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The success of surgical resection in epilepsy patients depends on preserving functionally
critical brain regions, while removing pathological tissues. Being the gold standard,
electro-cortical stimulation mapping (ESM) helps surgeons in localizing the function
of eloquent cortex through electrical stimulation of electrodes placed directly on the
cortical brain surface. Due to the potential hazards of ESM, including increased risk
of provoked seizures, electrocorticography based functional mapping (ECoG-FM) was
introduced as a safer alternative approach. However, ECoG-FM has a low success
rate when compared to the ESM. In this study, we address this critical limitation by
developing a new algorithm based on deep learning for ECoG-FM and thereby we
achieve an accuracy comparable to ESM in identifying eloquent language cortex. In our
experiments, with 11 epilepsy patients who underwent presurgical evaluation (through
deep learning-based signal analysis on 637 electrodes), our proposed algorithm
obtained an accuracy of 83.05% in identifying language regions, an exceptional 23%
improvement with respect to the conventional ECoG-FM analysis (∼60%). Our findings
have demonstrated, for the first time, that deep learning powered ECoG-FM can
serve as a stand-alone modality and avoid likely hazards of the ESM in epilepsy
surgery. Hence, reducing the potential for developing post-surgical morbidity in the
language function.

Keywords: deep learning, electro-cortical stimulation mapping, electrocorticography, real-time functional
mapping, eloquent cortex localization

INTRODUCTION

Epilepsy is a chronic neurological disorder characterized by recurrent, unpredictable seizures with
over 65 million reported cases around the world (Patricia, 2018). Approximately 20% of these
patients are diagnosed with drug-resistant epilepsy. The only possible treatment in a majority of
these cases is surgical intervention. During epilepsy surgery the pathological brain tissue, which is
associated with seizures, might be surgically removed. While epilepsy surgery is a curative option
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for drug-resistant epilepsy, neurosurgeons need to avoid
removing tissues associated with language, sensory, and motor
functions. This calls for an accurate identification and localization
of these functionally significant brain regions. The surgical
procedure can be performed more accurately with a precise
localization for preventing any corresponding post-surgical
neurological/functional deficits. Toward this end, this study
is aimed toward developing an innovative approach for the
mapping of language cortex. This would ensure an improved
and sustainable post-surgical quality of life for patients presented
for brain surgery.

Electro-cortical stimulation mapping (ESM) has been
considered as the gold standard for functional cortex localization
in epilepsy surgery. ESM is an invasive procedure that uses
electrodes placed on the surface of the brain (grid electrodes)
or within the brain (depth electrodes). It is considered vital for
reducing the risk of language deficits post-surgery and therefore,
expanding surgical options. ESM has a long history of serving
as the main modality for pre-surgical functional mapping
of epilepsy patients. Acute electrical cortical stimulation was
successfully performed in 1950 during epilepsy surgery by
Penfield and colleagues (Penfield and Rasmussen, 1950; Penfield
and Roberts, 1959). During ESM, pairs of electrodes covering the
region of interest (in our case – eloquent cortex) are stimulated
by delivering a brief electric pulse. The stimulation temporarily
disables/inhibits the cortical area of interest (creates a temporary
functional lesion). Behavioral changes such as unusual sensation,
involuntary movements, or language impairments (i.e., speech
paucity), observed during stimulation indicates that the tested
area is essential to that task performance, and its resection might
lead to functional deficits. Ojemann et al. (1989) studied language
localization using ESM, on a large dataset of 117 patients. The
study found that there was sufficiently large individual variability
in the exact location of language function and concluded that
there was a need for an improved language localization model.
Much later, more standard and effective tasks for expressive
language localization, such as verb generation (Ojemann et al.,
2002) and picture naming (Edwards et al., 2010), were tested
with the increased use of ESM.

However, one major drawback of ESM is its potential to
induce after-discharges (Pouratian et al., 2004), which could
result in seizures. Since stimulation provoked seizures can occur
rather frequently during ESM procedures (Bank et al., 2014),
ESM tests often need to be repeated, leading to extended
time and effort from medical professionals (neuropsychologists
and/or neurologists). In some cases, the ESM procedure
cannot be completed due to repeated seizure activity and/or
its consequences.

The current limitations of the ESM have created a strong
need for establishing other independent functional mapping
modalities to identify eloquent cortex. Unfortunately, as of
now, none of the existing neuro-imaging modalities are flexible
enough to provide functional mapping results in real time in
the operating room. Therefore, the search for a stand-alone
methodology for functional eloquent cortex localization has been
continuing and resulted in attempts to use electrocorticography
(ECoG) as a viable alternative. ECoG is the invasive version of

electroencephalography (EEG) and sometimes also referred to as
intracranial encephalography, demonstrating excellent temporal
resolution like EEG. Importantly, ECoG equipment is portable
and can be utilized both at the patients’ bed-side and intra-
operatively. Unlike EEG, it overcomes the problem of poor spatial
resolution, since the activity of interest is recorded directly from
the cortical brain surface. It also avoids the problem of electrical
signal attenuation in EEG caused by the signal propagation
through tissues surrounding the brain. To record ECoG signals, a
craniotomy (removal of the skull section: bone flap) is performed
and the dura is opened to access the brain tissue. The arrays of
grid of electrodes (Figure 1A, left) are then placed on the exposed
cerebral cortex. Following this, ECoG-based functional mapping
(ECoG-FM) is performed, while task-based responses from grid
electrodes are recorded. Since there is no external electrical
stimulation during this process, ECoG-FM is considered as a
safer alternative to ESM. When performed in real time (Schalk
et al., 2008), ECoG-FM procedure can be referred to as real-
time functional mapping (Leuthardt et al., 2007; Miller et al.,
2007; Kapeller et al., 2015; Prueckl et al., 2017b). Figure 1A
demonstrates the general setup for ECoG-FM recordings.

Although ECoG-FM has its advantages when compared with
ESM, the detection accuracy has been low and limits its use in
clinical settings for epilepsy patients. It must be noted, that the
implanted electrodes in ECoG-FM have the potential to provide
signals at a high sampling rate. A data driven approach which
utilizes this rich source of data present within the recorded signals
could benefit the mapping of functional areas. Our proposed
method aims to achieve this goal by utilizing time and frequency
domain features extracted from signals recorded using subdural
electrodes for ECoG-FM. We propose to utilize deep learning-
based methods and report significant performance in classifying
electrodes as positive and negative response channels in response
to a language mapping task for epilepsy patients.

Related Works and Existing Critical
Challenges
ECoG-based approaches have been used successfully for motor
cortex localization (Towle et al., 1998; Leuthardt et al., 2007;
Miller et al., 2007; Qian et al., 2013; Vansteensel et al.,
2013). In comparison, the localization of functional language
cortex appears far more complex and challenging (Alkawadri
et al., 2018). Current localization approaches are based on
detecting positive response channels (called active channels or
active electrodes) among the set of all channels. A baseline
recording of each channel at resting-state is used to determine
signal characteristics at specific frequency ranges. Most often,
power of the ECoG signal lies within the alpha (α), beta (β),
and (primarily) high gamma (high-γ) (70–170 Hz) frequency
bands (Schalk et al., 2008; Prueckl et al., 2013). These values
are compared with the signal power measured during the
execution of language task. The results of this approach for
language mapping have not achieved desirable accuracy. For
example, Arya et al. (2015) studied high-γ response from ECoG
recording of 7 patients during spontaneous conversation. The
results showed low specificity and accuracy. In a follow up
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FIGURE 1 | Overview of (A) the language localization framework with ECoG-based functional mapping (ECoG-FM) approach. ECoG signal recording, data transfer,
storage, research and clinical paths, and tasks are illustrated. ECoG signals are obtained in response to task-related changes (e.g., picture naming) from grid
electrodes implanted on the cortical surface in the subdural space, (B) the proposed ECoG signal classification approach for each channel on the cortical surface in
the subdural space. PRC, Positive Response Channel; NRC, Negative Response Channel. Each individual step is considered as a “module” in the overall system
design. RNN, Recurrent Neural Network.

study, Arya et al. (2018b) demonstrated high-gamma modulation
for the story-listening task and achieved high specificity, but
sensitivity remained low. Korostenskaja et al. (2015) showed that
similar to the results for motor cortex, ECoG-FM can be used
for eloquent language cortex localization as a complimentary

technique with ESM, but not as a stand-alone modality.
It has also been demonstrated that ECoG-FM can be used
as a guiding tool for ESM, thereby reducing the time of
ESM procedure and decreasing the risk of provoked seizures
(Prueckl et al., 2017a,b).
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Despite their potential, the current ECoG-FM approaches
are not found capable enough to be used as a stand-alone
methodology for accurate language mapping. To address these
challenges and provide ECoG-FM more independence in
eloquent language cortex localization, we fill in the following
currently existing methodological gaps:

i Available approaches compare a channel’s signal with its
resting-state (baseline) recording and do not compare the
channels’ characteristics to other recorded channels.

ii The signal characteristics in the frequency range beyond
high-γ band have not been explored yet to the best of our
knowledge.

There has been limited work on validation of ECoG-FM for
language cortex localization; hence, there are more evidences
needed for utilization of ECoG-FM in the clinics.

In our previous works (Korostenskaja et al., 2017;
RaviPrakash et al., 2017), we showed the feasibility of
utilizing conventional machine learning methods for channel
response classification by using the whole signal spectrum
(not limited to α, β & high γ) and without using the baseline
recording. This was one of the first machine learning based
approaches in this field with strong results and demonstrated
the potential of ECoG-FM signal to be analyzed more
accurately compared to conventional signal processing based
descriptive methods.

Summary of Our Contributions
We propose an innovative deep learning algorithm for accurately
classifying the channel response of eloquent cortex, alleviating
the current challenges of ECoG-FM. We also show the
effectiveness of using deep learning methods in problems
with limited number of patients but sufficient samples to
achieve desired performance. Our main contributions are as
follows:

1. We have used the complete ECoG signal frequency
spectrum for the first time to the best of our knowledge to
identify signal characteristics for mapping language cortex.

2. Our innovative deep learning models achieve state-of-the-
art performance in language cortex mapping using ECoG-
FM. We have achieved 82% sensitivity in classifying both
positive and negative response channels.

3. We have shown that deep learning models can be
successfully used in studies even with a limited number of
subjects and low dimensional (1D) data. The requirement
for sufficient data to train our deep learning model is
satisfied as we show that the number of data points (due
to a dense grid placement and high-resolution signal) are
adequate and our experimental results add credence to
these findings.

Our results have indicated that with the proposed deep
learning-based classification model, ECoG-FM can be reliably
used as a standalone technique for functional language mapping.

MATERIALS AND METHODS

An overview of the proposed system is illustrated in Figure 1B.
We pre-processed the ECoG signals using temporal filtering such
that the selected samples were synchronized with the start and
end points of the task resulting in equal length blocks. We then
divided the equal length ECoG signal blocks into overlapping
sub-blocks of data. Our aim was to learn discriminative signal
patterns and eventually reduce the computational load (Step 1).
We learned different sets of signal features independently:
frequency domain (i.e., auto-regression) and time domain (deep
learning-based features) in Step 2 and Step 3, respectively.
After we combined the learned features, we trained a recurrent
neural network (RNN), a class of deep learning algorithm
suited for analyzing sequential data, to classify sub-blocks of
signals (Step 4). Finally, we used the majority voting technique
to combine these sub-block labels and determine an overall
Positive Response Channel (PRC) or Negative Response Channel
(NRC) label (Step 5). A detailed block diagram showing the steps
involved in the proposed methodology is shown in Figure 2. Our
proposed prediction models were trained and tested using Keras
with TensorFlow backend on servers equipped with Nvidia Titan
X with 12 Gb graphics memory, 2.7 GHz CPU, 64 GB RAM. In the
following sub-sections, we describe each module of our proposed
system in detail.

Dataset
The study was approved by the Institutional Review Board (IRB)
at AdventHealth Orlando, Orlando, United States. We recruited
eleven patients with drug-resistant epilepsy, who underwent pre-
surgical evaluation with ECoG grid implantation. All patients
provided their written informed consent to participate in this
study. The patients were teenagers and adults with an average
age of 23.18 ± 11.61 years. Varying number of electrodes were
tested for the patients for a total of 637 electrodes across all
patients (see Supplementary Table 1 for summary of the patient
demographics). Patients were recruited under IRB approved
protocol #276487. Patients diagnosed with Epilepsy (13 years or
older) underwent ESM as part of a standard of care pre-surgical
evaluation were included in this study. Exclusion criteria were the
following: Younger than 13 years old, having audiogenic reflex
epilepsy, uncorrected vision, uncorrected hearing, and English
language as not a primary (dominant) language (as determined
through neuropsychological evaluation).

Pre-processing ECoG Signal (Step 1)
The signals recorded from the patients used implanted electrodes
and hence were not affected significantly by artifacts arising from
head movement. To ensure that sufficient data was recorded
for training the deep learning models, the subjects were made
to listen to five different stories during a single trial. To
prepare the recorded data for deep learning-based analysis, non-
task/control time points in the signal were eliminated using
temporal filtering. Hence, the spontaneous activity recordings
before the start and trailing signals at the end of the experiment
were discarded from the blocks. These synchronized and uniform
length blocks were fed to the deep networks for functional
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FIGURE 2 | A overview of the steps involved in the proposed methodology showing ECoG data recording in response to story listening task, time and frequency
domain feature extraction, different training paradigms and majority voting to classify positive and negative response channels. AT, Active Time; AR, Auto Regressive;
CT, Control Task; EF, Early Fusion; LF, Late Fusion; PRC, Positive Response Channel; NRC, Negative Response Channel.

channel classification (see Supplementary Material for more
details about this step).

Time Domain RNN (Step 2)
Our goal was to find discriminative signal patterns from ECoG
signals, which are time varying and non-stationary 1D sequences.
They are non-stationary because task based ECoG recordings
can have signal statistics which depend on the time relative
to the events. Inspired by the effectiveness of recurrent neural
networks in sequence classification tasks in different domains
(Graves and Schmidhuber, 2005; Baccouche et al., 2012; Wang
et al., 2016), we have developed RNN based deep neural network
algorithms to extract discriminative features from time-domain
ECoG data. We hypothesized that limitations of the conventional
spectral (frequency-based) or time-based signal analysis methods
can be overcome with RNN based methods. In RNNs outputs
from previous time steps are taken as input for the current
time step, thereby forming a directed cyclic graph. RNNs thus
learn the relationships in sequential data thereby retaining higher
contextual information.

We first used popular EEG features (Hjorth, 1970; Pollock
et al., 1990; Inuso et al., 2007) to learn signal characteristics
from the ECoG signals. A sliding window approach was
applied to extract features, which were then concatenated into
a single feature vector to represent the control and active-
task blocks in the signal. We have 10 blocks of ECoG data
(active + control) for each electrode. This amounts to a
recording of 360,000 samples per channel (10 × 30 s × 1200
samples/s = 360,000). Following basic data pre-processing
steps, a sliding window of width 600 samples (i.e., 0.5 s)
and a stride of 100 samples were used on each data block
(active/control). The extracted features included mean, skew,
kurtosis, peak to peak value, and Hjorth values (details in
Supplementary Material).

The time domain features were fed to the learning
module illustrated in Figure 3. The complete ECoG signal
contained both control and active task signals, thus; the
sub-blocks of control signals were ignored and the input
to this time domain module was sub-blocks of active task
signals. Recently, 1D convolutional networks have been shown
to perform well in time series forecasting and classification
tasks (Goodfellow et al., 2018; Zabihi et al., 2019). We
designed the module to have two paths comprising of 1D
convolutional layers and long-short term memory (LSTM)
blocks. LSTM, introduced in 1997 (Hochreiter and Schmidhuber,
1997), is a type of RNN that has the ability to learn
long-term dependencies of data. In literature, LSTM and its
variants have primarily been used in 1D sequence classification
tasks (Liu et al., 2017; Nowak et al., 2017) and prediction
tasks (Flunkert et al., 2017; Gammulle et al., 2017). In
our experiments, we used multiple LSTM layers in different
exploratory configurations to learn a more complex feature
representation of the input signal.

Frequency Domain Features (Step 3)
One of the objectives of our study was to analyze multi-domain
(time and frequency independently) and hybrid-domain (time
and frequency combined) signal characteristics. This kind of
thorough comparison has never done before to the best of our
knowledge for ECoG-FM. In this step (Step 3), we focused
on the spectral characterization of signals. Conventional ECoG
signal classification approaches are based on frequency-domain,
where spectral analysis of the signal is performed to identify
the channel response. Traditionally, spectral estimation of the
signals is performed by fitting a parametric time domain model
to the ECoG signals. One of the most commonly employed
models/approaches in this category is the autoregressive model.
An AR model for a discrete signal x[n] is represented as,
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FIGURE 3 | Deep network structure for extraction of time domain features from the input signal. Note that these features are combined with frequency domain
features (Auto-Regressive) later for final prediction of the channels. LSTM, Long Short Term Memory.

x [n] = −
k=p∑
k=1

ap
[
k
]

x
[
n− k

]
+ w [n] , (1)

where ap
[
k
]

are the AR coefficients, p is the order of the
AR model, w[n] is a zero mean white noise process with a
variance ρ. Once the model in Eq. 1 is solved, the resulting AR
parameters were used for characterization of the ECoG signal
from frequency-domain perspective.

Methods to solve for the AR parameters are diverse,
we used the reflection coefficient estimation-based methods
(see Supplementary Material for details of the parameter
selection procedure).

Fusion for Hybrid Domain (Step 4)
Using LSTMs in Step 2, we learned a different set of features
(i.e., time domain) than the AR features that were generated
in Step 3. In domain fusion step (Step 4), these two (largely)
complimentary features were combined to obtain a hybrid signal
representation model with a new deep network setting, Domain
Fusion Network (DFN) (See Figure 4). Although the fusion of
features from the time and frequency domain can be done in
multiple ways (including stacking, element-wise multiplication,
and concatenation), we used a concatenation approach to get
full benefit of each domain (time vs frequency). In stacking,
the feature vectors can be stacked together to create a feature
matrix. Alternatively, a dot product of the feature vectors can be
computed to create a single feature vector. This can be interpreted
as weighting each feature in one domain by the other domain.
With the stacking and element-wise multiplication approaches,
the size of the feature vectors from both domains need to be
the same. Since time and frequency domain features used in
our proposed methodology had different dimensions, employing

the concatenation approach enabled us to efficiently utilize these
features. In a different perspective, such approaches have been
shown effective in modern deep learning architectures such as
DenseNet (Huang et al., 2017).

In concatenation, we assumed independence of features;
hence, we did not use element-wise multiplication or other
approaches for data merging. Since convolution helps identify
local patterns and reduce redundant information in the data, the
complete feature vector (after concatenation) was then passed
through multiple layers of 1D convolutions with an activation
function, to weight each feature based on its contribution
to the classification problem (PRC vs NRC). Following the
1D convolution layers, the output feature maps were spatially
averaged using Global Average Pooling (Lin et al., 2013), making
the DFN more robust to spatial translations of the input data and
introducing structural regularization to the feature maps. Finally,
we inserted a single fully connected layer into the DFN and used
a sigmoid activation to perform the final classification.

Majority Voting (Step 5)
The output of the domain fusion model was a label for
the input signal, which was a sub-block. Signal from each
channel/electrode was made up of hundreds of sub-blocks of
the signals with reasonable overlapping. Therefore, for classifying
a channel as either PRC or NRC, we hypothesize that the
output that is observed more commonly is assigned as the
final label. For this purpose, we apply majority voting on
the output for each sub-block. For instance, if a channel
included 354 sub-blocks and more than 50% of sub-blocks
indicated a positive response, that channel was labeled as a
PRC. As a rule, whenever the number of negative and positive
responses are equal, the channel will not be assigned any
label. Although, we did not observe any such channel in
our experiments.
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FIGURE 4 | Deep network structure of the fusion module. Auto regressive (AR) (i.e., frequency) features (orange) and time-domain features (green) are concatenated
and classified. FC, Fully Connected.

EXPERIMENTS AND RESULTS

Task Paradigm
ECoG signals from the implanted subdural grids are split into
two streams: one for continuous clinical seizure monitoring and
the other for ECoG-FM (Figure 1A). The tool used to record
the incoming ECoG signal was BCI2000 (Schalk et al., 2008).
A baseline recording of the cortical activity was first acquired
to capture the “resting-state” neuronal activity. Following this
baseline recording step, paradigms similar to those employed
in ESM or functional magnetic resonance imaging were used
to record the task-related ECoG signal for functional mapping
(Korostenskaja et al., 2014a). Figure 5 shows one such paradigm,
mimicking the exact details of the experimental setup we have
used for the language comprehension task. Alternate 30 second
blocks of ECoG data during “control” and “active” conditions
were recorded continuously at a fixed sampling rate of 1,200 Hz.

For the language comprehension task, the active condition
implies listening to a story, while the control task involves
listening to broadband noise (Korostenskaja et al., 2014b).
For the active condition (i.e., listening to a story), a different
story was selected for each block in order to keep the patient
attentive and responsive. Both control and active sequences
would activate sense of hearing, but the story listening task
will particularly activate the language function. We hypothesize
that this would suffice in eliciting the desired response for
mapping eloquent cortex related to language function and our
results have verified this hypothesis. For this purpose, the system
recorded information from 128 ECoG channels (128 electrodes
in Figure 5) by using g.USBamp bio-signal amplifiers (g.tec
Medical Engineering GmbH, Austria) with subdural ground and
reference electrodes.

Training Paradigms
Our overall goal was to successfully (and automatically) identify
positive response channels and negative response channels in
ECoG-FM data using new machine learning models, specifically
based on deep neural networks. The ground truth (i.e., reference
standard) was inferred from the gold standard ESM results.
Owing to the large imbalance in the number of PRCs and NRCs
(NRCs outnumbering PRCs by 3:1), we randomly selected equal
number of NRCs to balance the data and avoid potential data
imbalance problem when training deep learning models.

Each channel’s signal comprised of blocks of active task data
and control data, where each active task block was from a
different story. The discriminative power of these stories in
the classification task was unknown. There is a possibility that
features from one story could play a more significant role than
others. Additionally, the discriminative power of any particular
feature is unknown. To ascertain the role of these, we divided our
experimental evaluation approaches into three main categories
for data classification. Each approach depended upon the way
active task data was included, and the features used in the
training process. This structured experimental procedure helped
us in determining the usefulness of each component of the
signal and provided insights into the response of brain regions
(through channel responses) to different signals. We performed
experiments with different features and architectures.

Our Proposed Deep Network
Architectures
In task-based experiments, a response is generally expected only
during the active task period and not in the control or rest
period. We used fully convolutional network and long short-
term memory architectures in the time domain module, since
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FIGURE 5 | Subdural grid localization and position of ECoG electrodes (128 of them) on the brain surface of individual patient are illustrated (left). For a sample of
1 min language test, signals from both control and active tasks are illustrated (right).

these have shown success in various time-series classification
problems (Karim et al., 2017, 2019). We built our network by
first analyzing the effect of using time domain features during
the active task (represented as Active Time- AT). We tested
our proposed time domain module by varying the network.
We used a fully convolutional network (represented as AT1)
and then added LSTM module to the network (represented
as AT2). For frequency domain analysis, we added the auto
regressive (AR) features to the frequency domain module by
passing it through a fully connected layer (represented as
AT-AR1). Figure 6A shows the architectures (the superscripts
indicate the variation within an architecture) including AT1,
AT2 and AT-AR1. In the domain fusion module, we tested
different combinations of 1D convolutions (represented as AT-
AR2) and fully connected layers (represented as AT-AR3). We
also varied the depth of the frequency domain module by adding
an additional fully connected layer in the network (represented
as AT-AR4). The network structures including AT-AR2, AT-AR3,
and AT-AR4 are shown in Figure 6B. We empirically determined
the number of epochs required to train the network such that
to avoid overfitting. Our experimental paradigms used time and
frequency domain features individually and also in a hybrid
manner (combined). We also analyzed the effect of active and
control task data.

Model Validation
In supervised machine learning approaches, where a model
is trained using ground-truth labels, the goal is to maximize

predictive accuracy. However, therein lies the risk of memorizing
the data rather than learning the optimal features. This problem
of memorizing the data or learning the structure of the data
to be the noise in the data is often referred to as overfitting
(Dietterich, 1995). It is important for a classification model to
be able to generalize to unseen data and avoid the problem
of overfitting. The method of testing how the analysis/model
generalizes to an independent test dataset is known as cross-
validation. When a completely independent dataset is not
available, as is generally the case, the available data is split
into training data and validation/test data. There are different
types of cross-validation approaches such as leave-one-out cross-
validation, hold-out method, k-fold cross-validation, to name a
few (James et al., 2013).

Shuffle-Split Cross Validation
Previously, due to the time-consuming nature of training a deep
learning model, we applied the hold-out method to validate
our proposed models (Arlot and Celisse, 2010). In this method,
the model is trained on a part of the available data, while
the remaining data is held for testing/validating the model.
For effectively testing the generalization and robustness of our
proposed models, we validated them using the shuffle-split
cross-validation approach. In the shuffle-split cross-validation
method, the data is randomly sampled and split into training
and testing splits iteratively, similar to the hold-out method.
The results are averaged across the number of iterations. This
can be seen as repeating the hold-out method k times, such
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FIGURE 6 | Deep network structure of (A) AT1, AT2 (with added dotted green) and AT-AR1 (with added dotted red and green) and (B) AT-AR2, AT-AR3 (replace
fusion model with the dotted red model) and AT-AR4 [with added fully connected (FC) layers in dotted box]. AT, Active Time; AR, Auto Regressive; LSTM, Long Short
Term Memory.
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TABLE 1 | Channel classification accuracy for different network architectures.

Model Block
accuracy %

Sensitivity % Specificity % Accuracy %

AT1 63.33 83.33 58.33 70.83

AT2 65.83 66.66 74.99 70.83

AT-AR1 77.5 91.67 58.33 74.99

AT-AR2 80.83 99.99 66.67 83.33

AT-AR3 83.33 91.67 74.99 83.33

AT-AR4 83.33 91.67 74.99 83.33

Comparing active and control data (training paradigm-I)

AT-AR2 75.93 77.97 79.66 78.81

AT-AR3 78.13 86.44 72.88 79.66

CT-AR2 73.9 76.27 72.88 74.58

CT-AR3 73.05 72.88 72.88 72.88

AT, active time; AR, auto regression; CT, control time.

that the data for training and validation is randomly sampled
each time. The use of shuffle-split method allows sampling
different data combinations rather than a single sampling as
in k-fold cross-validation. Since the blocks were randomly
assigned to the training and test folds, we ensured that no
data from an electrode (channel) was represented in both
training and testing folds simultaneously. Hence, if a block
of data was assigned to a particular set (training/test), then
all blocks belonging to that channel were assigned to the
same (training/test) set. This ensured a fair evaluation with
better generalization accuracy and helped in avoiding overfitting.
For 30-fold cross validation, we repeated the experiments 30
times and used each of these distinct and non-overlapping
training-testing sets to evaluate our model accuracies. Prediction
accuracy was then calculated by averaging the results of these
30 experiments. It took an average of 30 h to train the
models for 30-fold cross validation. Although it should be noted
that testing a channel would be in real time, once a trained
model is available.

Training on Individual Features on Active
Task Data (Training Paradigm-I)
In this approach, we assumed that the channel response
was similar for different stimuli (story) used in this study.
Our experimental paradigm consisted of five different stories
and thus, in this approach, no distinction was made with
regards to the story. All of the active task data (i.e., five
different story tasks) from a channel were used together
for training the network. Among the time domain features
(See section “Materials and Methods”), we found using
random forest method that activity feature gave the best
results. Therefore, all our proposed deep learning architecture
(Figure 6) were first tested using the activity feature (Table 1).
The addition of LSTM improved the performance of the
time domain module. This was further improved by the
addition of the frequency domain features using the domain
fusion module. We found that increasing the depth of the
frequency domain module did not have any obvious benefit in
classification performance.

TABLE 2 | Channel classification performance parameters (with mean and
variance) for active task data with individual hand-crafted time domain features
using the AT-AR3 model (training paradigm-I).

Features Sensitivity % Specificity % Accuracy %

µ ± σ µ ± σ µ ± σ

Mean 83.33 ± 10.09 81.11 ± 9.61 82.22 ± 6.71

Skew 81.67 ± 9.47 81.67 ± 9.95 81.67 ± 5.54

Kurtosis 82.78 ± 11.97 79.17 ± 10.03 80.97 ± 7.81

P2P 82.22 ± 10.91 80.00 ± 9.77 81.11 ± 7.11

Activity 82.22 ± 9.31 79.44 ± 10.70 80.83 ± 7.88

Mobility 84.17 ± 9.22 81.11 ± 8.85 82.64 ± 6.55

Complexity 84.17 ± 8.70 79.44 ± 10.70 81.81 ± 6.67

Bold values represent the best performance.

We also tested our hypothesis that the story listening task
(active task) was more discriminative in identifying the eloquent
cortex. To compare information present in the active and
control task data, we replicated our best performing models
(AT-AR2 and AT-AR3 ) and fed it with control task data
(represented as – CT-AR2 and CT-AR3, where CT represents
control time). We observed that sensitivity of the control data
model was lower than that of active data model, indicating
a lower discriminative power (Table 1) and confirmed our
hypothesis. To identify the best features for the channel
classification task, we fed the best performing model (AT-
AR3), with different hand-crafted features and performed cross-
validation. The performance with different features was found
to be similar (Table 2). The mobility feature showed the best
performance with high sensitivity and accuracy compared to
the other features.

Training With Multiple Features on Active
Task Data – Feature Fusion (Training
Paradigm-II)
We hypothesized in this experiment that different features can
provide complementary information and can be combined to
enhance the model performance. The top performing features
from individual feature training (Table 2) – mobility, skew,
mean, peak-to-peak (P2P), were used to test the hypothesis.
The other three features were not used on the basis that
they had a marginally lower specificity. Different approaches
to feature fusion were tested in the form of early fusion
and late fusion. In the early fusion approach, different
features were used as input channels to the best performing
network architecture (AT-AR3). In late fusion, we tested
two different approaches: first, separate time domain models
were retrained for each hand-crafted feature, and a single
frequency domain module was trained. The domain fusion
module was used to combine these time and frequency
domain modules (represented as AT-AR3-LF1). Secondly,
we experimented by combining the frequency domain
module prior to the feature fusion layer (represented as
AT-AR3-LF2). The performance of these models is presented
in Table 3.
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TABLE 3 | Channel classification performance parameters for different approaches
using feature fusion from time and frequency domains (training paradigm-II).

Model Sensitivity % Specificity % Accuracy %

µ ± σ µ ± σ µ ± σ

AT-AR3-EF 79.99 ± 9.76 83.89 ± 11.37 81.94 ± 6.48

AT-AR3-LF1 82.22 ± 10.70 80.83 ± 9.42 81.53 ± 7.43

AT-AR3-LF2 85.83 ± 7.80 80.27 ± 11.07 83.05 ± 6.35

AT, active time; AR, autoregressive; EF, early fusion; LF, late fusion. Bold values
represent the best performance.

TABLE 4 | Channel classification performance (mean and variance) for individual
active task data, using each story independently (training paradigm-III).

Features Sensitivity % Specificity % Accuracy %

µ ± σ µ ± σ µ ± σ

Mobilitystory 85.55 ± 10.07 79.44 ± 10.91 82.5 ± 6.21

Meanstory 83.61 ± 10.42 78.88 ± 11.53 81.25 ± 7.35

Activitystory 83.05 ± 9.73 80.55 ± 11.45 81.8 ± 6.93

Bold values represent the best performance.

Training With Individual Features on
Individual Stories/Active Task Data
(Training Paradigm-III)
In previous experiments so far, we assumed that the channel
responds in a similar manner to different stimuli (stories).
However, it is plausible that the channel may respond differently
to different stimuli. In this training approach, we now assumed
that the channel responds differently to different stimuli
(stories). The task paradigm consisted of five different stories
corresponding to five different task blocks. We hypothesized
that PRCs respond differently to the NRCs for each of these
stories. We separated the signals based on the story and train
the network in a similar manner as in section “Training With
Multiple Features on Active Task Data – Feature Fusion (Training
Paradigm-II).” Each story was trained with its own time domain
and frequency domain modules using the AT-AR3 network.
These different networks were then combined and fed through
a fully connected layer. Deep networks with different features as
inputs were trained and the performance is compared in Table 4,
where the features column shows the particular value (mobility,
mean, and activity) computed for each story.

DISCUSSION AND CONCLUDING
REMARKS

In this paper, we proposed novel deep learning architectures
to classify the channel response of ECoG signals. The results
showed the state-of-the-art classification accuracy of 83.05% with
high specificity and sensitivity of 80.3 and 85.8%, respectively, in
determining whether the channel was positive (has a response)
or negative (has no response) in relation to the task stimulus.
The different features and fusion approaches have given us the
flexibility in maximizing different metrics, where as an example
we can improve the specificity to 83.9% (with a 1% drop in

accuracy). In general, with AT-AR3-LF2 is our best performing
model with values >80% for all performance metrics including
accuracy, sensitivity and specificity. In a feasibility study toward
using machine learning for ECoG-FM, a random forest classifier
was used in detecting positive and negative response channels
with an accuracy of 78% (RaviPrakash et al., 2017). Traditionally,
the accuracy of ECoG-FM is high for mapping sensory and motor
function, but relatively low for language modality. On an average,
ECoG functional language mapping had a lower sensitivity (62%)
and higher specificity (75%) to detect language-specific regions
[for a comprehensive review, see Korostenskaja et al. (2014b)].
This is in contrast to the results for hand motor (100% sensitivity
and 79.7% specificity) and hand sensory (100% sensitivity and
73.87% specificity) ECoG-based mapping (Kapeller et al., 2015).
The results of our current study demonstrate that the accuracy
for mapping eloquent cortex using ECoG-FM can now be
comparable to both sensory and motor ECoG-FM accuracies.
The language ECoG-FM accuracy values we have achieved are the
highest among those reported so far (Arya et al., 2018a). Although
a number of studies have demonstrated successful utilization of
the ECoG-FM as a complimentary tool for ESM (Prueckl et al.,
2017a,b), there was not enough evidence to support the use of
ECoG-FM as a stand-alone methodology for functional language
mapping due to its relatively low accuracy compared with ESM
(Korostenskaja et al., 2014b; Kapeller et al., 2015). The outcome
of our research has indicated the potential of ECoG-FM, to
be considered as a stand-alone modality for eloquent language
cortex localization. Our experimental results show performance
comparable to what is achieved with ESM for eloquent cortex
mapping. Based on this we believe that with our trained models
the proposed scheme can be used independent of ESM in surgery
planning. To establish the method as ready to be used in clinical
practice, a patient/subject-wise analysis followed by blind test
evaluation on the models will be performed as we continue to
collect more clinical data.

It is possible that some features of the ECoG signal, reflecting
the complex nature of language processing, were omitted from
consideration when restricting the language ECoG-FM analysis
to the gamma frequency band only. Expanding analysis to the
whole spectrum of frequencies in our study, therefore, has
exceeded the results gained from prior analysis approaches.
It contributed to the improved classification accuracy and
confirmed the results of previous studies, pointing toward
the complex nature of language processing that needs to
be considered during the analysis of neurophysiological data.
The results of our current study would have a wide-ranging
applicability in clinical practice. In particular, our proposed
approach can be utilized to prevent functional morbidity post-
surgery in patients with pharmacoresistant epilepsy. In addition,
this can also be used to increase the accuracy of the eloquent
cortex mapping in patients undergoing resection of brain
tumors (Ogawa et al., 2014) and arteriovenous malformations
(Kamada et al., 2014).

Deep learning-based ECoG-FM approaches can also be
successfully applied in various fields of adaptive neuro-
technologies (e.g., neuromodulation), where ECoG-based
mapping is performed to determine the best area for responsive
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stimulation. For example, for defining the neural correlates of
tics, the involuntary movements and/or sounds, to be used for
responsive stimulation in patients with Tourette’s syndrome
(Shute et al., 2016; Molina et al., 2018) and for bidirectional
neurostimulation via fully implantable neural interfaces in
Parkinson’s disease (Swann et al., 2018). The applicability of
our proposed approach extends as well toward the fields of
developmental disorders (e.g., autism) (Sturm et al., 2013; Sinha
et al., 2015), psychiatry (e.g., major depression (Coenen et al.,
2018) and obsessive-compulsive disorder (Vázquez-Bourgon
et al., 2017), addiction (Wang et al., 2018), eating disorders and
obesity (Val-Laillet et al., 2015; Oterdoom et al., 2018), where
neurostimulation can be potentially utilized to provide treatment
and improve patients’ quality of life.

Deep Learning When the Data Is Limited
It is traditionally argued that deep learning models are data
intensive and only fit to problems where adequate training
data is available. The inherently low dimensional nature of
physiological data (such as ECoG and EEG) both in terms of
samples and subjects has historically restricted this field from
taking advantage of the recent advances in machine learning
(led by novel deep learning architectures). This trend is arguable
for multiple reasons. The number of subjects (which in most of
these studies is low) is not a good parameter to decide whether
we can use deep learning-based methods. Our results clearly
support this argument, where the number of subjects (11 for
training the models) could seem small. But the overall data (from
128 electrodes at 1,200 samples per second) having millions of
samples was highly sufficient to efficiently train our deep learning
models. Our classification accuracy (83.05%) and sensitivity
(85.8%) bodes well for selecting deep learning methods in our
proposed models. This trend can also be seen in other recent
studies (Gal, 2016; Tabar and Halici, 2017; Acharya et al., 2018;
Angrick et al., 2019) and we are observing a paradigm shift in
classification tasks using 1D physiological data. At the same time,
deep learning models are developed that can work with small
data. In particular, Bayesian deep learning models are shown to
have good performance even when the labeled training data is
scarce (Gal, 2016). We conclude that even with limited subjects,
the data could be sufficient for successfully using deep learning
methods in 1D data classification tasks such as ECoG-FM.

Other Limitations and Future
Perspectives
Despite the state-of-the-art results in ECoG-FM predictions,
there are some limitations of our work to be noted. First, our
experimental paradigm (Figure 5) involves five different stories
being played to the subject. The responses to these stories, have
some inherent similarities, but overall are different. Therefore,
training the deep learning model with a single label for the
whole channel could add noise to the model. Though we have
tested the effect of training the network, while treating each
story individually, this reduces the overall data available to
train the model. We believe that these results can be improved
by including additional data and then training the system

individually for each story in the paradigm. Second, the subjects
used in this initial validation study were a mix of teenagers
and adults. Smith (2010) found that the effect of epilepsy and
seizures on children and adults was different i.e., the rules
learned about the behavior of the brain in adults is different
for children. Hence, a more comprehensive study with focus on
children/teenagers is needed. This is one of our future aims to
test the proposed machine learning based approach in different
patient populations; however, patient recruitment is difficult due
to the involvement of surgery, and disease prevalence.

Finally, in the proposed approach, due to the exploratory
and research nature of our study, the classification was not
performed in real-time. We have used retrospective data
for validating the innovations and are currently working on
the real-time clinical implementation of the algorithm. We
intend to extend this study for mapping functional language
cortex in prospective subjects. We believe that implementing
such a reliable technology will increase current presurgical
and intra-operative functional mapping accuracy, expand
surgical treatment opportunities, prevent post-surgical language
morbidity, and improve patient outcomes.
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