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The ability to preferentially stimulate different retinal pathways is an important area of

research for improving visual prosthetics. Recent work has shown that different classes

of retinal ganglion cells (RGCs) have distinct linear electrical input filters for low-amplitude

white noise stimulation. The aim of this study is to provide a statistical framework

for characterizing how RGCs respond to white-noise electrical stimulation. We used

a nested family of Generalized Linear Models (GLMs) to partition neural responses

into different components—progressively adding covariates to the GLM which captured

non-stationarity in neural activity, a linear dependence on the stimulus, and any remaining

non-linear interactions. We found that each of these components resulted in increased

model performance, but that even the non-linear model left a substantial fraction of

neural variability unexplained. The broad goal of this paper is to provide a much-needed

theoretical framework to objectively quantify stimulus paradigms in terms of the types of

neural responses that they elicit (linear vs. non-linear vs. stimulus-independent variability).

In turn, this aids the prosthetic community in the search for optimal stimulus parameters

that avoid indiscriminate retinal activation and adaptation caused by excessively large

stimulus pulses, and avoid low fidelity responses (low signal-to-noise ratio) caused by

excessively weak stimulus pulses.

Keywords: retina, prosthetics, white-noise stimulation, generalized linear models, SNR, nested models

1. INTRODUCTION

Age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are two common retinal
degenerative diseases that cause profound vision loss (Lorach et al., 2015). Both these diseases lead
to blindness through photoreceptor death. However, studies have shown that the retinal circuitry
in the inner plexiform layer (IPL) remains relatively intact, despite undergoing significant rewiring
(Jones et al., 2003; Jones and Marc, 2005; Gargini et al., 2007). Though there is not yet a cure for
these diseases, multiple treatment options are currently being investigated. One such approach
involves the use of electrode arrays implanted in the eye (also known as retinal implants) that
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electrically stimulate the diseased retina. Retinal implants have
been able to restore some degree of visual perception back to
patients (Zrenner et al., 2011; Humayun et al., 2012; Stingl et al.,
2015). These prosthetic devices can either directly target the
retinal ganglion cells (RGCs) or stimulate the retinal network in
order to use the remnant visual processing present in the IPL.

At present, retinal implants (regardless of the intended site
of stimulation), use a train of constant amplitude current or
voltage pulses, with individual pulses designed to elicit retinal
activity. RGCs were recently shown to be able to integrate a
stream of smaller subthreshold pulses via the retinal network,
in order to generate spiking responses (Sekhar et al., 2016).
Moreover, by combining spike-triggered averaging (STA) with
this subthreshold stimulus paradigm, different RGC classes (ON-
and OFF-cells) were found to have distinct electrical input filters
(Sekhar et al., 2017). While STA-like waveforms could be used
to selectively stimulate different RGC classes, classical spike-
triggered techniques provide only a coarse characterization of
neural responses to stimuli, for the following reasons: First, major
underlying assumptions of STA analyses are that the stimuli
have a white-noise power spectrum (Chichilnisky, 2001) and that
the interaction between applied stimuli and evoked responses is
linear. Such a model can not capture non-linear interactions that
may exist between the stimulus and the neural response (Gollisch
and Meister, 2010; da Silveira and Roska, 2011), and might be
biased if the stimuli are not white noise. Second, fluctuations in
firing rates of cells across trials constitute a complicating factor.
Long duration, high frequency electrical stimulation can alter
the responsiveness of the retina over the course of a recording.
Thus, models fit to the first half of a recording might perform
poorly at predicting the responses during the second half, and
vice versa. Third, statistical estimators based on spike-triggered
averaging can be less data-efficient compared to likelihood-
based approaches (Paninski, 2004). Fourth, STA-analyses do not
allow one to incorporate prior knowledge or assumptions about
likely filter-shapes (e.g., their temporal smoothness) into the
estimation procedure, implying that larger data-set sizes (i.e.,
longer recording times) are required for characterization.

Therefore, while STAs are a useful step in describing a cell’s
stimulus-response function, model-based approaches (e.g., based
on generalized linear models) confer additional advantages. In
particular, they can be used to quantify how well variations in
firing rate can be captured by a linear model, and how much can
be attributed to non-stationarity in RGC firing rates. This non-
stationarity or trial to trial variability can arise from multiple
sources, such as adaptation to stimulation, or the fact that
subthreshold stimuli drive responses with much lower fidelity.

In this paper we address these issues by investigating how
reliably subthreshold stimuli are able to drive RGC responses,
and how different sources of RGC response variability (linearity,
non-linearity and non-stationarity) depend on RGC type (ON,
OFF, ON-OFF). To this end, we model the RGC responses to
electrical stimuli using generalized linearmodels (GLMs) (Nelder
and Wedderburn, 1972; Chornoboy et al., 1988; Paninski, 2004;
Pillow et al., 2005; Truccolo et al., 2005). GLMs model the neural
responses as follows—first, predicted firing rates are calculated by
linearly combining the input stimulus values and transforming

them via a non-linear function; next, the firing rates are used as
parameters to sample spike counts from a Poisson or Bernoulli
distribution. These models have been extensively used to describe
the dependence of firing rates of retinal ganglion cells on visual
stimuli (Paninski, 2004; Pillow et al., 2008; Gerwinn et al., 2010;
Park and Pillow, 2011). The GLM modeling framework makes
it possible to impose constraints on the parameters, yielding
more useful receptive field estimates compared to the classical
spike-triggered approach, and also requires less data to converge
(Paninski, 2003; Gerwinn et al., 2010; Park and Pillow, 2011).
We set up a hierarchy of increasingly complex GLMs to capture
different factors which might be predictive of neural firing rates,
namely non-stationarity across trials, linear stimulus dependence
and any residual non-linear dependence on the input stimulus.
To tackle non-stationarity—the issue of fluctuating firing rates
across trials—we set up a GLM with one parameter for every
trial. This model approximately captures the average firing rate
within each trial. We then added Linear-Non-linear Poisson filter
parameters to the non-stationarity (NS) model, which captures a
linear response of the neuron to the external stimuli. Finally, we
added one parameter for every time bin to the previous model,
which makes it possible to capture any stimulus-dependent
response of the neuron which is consistent across multiple trials.

We fit these models to data recorded from mouse retinal
ganglion cells stimulated with sub-threshold electrical white
noise (see Figure 1). We found that our models were able to
capture between 5 and 15% of the total variability in spiking
responses even for neurons with very low or highly varying firing
rates (see Figure 2A). However, a large fraction of the spiking
variability was left unexplained even by the most complex model,
indicating that most of the variability in neural responses is not
explained by the stimulus. In summary, this study represents the
first attempt to systematically characterize the non-stationarity,
linearity and non-linearity of different RGC types under high-
frequency subthreshold white noise electrical stimulation.

2. METHODS

2.1. Experimental Design
The experimental methods used in this paper are identical to a
previous study (Sekhar et al., 2017), and are restated here.

2.1.1. Electrical Stimulus
We recorded retinal ganglion cells responses to white-noise
electrical stimulation during 36 trials that were 100 s long, for
a total recording time of 1 hour. This duration was previously
determined to represent an acceptable compromise in which
enough data is acquired to yield statistically significant electrical
STAs, while at the same time, allowing enough subsequent
recording time for flash and visual noise stimuli, which are used
to estimate visual cell-type. Electrical white noise (−800/280mV,
mean/sd) was delivered with a frequency of 25 Hz (pulse
width 1 ms). A fixed realization of white noise was used
for half of the trials, interleaved with trials where a new,
previously unseen white noise sequence was delivered on each
trial. The impedances of the electrodes in saline tested between
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FIGURE 1 | Experimental setup and cell-type classification. (A) RGCs were classified using full-field flash (20 repetitions of 2 s ON and 2 s OFF) and visual full-field

Gaussian noise (50 s at 10Hz). These stimuli were presented at the start and end of each experiment. The primary stimulus was at least one hour of electrical noise

presented in 100 s blocks. (B) Cell classification. Histograms of cell responses (spike-times) during flash stimuli were quantified using the Carcieri method (Carcieri

et al., 2003). Figure adapted with permission from Sekhar et al. (2017).

experiments were ∼200–250 k� at 1 kHz using a NanoZ
impedance tester (Plexon Inc., TX, USA).

2.1.2. Visual Stimulation
Visual stimulation was presented before and after electrical
stimulation for cell-classification purposes (ON, OFF, ON-OFF).
Flash stimulus blocks consisted of cycling 2 s ON (40 klx) and
2 s OFF (20lx) full-field luminance (mean luminance 20 klx,
99.9% Michelson contrast). Visual stimuli were presented with
a linearized, commercially available DLP-based projector (K10;
Acer Inc., San Jose, California, USA). Other than during visual
stimulation, a shutter was placed in front of the projector.

2.1.3. Animals
The data in this paper consists of 58 RGCs obtained from 16
retinal pieces using 15 C57BL/6J mice. The age of the mice are
2 × P32, 2 × P39, 2 × P46, 1 × P49, 1 × P51, 1 × P53,
1× P56, 2× P58, 2× P59, 1× P64. All experimental procedures

have the approval of the state authorities (Regierungspraesidium,
Tübingen) and were conducted under the supervision of the
Tübingen University facility for animal welfare (Einrichtung für
Tierschutz, Tierärztlichen Dienst und Labortierkunde) and the
NIH Guide for the Care and Use of Laboratory Animals.

2.1.4. Data Collection
The mice were anesthetized using CO2 inhalation and
subsequently sacrificed by cervical dislocation. The eyes
were then removed and subsequently dissected. The dissection
process (performed under dim light conditions) consisted
of removing the cornea, ora serrata, lens and vitreous body.
Following this, the optic nerve was cut at the base of the retina
and the retina was detached from the pigment epithelium.
All traces of vitreous material were then removed from the
inner surface of the retina. The retinas were then perfused with
carbogenated artificial cerebrospinal fluid (ACSF) which was
regulated at 33◦C (using a heating plate and heated perfusion
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FIGURE 2 | Modelling framework. (A) Raster plots and spike-triggered averages (STAs) for two retinal ganglion cells (RGCs): the raster plots shows moderate (top)

and marked (bottom) inter- and intra-trial variability in the firing rate; clear STAs were obtained in both cases. (B) Generalized Linear Model (GLM) framework.

cannula) and at a pH of 7.4. Retinal pieces were mounted
ganglion cell side down on a standard 60-channel microelectrode
array (MEA, 60MEA200/30iR-ITO, Multi Channel Systems,
Reutlingen, Germany), and were constantly perfused with ACSF.
A single electrode was used for electrical stimulation and analysis
was restricted to the 7-8 electrodes immediately surrounding
the stimulating electrode (inter-electrode distance 200 or 283
µm), in order to ensure that all cells analyzed were exposed to
stimuli of comparable strength. Voltage traces were sampled with
MultiChannel Systems hardware (MCS, Reutlingen, Germany)
at a rate of 50kHz/channel, using a filter bandwidth of 1–3 kHz
and a gain of 1,100.

2.1.5. Pre-processing and Inclusion Criteria
Raw data was high-pass filtered in order to extract putative
action potential events (spikes). Next, these putative spikes
underwent automated and manual spike sorting in order to

reduce Type I and Type II errors in assigning waveforms to
different sources. Finally, a cell validation score was used to
determine whether the various clusters could be deemed as
well-isolated spike trains or not. The cell validation score was
calculated based on: (1) the presence of a clear lock-out period
in the ISI histogram and autocorrelogram; (2) the absence of
a peak in the cross-correlogram between different cells, which
would indicate that a single cell had been wrongly split into two
or more units; (3) good separation in principal component space
of a biphasic waveform, whose shape is typical of extracellularly
recorded action potentials; (4) stability of the waveform shape
and firing rate over the entire experiment. To be included in
this study, a cluster (putative spike train) had to score 2.5
or more in the cell validation step (on a scale from 1 to
5) and had to have a statistically significant STA. A previous
study (Sekhar et al., 2017) describes in detail the method for
determining if the STA of a well-isolated cluster is statistically
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significant. Offline Sorter (Plexon Inc, TX, USA) was used to
filter and spike sort the data. Time stamps of these sorted spikes
were collected with NeuroExplorer (Plexon Inc, TX, USA) and
exported to MATLAB.

For all included cells, we discretized the spike trains into bins
of size 1t = 40ms. The bin onset was aligned to the electrical
stimulus time stamp. The spikes falling within the first 10ms after
stimulus delivery were discarded to minimize those spikes that
might have been elicited due to direct activation of the RGCs.
The remaining spikes were counted, and their number assigned
to the corresponding bin value. The final data set consisted of 36
trials containing N = 2, 500 time bins for each cell.

2.2. Data Analysis
2.2.1. Generalized Linear Model
To model neural spiking activity, we discretize the time-axis into
bins of size 1t = 40ms, and refer to yit ∈ {0, 1, 2, . . .} as the
number of spikes on trial i in the bin indexed by t, i.e., in the time-
window [1t·(t−1),1t·t].Wemodeled the spike count in bin t of
the i-th trial as yit ∼ Poisson(1tλit), where λit is the instantaneous
firing rate of the neuron. Following the Generalized-Linear
Model (GLM) formalism (Nelder andWedderburn, 1972; Brown
et al., 2003; Truccolo et al., 2005), depicted in Figure 2B, we
modeled λit = f (zit), where f

(

zit
)

is a non-linear, monotonically

increasing function of an instantaneous activation variable zit .
The activation is calculated by a linear combination of covariates
xit (stimulus) and coefficients θ ,

zit = xit
⊤
θ . (1)

We used the canonical inverse link function for a Poisson GLM,
i.e., f (z) = exp(z).

We constructed a series of nested models which capture
increasingly complex properties of the neural response, and
quantified their performance in capturing neural responses to
electrical stimulation:

2.2.2. Baseline Model (BS)
The baseline model constitutes a reference against which the
performance of all other models was compared. In the baseline
model, the firing rate is a constant, which is simply the average
firing rate of the neuron, i.e.,

λit = ebo =
nsp

TK
, (2)

where bo is the log firing rate, nsp is the total spike count of
the neuron; T is the number of time-bins and K is the number
of trials.

2.2.3. Non-stationarity (NS)
To capture slow fluctuations in neural activity (Tomko and
Crapper, 1974; Czanner et al., 2008; Park et al., 2015) (Figure 2A)
we augmented the baseline model with separate per-trial offset φi

(Figure 3B). Thus, in this model, the firing rate is assumed to be
constant within each trial, but can fluctuate across trials. For all
bins t on trial i, the activation (zit) is thus given by

zit = bo + φi. (3)

To avoid over-fitting, we used a Gaussian-Process prior
(Rasmussen and Williams, 2005) to regularize the estimates
of φ = [φ1,φ2, · · · ,φK]. We used a Matérn kernel
(Rasmussen and Williams, 2005) parametrized by a scale
parameter σNS and a length parameter τNS; the hyper-
parameters σNS and τNS were optimized for each cell with grid
search and 10-folds cross-validation (example cross-validation
landscape: Figure 3F).

2.2.4. Linear Stimulus Dependence (NS-LNP)
To capture the linearly stimulus-dependent variation in spiking
responses, we performed a linear convolution of an m-
dimensional linear filter k with a stimulus vector xt = xt−m : t

and added this term to the NS model (Figure 3C),

zit = bo + φi + x⊤t k. (4)

As in the above, we used a Gaussian-Process prior to regularize
the estimates of k. We used a Matérn kernel parametrized by
a scale parameter σ LNP and a length parameter τLNP; σ LNP

and τLNP were optimized in the same way as σNS and τNS for
the NS model.

2.2.5. Non-linear Stimulus Dependence (NS-PSTH)
Finally, to capture any other source of stimulus-dependent
variability that was not accounted for by the previous twomodels,
we included a non-parametric estimate of the firing rate in each
bin t, ρt (see Figure 3D),

zit = bo + φi + x⊤t k+ ρt . (5)

Thus, in this model, we have a separate parameter for the
firing rate in each bin t. To avoid over-fitting, we used a
Gaussian-Process prior to regularize the estimates of ρ. We
used an auto-regressive kernel [the covariance function of
the discretized Ornstein-Uhlenbeck process (Uhlenbeck and
Ornstein, 1930)] parameterized by a scale parameter σ PSTH and a
correlation coefficient a (Figure 3F); σ PSTH and awere optimized
in the same way as the hyper-parameters for the previous
two models.

2.2.6. Choice of Hyper-Parameters
The models defined above form a nested family of models,
i.e., each model is a special case of the latter ones, which can
be recovered by setting the additional parameters to 0. We
exploited this fact when optimizing for the hyper-parameters:
we first found the best σNS and τNS; next, keeping those fixed,
we found the best σ LNP and τLNP; finally, we optimized for
σ PSTH and a.

2.2.7. 10-Fold Cross Validation
We randomly generated 10-folds of trials from the data. In
each fold, one or two trials were held out to be used as test
data, while the remaining were used for training. We kept the
folds exactly the same for all the models and all the hyper-
parameter sets. We then generated a grid of values for the hyper-
parameters of each model. We found the best hyper-parameters
for each model in the hierarchy in order, starting from the non-
stationarity model (NS). For a given hyper-parameter set from

Frontiers in Neuroscience | www.frontiersin.org 5 May 2020 | Volume 14 | Article 378

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Sekhar et al. Characterizing Electrically-Driven Retinal Responses

FIGURE 3 | GLM hierarchy fit on example cell. (A) Raster plot of the repeating stimulus trials: this cell shows a high degree of non-stationary. (B) Cross-validated

(orange) and empirical (black) per-trial firing rate. (C) Stimulus filter estimated from the NS-LNP model. (D) Empirical (black) and predicted average firing rate across

trials: NS (orange), NS-LNP (green), and NS-PSTH(red). (E) Average gain in log likelihood for all the models from cross validation (left) and on training data (right) as a

fraction of the total explainable log likelihood gain (see section 2.2). (F) Cross-validated log-likelihood landscapes for a grid of hyper-parameters: the red dots mark the

best hyper-parameter set for a given model.

the grid, we fit the model on the training data on each fold
and calculated the log-likelihood of the optimized parameters
on the test data. We repeated this for each fold and averaged
the calculated log-likelihood across all the folds. After calculating
the average cross-validated log-likelihood(CVLL) for each hyper-
parameter set, we chose the hyper-parameters corresponding to
the highest average CVLL and fixed these values for the model.
For the next model in the hierarchy, we only fit the parameters
added to the model, while keeping the other parameters fixed
at the values obtained from the previous model fit. Across
all hyper-parameter sets in the new model, for each fold,
the parameters from the previous model were fixed at those

obtained for the best hyper-parameter set in the same fold.
Additionally, after finding the best hyper-parameter set for the
new model, we checked that its average CVLL was greater
than the average CVLL of the best hyper-parameter set in the
previous model—if this was not the case, the averaged CVLL
in the new model was set to the same value as that of the
previous model (however, this occurred only for 1 cell). This
corresponds to choosing (0, 0) as hyper-parameter values and
collapsing the new model back to the previous model (by setting
the additional parameters in the new model to 0). This ensured
that the new model always performed better or just as well as the
previous model.
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2.2.8. Model Performance Measure
Following Czanner et al. (2015), we used the difference of cross
validated log-likelihood between the models to quantify the
improvement in model performance, and hence partitioned the
response variability into different sources. The cross validated
log-likelihood difference between two models is an estimate of
the Kullback-Leibler distance between their predictions (Hastie,
1987). We connect the gain of each model over the model
preceding it to a corresponding source of variability—for
example, the log-likelihood gain of the NS model LNS over the
baseline model is a measure of the non-stationarity in the neural
responses and the log-likelihood gain of the NS-LNP model
LLNP over the NS model is a measure of the linear stimulus-
dependence of the neural responses.

We also calculated the gain of a saturated model Lsat over
the most expressive model (NS-PSTH). This value allowed us
to quantify how much of the total explainable log-likelihood
gain was captured by our framework. The saturated model
captures the average firing rate within each trial and each timebin
exactly for a given dataset—this is essentially the NS-PSTHmodel
without the linear stimulus filter, and without any regularization.
The saturated model sets the upper bound for the performance
that could potentially be achieved with our hierarchy of models.
The log-likelihood gain of the saturatedmodel over the NS-PSTH
model, corresponds to noise or residuals that the NS-PSTH did
not account for.We then calculate the signal value Psig as the total
log-likelihood gain of all 3 models over the baseline model (i.e.,
the cross-validated log-likelihood of the NS-PSTH model LPSTH
over the baseline model), divided by the log-likelihood gain of
the saturated model over the baseline model. The noise value
Pnoise is the ratio of the log-likelihood gain of the saturated model
over the NS-PSTHmodel, and the total log-likelihood gain of the
saturated model over the baseline model, i.e.,

Psig =
LPSTH − LBS

Lsat − LBS
(6)

Pnoise = 1− Psig =
Lsat − LPSTH

Lsat − LBS
. (7)

We also write the non-stationarity Pnonstat, linear stimulus
dependence Plin and non-linear stimulus dependence Pnonlin as
the log-likelihood gain of each model in the hierarchy over
its predecessor, divided by the total log-likelihood gain of the
saturated model over the baseline model.

Pnonstat =
LNS − LBS

Lsat − LBS
,

Plin =
LLNP − LNS

Lsat − LBS
,

Pnonlin =
LPSTH − LLNP

Lsat − LBS
.

3. RESULTS

We recorded from 58 RGCs: 47 cells stimulated with 18 repeating
trials of frozen and 18 trials of unique electrical stimuli in

an interleaved fashion and 11 cells stimulated with 35 or 36
trials of frozen electrical stimuli. All the models were fit on the
repeating trials.

We fit a hierarchy of GLMs to this data, where each model
was designed to capture the non-stationarity, linear stimulus
dependence and non-linearity in the spiking responses,
respectively. As a measure of model performance, we
compared the log-likelihood gain between different models.
The different sources of variability (non-stationarity, linear
stimulus dependence and non-linear stimulus dependence) are
quantified by the log-likelihood gain for each model calculated
from the data used to train the model. The gain of these models
on data held out during training (test data) quantify the reliability
of each model’s predicted firing rate. As detailed in the Methods,
the log-likelihood gain ranged from 0 to 1, where 0 corresponds
to the cross validated log-likelihood of the baseline (BS) model,
which assumed that all binned responses could be explained
by the average firing rate. The maximum of 1 corresponds to
the saturated model which perfectly accounts for the firing rate
in each bin of every trial. Throughout this section, we report
mean ± standard deviation values for the log-likelihood gain as
a measure of model performance.

3.1. Analysis on an Example Cell
An example of the analysis pipeline can be seen in Figure 3.
Figures 3B,C show the parameters captured by the NS and
NS-LNP model, respectively. The progressive improvement in
prediction of the firing rate is visible (Figure 3D)—the NS model
does not capture any within-trial variations in firing rate; the
NS-LNP model prediction is accurate only for time bins with
high instantaneous firing rate and is noisy everywhere else; the
NS-PSTH model does even better at capturing the peaks in
the firing rate, and also at predicting periods with no spiking
activity. Using the log-likelihood gain as a measure of model
performance (Figure 3E), we found that the NS model (orange
bar) explains a substantial part of the total log-likelihood gain
both during cross validation on held out data (9.7%) and on
data used to train the models (27.4%). The NS-LNP (green bar)
model accounts for 3.5% of the gain on cross validation and
11.1% of the gain on training data. The NS-PSTH (red bar)
model contributes the least on cross-validation with a 3.4% log-
likelihood gain, but explains more of the log-likelihood gain
(23%) on training data.

For this cell, using cross-validation, 83.3% of the total
explainable gain is unexplained. Thus, for this cell, it seems to
be the case that—beyond the strong non-stationarity, with much
higher firing rates in trials 10–18—neither of the models seems
to lead to substantial gains in prediction performance. Of course,
it could well be the case that prediction performance is simply
limited by the amount of available data used to constrain the
models. If that was the case, then the prediction performance on
the training-data would be substantially better. Indeed, we see
here that on the training-data, up to 60% of the log-likelihood
gain can be explained. Thus, from these analyses, we can e.g.,
conclude that between 16 and 60% percent of the gain can
be captured (Figure 3E).
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FIGURE 4 | Log likelihood gain on training data for all three models. (A) Average log-likelihood gain across all cells. (B) Average log-likelihood gain partitioned by cell

type. (C) Pnonlin vs. Plin, as a fraction of the total gain of all three models (6 P = Pnonlin + Plin + Pnonstat).

FIGURE 5 | Log-likelihood gain from cross validation for all three models. (A) Average log likelihood gain across all cells. (B) Average log-likelihood gain partitioned by

cell type.

Hyper-parameters for regularization were set using cross
validation (Figure 3F), selecting those values which lead to the
best generalization performance on held-out data.

3.2. Quantifying Sources of Response
Variability
Overall, our framework collectively captures 57.79 ± 3.03% of
the total explainable gain on training data (Figure 4A). However,
the three models together capture only 12.98 ± 4.55% of the
total explainable gain when using cross validation—87.0% of
the gain remains unexplained (as shown in Figure 5A and
Tables 1, 2).

3.2.1. Non-stationarity
Most of the cells exhibited highly non-stationary firing rates
across trials (Figure 4A). This model was able to capture
large scale changes in firing rate across trials—for the
example cell in Figure 3, the NS model captures the abrupt
increase in firing rate across trials smoothly. Overall, the NS
model accounted for a mean of 12.98 ± 1.58% of the total
explainable log-likelihood gain on training data (Figure 4A). In
Figure 4C, NS gain over the baseline model decreases along
the 45◦ line. Most data points lie closer to the 135◦ line
than to the origin, implying that the NS model accounts

TABLE 1 | Log-likelihood gain on training data.

NS NS-LNP NS-PSTH Unexplained

All cells 0.13 0.155 0.29 0.42

ON 0.09 0.19 0.35 0.37

OFF 0.155 0.18 0.27 0.37

ON-OFF 0.14 0.12 0.24 0.49

TABLE 2 | Log-likelihood gain on test data.

NS NS-LNP NS-PSTH Unexplained

All cells 0.036 0.05 0.043 0.87

ON 0.026 0.061 0.055 0.857

OFF 0.047 0.066 0.05 0.836

ON-OFF 0.039 0.037 0.029 0.895

for the least amount of log-likelihood gain in most cells.
This model also captures a mean of 3.65 ± 0.49% of the
total explainable gain during cross validation on average
(see Figure 5A).
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3.2.2. Linear Stimulus Dependence
Including a linear dependence between the stimulus and the spike
response, we can account for an extra 15.5 ± 1.44% of explained
variability on training data and 5.00± 0.60% on test data.

3.2.3. Non-linear Stimulus Dependence
A large fraction of explainable variability was nevertheless not
yet captured by the non-stationary linear model (NS-LNP). We
therefore decided to quantify the non-linear interaction between
stimuli and RGC responses using the NS-PSTH model. We
observed a substantial increase of explanatory power of such
a model over the simpler model accounting only for linear
interactions and non-stationarity (mean gain = 29.21 ± 2.44%
on training data). In Figure 4C, most of the data points lie
above the 45◦ line, implying that NS-PSTH captures a greater
fraction of the gain for most cells, irrespective of cell type and
that the RGCs are highly non-linear in their responses. The
mean NS-PSTH model gain over NS-LNP on cross-validation
data is minuscule compared to the training data (4.33 ± 0.72%),
implying that the predictions of NS-PSTH do not generalize well
to unobserved data.

3.3. Differences in Response Variability
Between Different RGC Types
We also investigated the performance of our three different
models grouped by cell type (Figures 4B, 5B).

ON cells were more stable than both OFF and ON-OFF cells
(mean gain of the NS model was 9.23 ± 2.17%, 15.56 ± 3.82%,
and 14.28 ± 2.18% on training data for ON, OFF, and ON-OFF,
respectively, as shown in Tables 1, 2). ON-OFF cells were the
least non-linear cells (mean NS-PSTH gain = 24.51 ± 3.32%
vs. 34.79 ± 3.86%, and 27.14 ± 7.01% for ON and OFF cells,
respectively). This result was indeed surprising, as we would have
expected to observe a higher degree of non-linearity in ON-
OFF cells for their intrinsic property of responding equally to
both positive and negative stimuli. Moreover, we would have also
expected to observe smaller, if at all negligible, levels of non-
linearity in ON and OFF cells. On test data, the NS model had a
lower log-likelihood gain for ON cells (mean gain= 2.66±0.69%)
compared to OFF (gain= 4.71± 1.12%) and ON-OFF cells (gain
= 3.87 ± 0.64%)—implying that there is little information that
can be gleaned about the average firing rate in a given trial from
the knowledge of the firing rate in neighboring trials for ON cells.
Both NS-LNP and NS-PSTH performed worst on ON-OFF cells
(mean = 3.69 ± 1.01% and 2.92 ± 0.76% of total explainable
gain, respectively) with cross-validation compared to ON (mean
= 6.10 ± 0.84% and 5.56 ± 1.16% of total explainable gain) and
OFF cells (6.65 ± 1.70% and 4.99 ± 3.12% of total explainable
gain)—implying that ON-OFF cell responses are modulated by
processes that are independent of the stimulus.

4. DISCUSSION

Traditionally retinal prostheses have utilized large amplitude
electrical pulses to elicit visual percepts. Large amplitude pulses
are a natural choice as they can drive the retina with great fidelity.
However, large amplitude stimulation has also been associated

with indiscriminate retinal activation which can lead to an
overall reduction in restored visual acuity. To tackle this, recent
studies have demonstrated the ability to elicit electrically driven
responses in RGCs using subthreshold electrical white-noise
stimulation (Sekhar et al., 2016). Additionally, such stimulation
paradigms have helped uncover a diverse set of electrical input
filters that correlate well with visual cell type (Sekhar et al.,
2017; Ho et al., 2018). This diversity in electrical filters, raises
the possibility for cell-type specific stimulation, which would go
a long way in improving the restored visual acuity. However,
weaker stimulus pulses also typically run the risk of driving the
retina with less fidelity. Therefore, the central goal of this study
was to quantify how well subthreshold electrical stimulation is
able to drive the retina, and if diversity in electrical filters comes
at the expense of response fidelity. Finally in a broader scope, we
believe the methods used in this study and previous studies (such
as Sekhar et al., 2016, 2017; Ho et al., 2018), provide an overall
framework by which one can find a set of stimulation parameters
that are able to drive the retina with sufficient fidelity while still
maintaining a diversity in the elicited responses.

In order to quantify how predictable the responses of retinal
ganglion cells are, when stimulated electrically, we fit a hierarchy
of models and tested them both on held-out data (test data) and
on the training data. Performance on the training data constitutes
an upper bound (i.e., an optimistic estimate) on predictability;
performance on test data a lower bound (i.e., a pessimistic
estimate). Data constraints from limited recording lengths can
imply a substantial gap between these two bounds. While it
might seem undesirable that these two bounds are not closer
together, this discrepancy merely reflects the limitations of what
can be concluded from limited data in the presence of variability
and non-stationarity.

The model-performance measures calculated using the fits
from the training data quantify the degree to which different
sources of variability (i.e., non-stationarity, linearity and non-
linearity) are present in a given dataset. We found that, although
our hierarchy of models was able to capture some of the spiking
variability, a large fraction was left unexplained by the three
models, compared to previous studies using GLMs (e.g., Pillow
et al., 2005). While this may seem surprising at first, these earlier
studies used visual stimulation, which is much more effective
in driving neural responses. In addition, many previous studies
(Pillow et al., 2005; Truccolo et al., 2005) also used a neuron’s
own spike history to predict spiking activity. In separate analyses,
we also found that using spiking history lead to a modest increase
in model-performance. However, we did not pursue this further,
since the focus of this study, was not to provide a full description
of the temporal dynamics of observed variability of electrically
stimulated RGCs, but rather to quantify how much of this
variability could be attributed to the electrical stimulation alone,
i.e., to characterize how well we can expect to selectively drive
RGC activity using subthreshold electrical stimulation.

On average, we found that the NS-PSTH performs better
relative to NS and NS-LNP on training data, implying that the
RGCs are non-linear in their responses. On test data, the NS-
LNP model yields a greater gain in explained response variability
compared to NS-PSTH, implying NS-LNP generalizes better than
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NS-PSTH. This is not surprising since the NS-PSTH is a non-
parametric model and the degree to which it generalizes will
be determined only by how well it is regularized. Without a
strong prior, NS-PSTH will always overfit to the training data.
However, we could not identify a significant difference in the
source of variability (non-stationarity, linearity or non-linearity),
when comparing across the 3 cell types namely ON, OFF and
ON-OFF. In conclusion, our modeling framework allows us to
partition and quantify the different sources of variability in the
responses of the RGCs—they are highly non-linear, but some of
the response variability can be explained by a linear stimulus filter
and a trial-varying offset for those cells with clear STAs.

These results could be interpreted as being consistent
with a coding scheme of RGCs during prosthetic stimulation
which has both linear and non-linear components. Moreover,
the performance of the three models was comparable across
the different ON, OFF, and ON-OFF cell types that were
examined. Our study joins recent work reviewed in Rathbun
et al. (2018)—in particular, a study by Maturana et al.
(2018)—in using statistical modeling to understand how RGCs
encode for electrical stimulation. Complementing the work on
suprathreshold encoding by Maturana et al. we have examined
the encoding of subthreshold stimuli. Although suprathreshold
stimuli drive the retina with greater fidelity, they have the
disadvantage of causing indiscriminate retinal activation. On the
other hand, subthreshold stimuli have the advantage that they
only weakly drive the cells, and thereby encourage multipulse
integration leading to a reduction in indiscriminate single pulse
activation. This in turn should encourage a cell to respond
preferentially to stimuli that more closely match its intrinsic
filter, therefore helping to uncover differences in the responses
of different cell types to electrical stimulation (Sekhar et al.,
2017; Ho et al., 2018). While these are points in favor of
a subthreshold stimulus paradigm, it has the disadvantage of
causing high response variability across stimulus trials, since the
cells are only being weakly driven. This is evidenced by the
large unexplained variance shown in Figure 3. Furthermore, to
recover STAs with subthreshold electrical stimuli, we required
long recording times over which non-stationarity played a larger
role. Explicitlymodeling a non-stationary component in the RGC
response by means of the GLM framework provided an effective
workaround to the major limitation that adaptation effects would
have had in characterizing RGC response reliability to repeated
electrical stimuli. We were hence able to quantify how well three
separate sources (Figure 3E) could account for the variability
observed in the RGC response, even for those RGCs which
responded with low firing rates to electrical stimulation.

In summary, the subthreshold noise stimulus used here was
intentionally designed as a gentle alternative to the much more
aggressive suprathreshold pulses that are typically used. While
this has allowed us to recover a variety of different STAs which
could potentially be used for preferential stimulation, it has
the undesirable consequence of intrinsically producing a much
weaker stimulus-response correlation. This in turn limits our
ability tomodel the spike train activity. It should be noted that the
low predictive power of our GLMs cannot be due to deficiencies

in the models, since the PSTH model by construction fully
captures all stimulus-response correlations. From these results,
we surmise that the particular subthreshold stimulation used
here only drives RGCs very weakly. Therefore, future efforts
should be geared toward finding stimulus parameters that yield
better SNR (stimulus-response correlation) whilst still allowing
for a diverse set of STAs by not overwhelming the retina with
suprathreshold pulses. Some options to consider would be, non-
Gaussian stimulus statistics or Gaussian white noise stimuli
with higher means and narrower widths. However, it should be
remembered that, if the mean of stimulus distribution is too
high, the integrative subthreshold mechanisms revealed with this
stimulus would be drowned out.

In conclusion, the methods and results of this study,
add to a nascent body of work that provides a systematic
and principled manner of identifying appropriate stimulus
parameters for different cell classes based on factors, such
as coding regime, reduction of indiscriminate activation and
response reliability.
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