula, L represents the total number of
leaves of an MST. When the leaf fraction is high, communication is
largely dependent on hub nodes.

Lf = L/M

D Diameter A measure of the efficiency of global network organization. In the
formula, d represents the maximum path length in an MST. In a network
with a small diameter, information is efficiently processed between
remote brain regions.

D = d/M

E Eccentricity The longest optimal path from a reference node to any other node in
the MST, where d(i,j) represents the optimal (shortest) path between
node i and node j. The average eccentricity represents the average
value of the eccentricity of all nodes. Low average eccentricity means
that the nodes of the MST are closer to the hub nodes.

Ei = max{d(i, j)|j ∈ N}

BC Betweenness centrality Fraction of all shortest paths that pass through a particular node.ρhjis
the number of shortest paths between h and j, and ρhj(i) is the number
of shortest paths between h and j that pass through i. BCmax

represents the maximum BC value of all nodes of an MST. It describes
the importance of the most central node, which is a measure of central
network organization.

BCi =
1

(n− 1)(n− 2)

∑
h, j ∈ N

h 6= i, j 6= i

ρhj(i)

ρhj

Th Tree hierarchy A hierarchical metric that quantifies the trade-off between large scale
integration in the MST and central node overloading.

Th =
L

2MBC max
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FIGURE 2 | The network structures corresponding to MST topology. Minimum spanning tree topology from a line-shaped to a star-shaped corresponding brain
network from regularization to randomization. Panel (A) shows a line-shaped MST. Panel (B) shows a star-shaped MST. Panel (C) shows a regular network, panel
(D) shows a small world network, and panel (E) shows a random network.

subject 23 was abandoned and only the remaining subjects’ EEG
data were retained.

Frequency Division
In the human brain, different neuron oscillation frequencies are
closely related to the functional activity of the brain (Fellinger
et al., 2011; Groppe et al., 2013). Therefore, EEG signals are often
divided into different frequency bands in EEG research. In this
experiment, EEG data are analyzed in the following five frequency
bands: θ (4–7 Hz), α (7–13 Hz), β1 (13–20 Hz), β2 (20–30 Hz) and
γ (31–45 Hz).

Constructing a Correlation Matrix and
MST
A network consists of nodes and edges. In this experiment,
32 scalp electrodes were used as the nodes of the network,
and the phase lag index (PLI) was used for the network edges.
The PLI measures the asymmetry of the distribution of phase
differences between two signals, and it is relatively insensitive
to the confounding effects of volume conduction (Stam et al.,
2014). PLI can reflect the consistency with which one signal’s
phase leads or lags relative to another signal, and it is an effective
estimation of phase synchronization (Stam et al., 2007). A 32× 32
correlation matrix can be obtained by calculating the PLI value

between each pair of nodes. Whole-brain mean PLI (MPLI) was
computed by averaging all the pairwise PLI values, resulting in
a single PLI value in order to describe the average functional
connectivity for each brain network. Similar methods have been
used by Groppe et al. (2013), and the mean synchronization
likelihood (SL) was used to characterize the average connection
strength of the brain during different emotional stimuli.

For each subject, EEG data was recorded when watching a
music video and a PLI matrix was calculated in one frequency
band. Then the minimum spanning tree was generated using a
Kruskal algorithm (Kruskal, 1956). This procedure started with
ranking all connection weights from lowest weight to highest
weight. Because we were interested in the strongest connections,
we ranked all connections from highest to lowest weight and
started by disconnecting all nodes, then added the connection
with the highest weight. Next, the connection with the second
highest weight was added, and this procedure was repeated until
all nodes were connected and it did not form a closed loop.
The final MST for each affective brain network contains 32
nodes and 31 edges.

MST Network Metrics
The commonly used characteristics of MST analysis include
degree, betweenness centrality (BC), eccentricity, diameter,
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FIGURE 3 | The topological structures of the MST brain networks of the HAHV (A), LAHV (B), LALV (C) and HALV (D) in the γ band. The horizontal axis represents
arousal, and the vertical axis represents valence. Black nodes indicate that the node degree is greater than or equal to 4 and dark red nodes indicate that the node
degree is 3.

leaf fraction and tree hierarchy, among which degree, BC
and eccentricity are local attribute values of individual nodes
(Table 1). In order to find the eccentricity, the mean value
over all nodes was calculated. The maximum values of BC
and Degree (BCmax and Degreemax, respectively) are listed

separately. All of the other metrics are global measurements -
they characterize the MST as a whole. An important aspect of
complex networks is efficient communication between all nodes,
which requires a small diameter, i.e., a tree network with a star-
shaped topology. In a star-shaped tree, the central node might
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FIGURE 4 | Corresponding to Figure 3, hierarchical structures of the MST
brain networks of HAHV (A), LAHV (B), LALV (C), and HALV (D) in the γ band.

easily become overloaded because it has a high BC. An optimal
tree configuration should therefore strike a balance between
diameter reduction and overload prevention (Figure 2). A tree
hierarchy measure that captures this trade-off was calculated
(Boersma et al., 2013).

The MST can be regarded as the backbone of the brain
network and any change in the topological structure of the
MST also sensitively reflects change trends in the brain network.
An MST with a small degree, small BC, long diameter and
few leaves tends to be “line”-shaped. On the contrary, an MST
with a large degree, large BC, short diameter and many leaves
tends to be “star”-shaped. Figure 2 shows the network structures
corresponding to MST topology. Part A shows an MST with a
“line” shape where every node except two end nodes is connected
to its two neighbors (low leaf number), but it takes 7 steps to
reach the other end of the network (high diameter), and the
corresponding network is a regular network. Part B is a “star”-
shaped MST which consists of a central node that is connected to
other nodes (high degree and BC), which are all leaf nodes (high
leaf number). This MST is highly efficient (low diameter) and the
corresponding network is a random network. The lower part of
Figure 2 shows the underlying topologies of a regular network, a
small world network and a random network, which correspond
to MSTs from “line” to “star.” As the topological shape changes
from a regular network to a random network, the MST diameter
and leaf fraction change according to the path length of the
underlying network (the diameter of MST is positively related
to the path length, and the leaf fraction of an MST is negatively
related to the path length).

RESULTS

For the same emotion, the minimum spanning trees of different
subjects overlapped to form a connected graph under the

TABLE 2 | The interaction in the γ band between arousal and valence of repeated
measurement analysis of variance.

Within-subjects effects characteristic F(29,1) P ES

Arousal × Valence

MPLI 5.015 0.033 0.614

Degreemax 4.423 0.044 0.128

BCmax 4.065 0.053 0.119

Leaf fraction 4.443 0.043 0.129

Diameter 4.478 0.043 0.13

Eccentricity 5.213 0.03 0.148

tree Hierarchy 0.008 0.93 0.0002

condition that the same node exists. The weight of the edge
in a connected graph means the number of overlapping edges
of minimum spanning trees. An MST of the connected graph
generated by the Kruskal algorithm is an average minimum
spanning tree (average MST) of this emotion. Figure 3 shows
the topological structure of the average MST for the four
types of emotions in the γ band, in which the average
MST edges mean the edges of maximum weights in the
connected graph. Figure 4 shows the tree hierarchy of the MST
corresponding to Figure 3 for each of the four different emotions
in the γ band.

We repeatedly applied an analysis of variance measurement
in the 2 (arousal/valence) × 2 (high/low) within-subject
experimental region. The frequency ranges with significant
differences were mainly in the γ band (Table 2). It was
found that there were significant differences in MPLI
characteristics under arousal conditions [F(29,1) = 47.8,

TABLE 3 | After paired t test and FDR correction, significant changes in MPLI and
MST characteristics are seen between emotions in the γ band.

Characteristic Emotion Mean ± SD t P

MPLI HAHV 0.119 ± 0.0017 HAHV-LAHV 2.326 0.036

LAHV 0.118 ± 0.0033 HALV-LALV 5.572 0

HALV 0.121 ± 0.0027 HAHV-HALV −4.752 0

LALV 0.118 ± 0.0032 LAHV-LALV −0.175 0.862

Degreemax HAHV 0.236 ± 0.037 HAHV-LAHV 6.227 0

LAHV 0.201 ± 0.024 HALV-LALV 5.903 0

HALV 0.27 ± 0.052 HAHV-HALV −4.467 0

LALV 0.214 ± 0.036 LAHV-LALV −2.345 0.026

Leaf fraction HAHV 0.562 ± 0.035 HAHV-LAHV 2.658 0.016

LAHV 0.54 ± 0.056 HALV-LALV 5.218 0

HALV 0.593 ± 0.052 HAHV-HALV −3.537 0.002

LALV 0.546 ± 0.048 LAHV-LALV −0.671 0.507

Diameter HAHV 0.052 ± 0.0045 HAHV-LAHV −5.584 0

LAHV 0.056 ± 0.0071 HALV-LALV −6.942 0

HALV 0.048 ± 0.0045 HAHV-HALV 7.448 0

LALV 0.055 ± 0.0062 LAHV-LALV 1.048 0.303

Eccentricity HAHV 0.039 ± 0.0034 HAHV-LAHV −5.609 0

LAHV 0.042 ± 0.0051 HALV-LALV −6.848 0

HALV 0.037 ± 0.0033 HAHV-HALV 8.096 0

LALV 0.042 ± 0.0048 LAHV-LALV 1.148 0.26
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FIGURE 5 | Changes in the value of MPLI (A), Degreemax (B), BCmax (C), leaf fraction (D), diameter (E), eccentricity (F) and tree hierarchy (G) between HAHV and
LAHV in the γ band. Significant values are indicated with asterisks: *P < 0.05, ***P < 0.001.

P = 0.000, ES = 0.614], valence conditions [F(29,1) = 6.548,
P = 0.016, ES = 0.179] and at interactions between the
valence and arousal conditions [F(29,1) = 5.015, P = 0.033,
ES = 0.143]. Additionally, there were significant differences
in Degreemax under arousal conditions [F(29,1) = 58.569,
P = 0.000, ES = 0.611], valence conditions [F(29,1) = 29.718,
P = 0.000, ES = 0.498] and the interaction between the
valence and arousal conditions [F(29,1) = 4.423, P = 0.044,
ES = 0.128]. Furthermore, there were significant differences
in leaf fraction under arousal conditions [F(29,1) = 29.169,
P = 0.000, ES = 0.493], valence conditions [F(29,1) = 7.48,
P = 0.01, ES = 0.2] and the interaction between valence and
arousal conditions [F(29,1) = 4.443, P = 0.043, ES = 0.129].
Meanwhile, there are also significant differences in the
diameter and eccentricity of the minimum spanning tree.
Diameter characteristics are given for arousal conditions
[F(29,1) = 67.076, P = 0.000, ES = 0.691], valence
conditions [F(29,1) = 14.23, P = 0.001, ES = 0.322]
and for the interaction between valence and arousal
conditions [F(29,1) = 4.478, P = 0.043, ES = 0.13].
Eccentricity characteristics are given for arousal conditions
[F(29,1) = 63.574, P = 0.000, ES = 0.679], valence conditions
[F(29,1) = 15.937, P = 0.000, ES = 0.347] and the interaction
between valence and arousal conditions [F(29,1) = 5.213,
P = 0.03, ES = 0.148].

In order to explore the interaction between valence and
arousal, a paired t-test and an FDR correction was carried out for

the characteristic values with significant differences in interaction
between valence and arousal.

Statistical Analysis Results for HAHV and
LAHV
The comparison results show that the MST characteristics
of Degreemax (P = 0.000, t = 6.241), leaf fraction
(P = 0.016, t = 2.594), diameter (P = 0.000, t = −5.584),
eccentricity (P = 0.000, t = −5.609) and MPLI (P = 0.036,
t = 2.326) had significant differences (Table 3). The
values of MPLI, Degreemax and leaf fraction were
higher for HAHV than for LAHV, but the values of
eccentricity and diameter were lower for HAHV than for
LAHV (Figure 5).

Statistical Analysis Results for HALV and
LALV
The comparison results showed that there were significant
differences in the MST characteristics (Table 3). Degreemax
(P = 0.000, t = 5.903), leaf fraction (P = 0.001, t = 5.218), diameter
(P = 0.000, t = −6.942), eccentricity (P = 0.000, t = −6.848)
and MPLI (P = 0.000, t = 5.572). The MPLI, Degreemax and leaf
fraction values were higher for HALV than for LALV, but the
eccentricity and diameter values were lower for HALV than for
LALV (Figure 6).
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FIGURE 6 | Changes in the value of MPLI (A), Degreemax (B), BCmax (C), leaf fraction (D), diameter (E), eccentricity (F) and tree hierarchy (G) between HALV and
LALV in theγband. Significant values are indicated with asterisks: ***P < 0.001.

Statistical Analysis Results for HAHV and
HALV
The comparison results show that the MST characteristics
Degreemax (P = 0.000, t = −4.467), leaf fraction (P = 0.002,
t = −3.537), diameter (P = 0.000, t = 7.448), eccentricity
(P = 0.000, t = 8.096) and MPLI (P = 0.000, t = −4.752) had
significant differences (Table 3). The MPLI, Degreemax and leaf
fraction values for HALV were higher than for HAHV, but the
eccentricity and diameter values for HALV were lower than for
HAHV (Figure 7).

Statistical Analysis Results for LAHV and
LALV
The comparison results show that the MST characteristic
Degreemax (P = 0.026, t = −2.367) had significant differences
(Table 3). The comparison results of LAHV and LALV in the γ

band show that the Degreemax of LALV were larger than those of
LAHV (Figure 8).

The Distribution of Hub Nodes in the
MST
Some interesting findings emerged from studying the topology of
the MST. The topological structure of the mean MST represents
the structure of the minimum spanning tree of the brain network
of most subjects under a certain emotion. The large node degrees
in an average MST represent that most of the minimum spanning
trees have connections in these nodes, which can reflect whether

the brain network is active (Table 4). In the γ band, the hub
nodes of the MSTs for different emotions were distributed across
different brain regions (Figure 3). In the MST of HAHV, the hub
nodes were mainly concentrated in the frontal lobe area (FP1,
FC5) and temporal lobe (T7, T8). The hub nodes in the MST
of HALV were mainly concentrated in the frontal lobe (FP2),
occipital area (O2) and temporal lobe (T8). The hub nodes in
the MST of LAHV were mainly concentrated in the frontal area
(FP1, FC5). The hub nodes in the MST of LALV were mainly
concentrated in the central parietal (CP5, CP6) and temporal
lobe areas (T7).

DISCUSSION

There are significant differences in network characteristics
between HAHV and LAHV, HALV and LALV, and HAHV and
HALV in the γ band. In other recent research related to emotion,
significant differences were also mainly concentrated in the γ

band (Mu et al., 2017; Batashvili et al., 2019). In addition,
recent studies on emotion classifiers have found that the γ band
provides the highest classification accuracy of any frequency band
(Mohammadi et al., 2017).

Many studies have also found that the frontal, temporal,
parietal and occipital areas of the brain are related to emotional
processing from the perspectives of MRI and EEG (Guntekin and
Basar, 2007; Ma et al., 2012; Aydin et al., 2018; Zheng et al., 2019).
This concept is consistent with our research showing that the
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FIGURE 7 | Changes in the value of MPLI (A), Degreemax (B), BCmax (C), leaf fraction (D), diameter (E), eccentricity (F) and tree hierarchy (G) between HAHV and
HALV in the γ band. Significant values are indicated with asterisks: **P < 0.01, ***P < 0.001.

hub nodes of the MST are concentrated in the frontal, temporal,
parietal and occipital areas.

Under the same high valence level, HAHV showed a
significant higher MPLI than LAHV. MPLI represents the
average connection strength of different brain regions during
different emotional stimuli. The average connection strength of
the brain network is greater for HAHV than for LAHV, implying
that, under the same high valence of stimulation, high arousal
can stimulate greater brain activity than low arousal. HAHV
showed a significant higher leaf fraction than LAHV, while
HAHV showed significant lower diameter and eccentricity than
LAHV. A large leaf fraction indicates that many leaf nodes exist
in the MST network, and the network tends to have a star-shaped
topology. In networks with many leaf nodes, the key routes of
information flow converge at one or a few hub nodes. Therefore,
the BCmax and Degreemax values of these hub nodes are large. Our
results are consistent with the above: HAHV showed significant
higher Degreemax and leaf fraction than LAHV. Eccentricity is a
local node characteristic. Nodes with low eccentricity are central
nodes. The smaller the eccentricity value of a node, the closer
the node is to the central node location. When the average
eccentricity of an MST is small, the topological structure of
the MST tends to be star-shaped. Diameter is the longest path
between any two nodes in the MST. A decrease in diameter means
that the number of leaves increases, which further shows that the
topology of the MST tends to be star-shaped. The star topological
structure corresponds to a random brain network (Figure 2).

Consequently, the MST topology of HAHV showed more star-
shaped configuration than that of LAHV, which indicates that
a high-arousal network has more random connections than a
low-arousal network. A study by Varotto found that in normal
subjects, pleasant music caused an increase in the number of
brain network connections compared to a resting state (Varotto
et al., 2012). In other words, their results are consistent with ours.

Under the same low valence level, HALV showed a significant
higher MPLI than LALV, indicating that the average connection
strength of the brain is greater for HALV than for LALV. Under
the same low valence, high arousal can stimulate the brain
more actively than low arousal, which is consistent with the
above conclusion. HALV showed significant higher Degreemax
and leaf fraction than LALV, while HALV showed significant
lower diameter and eccentricity than LALV. This result indicated
that the MST topology of HALV showed a more star-shaped
configuration than that of LALV. At this time, the values of
BCmax and Degreemax of hub nodes also increased with arousal.
As confirmed by our results, HALV showed a significant higher
Degreemax than LALV. Meanwhile, HALV showed significant
lower eccentricity and diameter than LALV, which further
shows that the topological structure of HALV is closer to a
star configuration. Compared to the brain network associated
with LALV, the increase toward randomness of brain network
associated with HALV can be proven. In general, a high-
arousal brain network has more random connections than does
a low-arousal brain network. Nicola Martini et al. also found
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FIGURE 8 | Changes in the value of MPLI (A), Degreemax (B), BCmax (C), leaf fraction (D), diameter (E), eccentricity (F) and tree hierarchy (G) between LAHV and
LALV in the γ band. Significant values are indicated with asterisks: *P < 0.05.

a difference in phase synchronization between unpleasant and
neutral stimuli in the γ band (Martini et al., 2012). The studies
of Balconi and Lucchiari showed that compared with low arousal
(sadness), high arousal (anger and fear) increased the brain’s γ

activity (Balconi and Lucchiari, 2008). Miskovic found that EEG
coherence increased when subjects viewed high-arousal pictures
(Miskovic and Schmidt, 2010).

Chanel found that the emotion of valence is more difficult
to recognize than that of arousal, which supports the view
that the correlation between physiological signals and arousal is
better than that of valence (Chanel et al., 2009). As discussed
earlier, in the comparison of arousal, there were significant
differences among different levels of arousal in the same valence
level. However, when compared with different valence aspects at
the same arousal level, there was little significant difference in
characteristics between LAHV and LALV. A possible explanation
is that the low arousal and emotional activation of LAHV and
LALV resulted in no significant characteristic difference.

Interestingly, there were significant differences in MPLI and
MST characteristics between HAHV and HALV. Initially, HALV
showed a significant higher MPLI than HAHV and it indicated
the average connection strength of the brain network was
greater in HALV than in HAHV. Brain activation is higher
and more information is transmitted between brain regions in
a low-valence emotion than in a high-valence emotion. The
brain response to HALV (anger and shocked) stimulation is
stronger compared with HAHV (happy and excited) stimulation.
Meanwhile, HALV showed significant higher Degreemax and

leaf fraction than HAHV and significant lower diameter and
eccentricity than HAHV. This result indicated that the MST
topology of HALV showed more star-shaped configuration than
that of HAHV. HAHV showed significant higher eccentricity
and diameter than HALV, which further illustrated that the MST
topology of HAHV showed a more line-shaped configuration
than that of HALV. From the perspective of a brain network,
there are more random connections between brain regions and
the development of the brain network structure tends toward
randomization in a HAHV brain network compared to a HALV
brain network. Consistent with our findings, Ma also found that
the characteristic path length of the brain network for negative
emotions is longer than that of positive emotions. A short
characteristic path represents random connection increases in the

TABLE 4 | Nodes with an average minimum spanning tree degree in the γ band
greater than or equal to 3.

HAHV HALV LAHV LALV

T7 (k = 9) FP2 (k = 5) FP1 (k = 4) FC5 (k = 7)

FC5 (k = 5) T8 (k = 5) FC5 (k = 4) T7 (k = 5)

FP1 (k = 4) O2 (k = 4) CP6 (k = 4) FP1 (k = 4)

T8 (k = 4) FP1 (k = 3) F3 (k = 3) CP5 (k = 4)

FP2 (k = 3) FC5 (k = 3) T7 (k = 3) CP6 (k = 4)

Fz (k = 3) FC6 (k = 3) F4 (k = 3) Pz (k = 3)

P8 (k = 3) F8 (k = 3) P8 (k = 3)

C4 (k = 3)
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brain network. That means when the brain deals with negative
emotions, brain regions are more activated (Ma et al., 2012).

CONCLUSION

The results show that there are significant differences in MPLI
and MST characteristics among different emotions in the γ band.
From the perspective of the MST, high-arousal trees showed a
more star-shaped configuration than low-arousal trees. However,
the low-valence tree showed a more star-shaped configuration
than the high-valence tree in the same high arousal level. This
result indicated that the brain networks for low-valence states
had a more random topological structure and more connections
between brain regions than the brain networks of high-valence
states. This study provides theoretical support for research
on negative bias.
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