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Neural responses of oddball tasks can be used as a physiological biomarker to

evaluate the brain potential of information processing under the assumption that the

differential contribution of deviant stimuli can be assessed accurately. Nevertheless, the

non-stationarity of neural activity causes the brain networks to fluctuate hugely in time,

deteriorating the estimation of pairwise synergies. To deal with the time variability of

neural responses, we have developed a piecewise multi-subject analysis that is applied

over a set of time intervals within the stationary assumption holds. To segment the

whole stimulus-locked epoch into multiple temporal windows, we experimented with

two approaches for piecewise segmentation of EEG recordings: a fixed time-window,

at which the estimates of FC measures fulfill a given confidence level, and variable

time-window, which is segmented at the change points of the time-varying classifier

performance. Employing the weighted Phase Lock Index as a functional connectivity

metric, we have presented the validation in a real-world EEG data, proving the

effectiveness of variable time segmentation for connectivity extraction when combined

with a supervised thresholding approach. Consequently, we performed a piecewise

group-level analysis of electroencephalographic data that deals with non-stationary

functional connectivity measures, evaluating more carefully the contribution of a link

node-set in discriminating between the labeled oddball responses.

Keywords: brain connectivity, WPLI, oddball paradigm, non-stationary, group analysis, EEG

1. INTRODUCTION

Investigation into oddball tasks considers the detection and analysis of neural responses, mostly
relying on event-related potentials (ERP), such as the well-known P300, which is associated
with attentional orientation processes elicited by target stimulus identification (Harper et al.,
2017). P300 can be used as a physiological biomarker to evaluate the brain potential of
information processing (Li et al., 2018). Intending to perform analyses with enhanced physiological
interpretation, auditory, and visual oddball tasks are often employed to identify perceptual
differences, providing a more profound understanding of applications like attention and memory
tasks (Kiat et al., 2018), affective computing, motor imagery, as well as in media and information
literacy (Schaadt et al., 2013). However, because of limitations of data acquisition and analysis,
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an open issue in interpreting ERP responses concerns the
confidently assessment of the brain networks that may reflect
the differential contribution of deviant stimuli, as it requires
more cognitive resources than the processing of standard
stimuli (Schlüter and Bermeitinger, 2017; Hurtado-Rincón et al.,
2018).

In practice, the differences between functional brain networks
have been investigated to uncover the corresponding effect of a
stimulus sequence, assuming that brain activities are predictably
modulated within some spatio-temporal windows (Bridwell et al.,
2018). This fact allows the use of neuroimaging measures to
benefit from tracking the evoked time-variant responses in
diverse brain structures. To date, for investigating brain activity
changes in ERP-related tasks, different methods have been
proposed: time-frequency signal processing for the study of
ERP energy distribution across time and frequency (Aviyente
et al., 2017), time-varying network analysis among brain regions
to uncover the detailed and dynamic information processing
in the corresponding cognition process (Li et al., 2016), and
functional connectivity (FC), which provides a powerful way
to investigate the neural dynamics of target detection/novelty
processing emerged in normative and pathological populations,
quantifying the working neural activity in terms of functional
brain networks (Blinowska, 2011). Besides the fact that FC
can be implemented at a reasonable cost on high-density
electroencephalographic (EEG) recordings (Toppi et al., 2012),
its advantages lie in the ability to map statistical patterns of
dynamic coupling between distributed brain regions, i.e., the
connectivity of brain areas at the channel level. Thus, a major
driving force for the rapid expansion of functional brain networks
is the availability of relational data recording couplings and
interactions among elements of neural systems (Sporns, 2018).

Despite the evident impact of channel-level connectivity
analysis, it lacks a standard analytic framework and supplies
deficient spatial resolution (Bathelt et al., 2013), resulting in
several limitations: (i) a growing need for connectivity measures
extracted from high-resolution EEG data to provide a trade-
off between local specialization and global integration of brain
tasks, assuring caution for the interpretation of connectivity
estimates at the same time (Bastos and Schoffelen, 2016); (ii)
extraction/modeling of informative graph-based neuromarkers
from all feasible inter-channel interactions, which may result
in high dimensional connectivity matrices with redundant or
worthless features, hindering a proper data analysis because of
noisy links (not to mention computational cost issues) (VanWijk
et al., 2010; De Vico Fallani et al., 2014); and, lastly, (iii) EEG
non-stationarity, which makes the brain networks intrinsically
and dramatically change over time, degrading the assessment of
pairwise interactions typically operationalized through the full or
partial correlation/information between all pairs of regional time
series (Pereda et al., 2018).

To undertake the dimensionality reduction of connectivity
matrices, thresholding methods are employed, typically,
maintaining the most robust edges (i.e., pairwise interactions)
either by holding the edges that surpass an a priori fixed weight
or by constraining the edge density (Váša et al., 2018). Each
particular thresholding rule, however, determines diversely the

number of strong connections, yielding a distinct effect on the
structure and global properties of sparsified networks (Garrison
et al., 2015). For this reason, the choice of edge reduction
methods can profoundly impact the results and interpretation
of the performed FC analysis (Bielczyk et al., 2018). As a
baseline approach, statistical thresholding presents itself well
to a principled choice of threshold based on hypothesis tests
of significance. Nevertheless, the amplitudes of spontaneous
fluctuations in brain activity may be an essential source of
within-subject and between-subject variability that is likely
to be carried through into connectivity estimates (directly
or indirectly) (Bijsterbosch et al., 2018). For enhancing the
discriminant ability between bi-class stimuli, one should
consider the inclusion of label sets in the hypothesis rule to
estimate the statistical difference between the target and non-
target data (Hurtado-Rincón et al., 2018). In functional brain
network research, however, an open challenge is the selection of
appropriate edge reduction to detect the time-varying changes
in brain activity, mostly addressing sources of inter-subject and
inter-trial variance of EEG recordings (Thilaga et al., 2015).

On the other hand, many commonly used measures of
synchronicity assume the FC is stationary in terms of the spatial
and time domains (Hansen et al., 2015), which in reality are often
strongly non-stationary (Terrien et al., 2013). To overcome this
issue, the quasi-stationary activity of large neuronal populations
has been considered by extracting synchronization estimates
from a set of previously segmented time intervals, which are
statistically verified (Pereda et al., 2018) or within the stationary
assumption holds (Kaplan et al., 2005). In the latter approach,
non-overlapping segments are used with the purpose of dividing
the grand-average ERP into time-windows to evaluate the
functional network changes (Thee et al., 2018). Thus, there
are two main approaches for piecewise segmenting within the
estimates of FC measures are extracted from EEG recordings:
a fixed time window and variable window along the ERP
response. Nevertheless, the piecewise segmentation approach of
a time windowing demands a trade-off between the stationary
assumption and the window length, which limits the accuracy of
the temporal detection of abrupt changes that can reflect salient
biological mechanisms in the underlying systems (Hassan et al.,
2012). Despite advances in the field of dynamic connectivity,
fixed sliding window approaches for the detection of fluctuations
in functional connectivity are still widely used (Liuzzi et al.,
2019). Therefore, the quasi-stationary window interval must be
tuned carefully.

Aiming at enhancing the interpretation of oddball tasks,
we have developed a piecewise group-level analysis that
improves the confidence of the estimated non-stationary
functional connectivity measures, assessing more accurately
the contribution of the link node-set in distinguishing
between labeled ERP stimuli. For achieving the piecewise
segmentation, we experimented with two approaches for
piecewise segmentation of EEG recordings: a fixed time-window,
at which the estimates of FC measures fulfill a given confidence
level, and a variable time-window segmented at the change
points of the time-varying classifier performance. During
validation, the classifier accuracy is calculated by a Linear
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Discriminant Analysis algorithm that is fed by a feature set
extracted through the widely used common spatial patterns,
enabling observation of the temporal progression of task-
relevant components and localization of the event-locked time
with the maximal discrimination between conditions. For the
sake of simplification, the FC analysis is carried out on a specific
narrow segment of interest (near stimulus onset) (Wang et al.,
2014), omitting other neural dynamics that may spread the
modulated ERP thoroughly. Performed brain graph analyses
on real EEG data showed slow variations of relevant links,
growing synchronously with the evoked potentials. As a
result, the use of variable segmentation, together with the
supervised thresholding, allows us to perform a reduced set of
relevant brain areas but with enough confidence to construct a
meaningful explanation of oddball paradigm stimuli. Therefore,
the presented group-level approach allows us to infer the latent
structure of multi-subject datasets, addressing the sources of
non-stationarity usually observed in EEG recordings.

The study has been presented follows. First, the proposed
methodology has been presented, including the data acquisition,
a basic definition of used FC metrics, as well as the piecewise
construction of group-level connectivity and considered
graph parameters. Then, all obtained results have been
evaluated, and these have been followed by a discussion and
concluding remarks.

2. MATERIALS

EEG Database Description and
Preprocessing
Six females and 11 males (M= 17 subjects, aging in average
27.7 years) participated in three runs following the visual and
auditory oddball paradigms, each one having two labeled stimuli:
target and non-target, i.e., λ={l, l′}. In total, 375 (125 per run)
stimuli per task were presented, each one lasting 200 ms within
a 2-3 s uniformly distributed inter-trial interval and generated
at target probability 0.2. The first two evoked responses of each
run were a non-target. To implement the visual task, the target
and non-target stimuli were, respectively, a large red circle and
a small green circle depicted on isoluminant gray backgrounds
(3.45 and 1.15 degree visual angles). For the auditory task, the
standard stimulus was a 390 Hz pure tone, which had been
selected to lie within a trough of the scanner sound frequency
spectrum, and the target sound was a broadband laser gun sound
so that EEG discriminator performancematched the one of visual
tasks. Because the study focused on task-related attentional states,
subjects were asked to respond to target stimuli, using a button
press with the right index finger on an MR (Magnetic Resonance)
compatible button response pad. Stimuli were presented to
subjects using E-Prime software (Psychology Software Tools) and
a VisuaStim Digital System (Resonance Technology) comprising
headphones and 600×800 goggle display, as detailed inMuraskin
et al. (2018). Scalp data were acquired at 1, 000 Hz sampling rate
(that is, t= 0.001 s) using an EEG data acquisition system with
a custom cap configuration of C= 34 channels, for which the
following preprocessing Butterworth filters were used: 1- Hz high

pass to remove direct current drift; notched filter (centered at 60
and 120 Hz) to eliminate the electrical power line and its first
harmonic, respectively; and a low pass filter with a cut frequency
at 120- Hz, excluding high-frequency artifacts without neuro-
physiological content. As a result, the observation EEG dataset
{Xλ

tmn∈R
C×T×N×M} was collected from each subject m∈M,

holding n∈N trials (N = 375) and recording from each c-th scalp
electrode, c∈C, at time sample t∈T. All trial-level signals were
baseline-corrected by subtracting the mean prestimulus interval
activity from −200 to +800 ms, so that the recording time
length was adjusted to T= 1 s, aiming to preserve representative
connections of the frontal, parietal, and temporal regions.

Subject-Level Inter-channel Connectivity
To investigate the pairwise functional connectivity of oddball
tasks, we used a Phase Locking Index (PLI) as a FC metric
that quantifies the asymmetry of phase difference distribution
between two specific channels c, c′ (with ∀c, c′∈C, c 6=c′) and its
weighted version (wPLI), each one being defined within the
recording time span T∈R+:

PLI : yft(c, c
′) =

∣

∣E
{

sgn
(

1Φft(n; c, c
′)
)

:∀n ∈ N
} ∣

∣, (1a)

wPLI : yft(c, c
′),=

∣

∣E
{

|(1Φft(n; c, c
′)
)

| sgn
(

1Φft(n; c, c
′)
)

: ∀n
} ∣

∣

E
{

|(1Φft(n; c, c′)
)

| :∀n
}

(1b)

where notations sgn and E {· : ∀n} stand for sgn function
and averaging operator over n, respectively. All FC metrics
are normalized to highlight the connectivity patterns
generated by each evoked stimulus, being each FC mean-
value averaged over the trial set {n∈N} and on a given baseline
interval (Aviyente et al., 2017). The instantaneous phase
difference 1Φft(; c, c

′)∈[0,π] is the angle of the continuous
wavelet transform coefficients Wft(; )∈R

+ computed through
the band-pass filtered input matrix Xtf :

1Φft(n; c, c
′) =

Wft(n; c)W
∗
ft
(n; c′)

|Wft(n; c)||W
∗
ft
(n; c′)|

, t ∈ T, f∈Ω (2)

where notation ∗ stands for complex conjugate.
Since previous studies on cognitive dynamics have shown

that oscillatory evoked responses are mainly composed of low-
frequency bandsΩ∈{δ, θ ,α,β} Hz (Güntekin and Başar, 2010), a
connectivity analysis was performed inside the waves (rhythms)
of interest: Ω∈{δ, θ} for auditory tasks and Ω∈{α,β} for visual
tasks. Hence, we obtained the inter-channel connectivity vector,

noted as ŷΩ
t ∈RV , holding elements ŷΩ

t (v)∈R that are computed
by averaging each connectivity measure across the frequency
domain within the corresponding waves of interest:

ŷΩ
t (v) = E

{

yft(v) : ∀f ∈ 1FΩ

}

(3)

where1FΩ is the bandwidth of each one of the considered waves.
Here, the pairwise variable is denoted as v∈{c, c′∈V , c 6=c′}, being
V =C(C-1)/2 the amount of paired links.
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2.1. Piecewise Construction of
Group-Level Connectivity
As a result of the above subject-level stage, we can estimate the

inter-channel connectivity vector ŷΩ
m ={ŷΩ

tm(v)∈R[0, 1]:∀t∈T}
for each m-th subject. However, the estimates are still non-
stationary in a way that some links may appear and disappear
anywhere/anytime. To deal with this time-variant behavior, we

extracted the evolution connectivity vectors ŷΩ
tm∈R

V within
quasi-stationary time segments using the piecewise strategy, as
suggested for subject-level extraction in Kaplan et al. (2005).
To that end, the whole recording time length T was split
into Nτ non-overlapping segments (time-windows denoted by
τi), so that, under the assumption that the brain networks
remain stationary within τi, we assessed a single connectivity
value by concatenating the vector set across measures, ∀t∈τi⊂T.
Because of the invariability assumption, we have suggested the
expected value as a representative estimate to construct the node
connectivity vector ỹΩ

im∈R
V within i-th interval set {τi:i∈Nτ }

as below:

ỹΩ
im = E

{

ŷΩ
tm(v) : ∀t ∈ τi

}

, ∀v ⊂ V

In practice, as the number of subjects increases, the amount of
false links (erratically presented) rises also. Intending to remove
these noisy links, the multi-subject analysis provides a set of
selected connections (a relevant connectivity set) that reach a
specified cutoff value. We have proposed that the selected links
be computed piecewise by using the unsupervised amplitude
thresholding rule (noted as pUTh):

κΩ
i (v) =

{

1, qmax(E
{

ỹΩ
im(v) : ∀m ∈ M

}

)

0, Otherwise
(4)

where q∈R+ is a given cut-off value that is fixed heuristically
within the range q∈[0.4, 0.9].

Nevertheless, the rule in Equation (4) provides information
about the brain networks that are relevant over the entire
measured data, without accounting for any labels. Instead, one
might be more interested in selecting the relevant connection set,
reflecting the influence of label sets on discriminating between
tasks. Therefore, we introduced the prior information about
labels across the subject set through the following supervised
statistical thresholding algorithm:

κΩ
i (v) =

{

1, M{ỹΩλ
im (v)|λ : ∀m}<p

0, Otherwise
(5)

where functional M{·|λ:∀m} assesses the statistical
discrepancies, which appear when integrating information
across all subjects, in the links between each labeled connectivity
set, {ỹΩλ

im (v)|λ}.
Nevertheless, the class of statistical measures is limited

to implementing the algorithm in Equation (5) due to the
estimated relevance set fails for normality and homoscedasticity,
applying Kolmogorov-Smirnov and Bartlett’s tests, respectively.
Instead, we validated whether two labeled samples are

likely to derive from the same population, using the non-
parametric Mann-Whitney test that is often conducted on
EEG connectivity (Hussain et al., 2017). However, we could
not have expected the connectivity values to be uncorrelated
between different piecewise intervals. Therefore, the statistical
significance of connectivity was corrected using the False
Discovery Rate as a robust statistical correction for multiple
comparisons at different frequency bands. Namely, we testrf each
one the node-links over δ and θ for auditory, while α and β were
used for visual stimuli, as performed in Genovese et al. (2002).
Thus, the bi-valued relevance set {κΩ

i (v):∀1τi} in Equations
(4) and (5) was calculated piecewise over all time windows,
reflecting the variability of brain networks through the whole
recording length T. Note that the relevance time-series may
have been employed to extract the time-evolving dynamics of
multi-subject connectivity.

Likewise, relying on the evident premise that EEG data had
been acquired following the same conditions on all piecewise
intervals, we measured the statistical differences of the time
window set, yielding the connectivity relevance values:

κΩ
m (v) =

{

1, M{ỹΩλ
im (v)|λ : ∀1τi}<p

0, Otherwise
(6)

Consequently, the supervised piecewise connectivity analysis,
denoted as pSTh, was accomplished through the sequential
combination of rules Equations (5) and (6).

Lastly, we assessed the group-level analysis over the subset
set, thoroughly within the recording length of T, with a single
connectivity relevance by the following concatenation procedure:

κΩ (v) =
(

κΩ
1 (v) ∨ . . . ∨ κΩ

i (v) ∨ . . . ∨ κΩ
Nτ
(v)

)

∧
(

κΩ
1 (v) ∨ . . . ∨ κΩ

m (v) ∨ . . . ∨ κΩ
M (v)

)

(7)

where notations ∨ and ∧ stand for OR and AND
logical operators, respectively. The main rationale behind
the use of logical conjunction is to gather all common
multi-subject dynamics.

2.2. Graph Connectivity Analysis
From the piecewise FC analysis, we constructed a resulting graph

ŷΩ
imκΩ

:∀i,m, where κ = [κΩ (v):∀v] (with κ∈NV ) is the relevant
connectivity vector that encodes the assessed contribution of the
link node set, extracted from the group-level FC measurements.

All relevant links, which have been estimated by thresholding
the pairwise FC measure, constitute the brain functional network
with a topology that is quantified by graph parameters frequently
used in the group-level analysis of oddball paradigms (Boccaletti
et al., 2006):

– Network Density is the ratio between the number of graph
edges to the total amount of possible links,D=C/V , assessing
the physical wiring cost of the network.

– Node Strength, γ (v), which reflects how strongly a node is
associated with others and is computed by the weighted sum
of links connected to the node:

γ Ω
t (v) = κΩ (v)

∑

∀m
ŷΩ
tm(v), ∀t ∈ T (8)
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Note that each γ (v) value can be rewritten in terms of γ (c) by
unfolding the adjacent node vectors on the channel space.

3. RESULTS

3.1. Computation of Functional
Connectivity Measures
3.1.1. Subject-Level Pairwise Connectivity Estimation
Figure 1 displays the functional connectivity measures estimated
from scalp EEG data for both analyzed tasks: auditory (left
column) and visual (right column). With the purpose of
following the relationship between the evoked responses and
computed FC measures, the top row represents the ERP time-
courses of each grand average that is calculated by averaging
across all subject and trial sets, making clear the distinction
in ERP amplitudes between either evoked condition (target
and non-target) and becoming more evident within a range of
between 300 and 450ms after the stimulus onset, which ismarked
by a red line.

Furthermore, the FC values were extracted separately
for the oscillations of interest, having different bandwidths:
1FΩ∈{1Fδ = [2-5], 1Fθ = [5-8], and 1Fα = [8-14],
1Fβ = [14-30]} Hz. Visual inspection of connectivity dynamics
evidences its relationship between the ERP time-courses and
either functional connectivity measure [PLI (middle row) and
wPLI (bottom row)], assessed for each pairwise link (vertical
axis). Thus, the baseline time-window before the stimulus
onset does not hold notable FC values extracted in both cases
of stimulation. By contrast, the target functional connectivity

grows meaningfully after the elicitation, presenting appreciable
differentiation between the target and non-target conditions
at different time instants. Moreover, the assessment of phase-
synchronization performed by either index (PLI or wPLI) results
in connectivity estimates very related to the ERP amplitude
peaks, being most evident in the δ and θ waves of auditory tasks
and α and β of visual tasks. Consequently, either FC estimation
allows for improving, in a different way, the individualizing
patterns of the extracted waves, depending on the contemplated
oddball paradigm activity.

3.2. Piecewise Computation of
Group-Level Connectivity Graphs
During validation, two approaches for piecewise segmentation
of EEG recordings are tested: (i) a fixed window method that
adjusts an equally lasting time window τi= τ ,∀i, at which
the estimates of FC measures better fulfill an a priori fixed
confidence level; and (ii) a wrapped method that adjusts each
time window τi differently at the change points of the time-
varying classifier performance.

3.2.1. Tuning of Equally Lasting Time Window
In this case, to capture the time-variant behavior of ERP
responses, the non-overlapping segment of analysis is adjusted to
obtain the FC estimates with high confidence (namely, p≤ 0.02),
providing an affordable computational burden.

For the purpose of comparison, we have introduced the
stationary version of either rule (denoted as UTh nor STh,
respectively) when adjusting the time window to the recording

FIGURE 1 | Estimation of functional connectivity measures in auditory (A) and visual (B) tasks. Top row: Time-courses of evoked responses extracted from all

channels, which were averaged across the whole subject set (a red line marks the stimulus onset). FC trajectories along the time length computed separately for each

oscillation: PLI (middle row) and wPLI (bottom row).
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length, τi = T, and the piecewise analysis is thus not
performed. Note that the amplitude algorithm in Equation (4)
demands tuning of the cut-off value, which is heuristically fixed
to q= 0.7, as an adequate level, ruling a trade-off between
computational cost (number of connections) and accuracy
(confidence of connectivity estimates) (Váša et al., 2018). Thus,
Figure 2 depicts the confidence achieved by each one of the tested
thresholding rules, showing that neither stationary rule version
(UTh nor STh) reaches the value of p ≤ 0.05. This conclusion
holds, regardless of the analyzed wave or the considered task. On
the other hand, the piecewise strategy allows us to achieve better

confidence when extracting all FC values from the time window
τ . Moreover, the use of labels improves the FC estimation
remarkably, even fulfilling a higher confidence level of p ≤
0.02 (red line). By applying the non-stationary FC estimation,
however, the interval length τ affects the achieved performance.
Although the highest regarded confidence p ≤ 0.02 is fitted at
different time windows, distinct values are minimizing p in
each task.

It is worth noting that the wPLI measure produces better
performance within a wider interval range, and, therefore, it will
be the only metric considered in the following. In particular, the

FIGURE 2 | Obtained results of confidence p for the supervised thresholding rule performed by the compared FC metrics in the cases of stationary (i.e., by adjusting

to τ =T ) and non-stationary computation for different values of τ . Notation Stat stands for stationary FC metrics. Red lines present two different confidence levels,

fulfilling p ≤ 0.05 and p ≤ 0.02. (A) Auditory stimulation. (B) Visual stimulation.
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level of p≤0.05 is reached within the examined τ = [40-250],
for which Figure 3 displays the topographic maps that reflect
all significant nodes extracted by κ (see Equation 5), that is,
how many times each channel turns to be relevant. As seen
for the target stimulation of both tasks, the topographic map
changes as the non-overlapped interval τ varies, revealing that
the EEG connectivity patterns move gradually from one to
another. This situation holds for each wave and may result in
different interpretations of influencing brain zones. To avoid this
issue, the best τ is selected as the value that minimizes the highest
considered confidence p≤ 0.02 for each task. Namely, τ = 100 for
auditory and τ = 50 for visual.

In general, oddball responses should be located more in
the frontal and parietal lobes. Moreover, auditory stimuli
also generate salient activity in the temporal areas, whereas
visual stimuli do so in occipital regions (Volpe et al., 2007).
Nevertheless, Figure 3 shows spurious activations in central
regions, whichmay be produced by either the acquisition artifacts
of EGG data at the scalp level or the volume conducción effect, as
explained in Li et al. (2020).

3.2.2. Tuning of Variable Time Window
For adjusting the segmentation interval, we utilized the
temporal progression obtained for the accuracy performance in
discriminating between oddball stimuli, employing an algorithm
of Linear Discriminant Analysis and 10-fold leave-one-out
validation (See details of implementation in Velasquez-Martinez
et al., 2018). The estimated accuracy changes are displayed
in Figure 4, showing that either response (auditive marked in
blue line and visual in red line) behaves differently, even that both
discrimination tasks have similar peak group-mean accuracy

(close to 0.84). The visual stimulus discrimination curve decays
more slowly and smoothly than the auditive does, as has been
noted previously by Walz et al. (2013).

The segmentation interval set, {τi}, is obtained at the time
points when the temporal progression changes its behavior.
Thus, both derivatives of each temporal progression have been
presented, for which the dashed lines mark the identified change
points within each non-overlapping time-window is delimited.
Specifically, the following sets are attained: τi∈ [0.21, 0.29, 0.42,
0.54, and 0.63] for auditive stimulus and τi∈[0.21, 0.33, 0.5,
and 0.68] for visual stimulus. It is worth noting that the first
change point directly relates to the end of the presented stimuli
during the experimental design of the used Oddball Paradigm.

To assess the influence of either piecewise segmentation
strategy, Table 1 shows the reached values of confidence p,
as well as the resulting number of connections, which are
needed to fulfill different cut-off values q. Although both
segmentation strategies satisfy the baseline confidence p≤
0.05 just for q= 0.6, 0.7, the use of the variable time window
results in a less quantity of connections.

3.2.3. Topoplot Brain Mapping of Group-Level

Connectivity Analysis
The goal is to identify spatial distributions of the brain activity
related to the FC values following the developed group-level
connectivity approach. Figure 5 displays the topoplots that are
computed for either piecewise segmentation strategy [fixed
window is indicated by (τ ) and variable window by (τi)]. Both
responses are displayed, as a target and non-target, showing
very low activity in the latter case. This assessed activity of
non-target responses with no relevant brain areas is expected

FIGURE 3 | Topographic maps of significant nodes estimated by the piecewise pSTh rule of target stimulus and extracted for a different non-overlapped interval τ .
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FIGURE 4 | Temporal progression of classifier performance in discriminating between responses as well as its corresponding derivative (marked in dashed-dotted

lines), achieved by auditive (solid blue line), and visual (solid red line) stimuli. The dashed demarcations stand at the identified change points within each

non-overlapping time-window is delimited.

TABLE 1 | Influence of either piecewise segmentation on the unsupervised thresholding rule.

q 0.5 0.6 0.7 0.8

Audit. δ θ δ θ δ θ δ θ

PLI 0.12 (198) 0.13 (156) 0.05 (94) 0.06 (78) 0.05 (36) 0.05 (33) 0.06-15 0.06 (13)

wPLI 0.09 (192) 0.12 (155) 0.05 (94) 0.05 (76) 0.05 (34) 0.05 (31) 0.06 (15) 0.06 (13)

Visual α β α β α β α β

PLI 0.11 (224) 0.12 (186) 0.05 (112) 0.06 (110) 0.05 (42) 0.06 (42) 0.06 (18) 0.06 (16)

wPLI 0.10 (222) 0.11 (184) 0.05 (110) 0.05 (110) 0.05 (42) 0.05 (40) 0.06 (15) 0.06 (14)

Audit. δ θ δ θ δ θ δ θ

PLI 0.09 (178) 0.076 (148) 0.056 (86) 0.58 (76) 0.05 (32) 0.05 (30) 0.06-14 0.06 (14)

wPLI 0.08 (172) 0.7 (144) 0.05 (82) 0.05 (74) 0.05 (32) 0.05 (31) 0.06 (14) 0.06 (14)

Visual α β α β α β α β

PLI 0.09 (200) 0.08 (172) 0.05 (110) 0.06 (100) 0.05 (40) 0.06 (42) 0.06 (18) 0.06 (16)

wPLI 0.08 (198) 0.07 (168) 0.05 (104) 0.05 (92) 0.05 (40) 0.05 (38) 0.058 (14) 0.06 (14)

The number of connections and q values that provide the baseline confidence value (p ≤ 0.05) are shaded [fixed window is indicated by (τ ) and variable window by (τi )]. Gray values

refer to p-value ≤ 5%.

and illustrates the veracity of performing group analysis. As
observed from the target responses, the pSTh thresholding
dispenses an increased connectivity between the frontal and
temporal/parietal electrodes of auditory target detection. This
finding is reported in Han et al. (2017). Likewise, in θ and
δ waves, pSTh exposes an enhanced connectivity between the
medial frontal cortex and other cortical regions (including the
parietal) during attention and surprise/novelty processing; this
conclusion is suggested also in Gulbinaite et al. (2014). In the case
of visual tasks, parieto-central, parieto-temporal, and occipito-
temporal and occipito-parietal links are observed with enhanced
relevance as discussed in Thee et al. (2018), associating all these
links with object detection and visual processing. With regards
to the piecewise interpretation of target responses, all the above-
referenced findings become more distinctly seen when applying
the variable window. However, the unsupervised rule behaves
worse regardless of the used time window, being most evident
in the topoplots of β (visual) and δ (auditory) waves. Hence, we

further performed the brain graph analysis just for the supervised
thresholding rule.

3.3. Performed Piecewise Brain Graph
Analysis
For both supervised oddball tasks, Figure 6 presents the
estimated node strength, γ (c), which evolves along the time,
resulting in slow variations of relevant nodes and changing
synchronously with each evoked potential time-course (see the
top row of each plot). Note that the network hub increases
when the evoked target amplitude rises also. Likewise, the more
complex the stimulus, the higher the averaged node strength,
meaning that there should be more nodes to interpret complex
oddball target responses.

Another aspect of spatial interpretability is the time-evolving
trajectories described by γ (c), showing that there is enough
difference between the non-target (gray color) and target
(black color) stimuli. Also, the use of a changeable window
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FIGURE 5 | Brain graphs estimated by the piecewise thresholding using either rule (pUTh and pSTh). Fixed window is indicated by (τ ) and variable window by (τi ).

increases this separation, thus enhancing the discrimination
between stimuli.

The bottom row of each plot in Figure 6 displays how the
relevant connectivity vector unfolds from one time window to
another, revealing that the contribution assessed for the link-
node set gradually varies. Nevertheless, the neighboring paths are
the most likely to change. Besides, since the number of variable
windows is less than the fixed ones, the number of representative
connections decreases significantly, beingmore visible in the case
of visual stimuli.

As a result, the obtained stochastically evolving network
gives rise to asymptotic distribution, enabling a dynamical
approach for the modeling of scale-free networks. Hence, the
link evolution may supply additional information, mostly, about
the smallest paths between any pair of nodes. Besides of
confidently computing all links, therefore, an adequate tracking
of evolving connectivity distribution across the time plays a role
in ERP interpretation.

On the other hand, we investigated the consistency of
performing group-level connectivity graphs by subtracting one
(i.e., 16) and two subjects (15) from the whole training set (17).
To this end, we determined whether the supervised thresholding
rule fulfills the confidence level adjusted to p= 0.05, permuting
several times each tested subject scenario. It is worth noting that
the piecewise strategy is the only validated since the stationary

version does not fulfill the required confidence, even managing
the whole subject set.

As expected, the subtraction of training subjects decreases
the piecewise group-level estimator consistency. Also, either
piecewise window performs differently so that the fixed-
segmentation graph gets a little worse value of confidence.
As seen in Table 2, either segmentation strategy matches the
needed value of p= 0.05 in all tested scenarios, except for the
fixed window when withdrawing two subjects and extracting
the β wave of visual paradigms. On average, the multi-subject
analysis benefits more from adjusting the segmentation interval,
achieving lower values of p.

In addition, Table 2 also represents the estimated values
of node density (indicated in parenthesis), revealing that the
size of relevance connectivity vectors influences directly on the
performed accuracy. So, having the whole training subject set,
either piecewise window performs low values of D, facilitating
high link consistency at the same time. As the amount of removed
subjects increases, however, the node density also grows, but
the confidence of connectivity estimation decreases. Besides, the
variable piecewise segmentation requires some links less than the
fixed window does.

Lastly, we analyzed the group-level analysis in terms of
performing graph connectivity. As a baseline connectogram,
Figure 7 shows the circular graphical representations of link
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FIGURE 6 | Brain graph evolution. (Top) Evolving node strength along the time, for which vertical red line indicates the stimulus onset time. (Bottom) Relevant

connectivity unfolding on time.

TABLE 2 | Confidence and node density (in parenthesis) of developed group-level analysis using piecewise segmentation.

p-value D

τ τi τ τi

15 16 17 15 16 17 15 16 17 15 16 17

δ Auditory 5.0 (44) 4.1 (41) 0.8 (38) 4.8 (38) 2.3 (36) 0.5 (36) 6.3 6.0 6.0 6.1 5.8 5.1

θ Auditory 5.0 (42) 3.9 (42) 1.0 (38) 3.5 (40) 0.9 (39) 0.9 (38) 6.7 6.5 6.3 5.9 5.8 6.1

α Visual 5.0 (38) 4.3 (36) 2.4 (36) 4.6 (37) 3.1 (36) 1.7 (34) 7.1 6.3 6.3 6.0 5.5 5.4

β Visual 6.8 (48) 5.0 (44) 1.6 (42) 4.7 (44) 4.9 (44) 0.8 (40) 7.0 6.3 6.3 6.3 6.1 6.1

Average 5.4 (43) 4.3 (41) 1.4 (39) 4.4 (40) 2.8 (39) 0.9 (37) 6.8 6.3 6.2 6.0 5.8 5.6

The evaluation is performed by subtracting one and two subjects from the whole training set (17). Gray values are in percentage.

networks regarding functional neural connectivity, achieved by
the whole subject set. As seen, the low waves (δ,α) of either
task have a connectivity structure with lesser complexity. Besides,
both piecewise segmentation strategies resulted in a similar graph
representation, being very close to the baseline connectogram.
Nonetheless, by excluding one subject, some of the links may

either appear (painted with a solid green line) or be lost (red
line). This effect, which becomes more evident when extracting
two subjects, as this deteriorates the estimated connectivity
topology. Also, this on/off switching eventmostly influences close
links. However, the provided connections depend on the used
piecewise window.
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FIGURE 7 | Graph connectivity of supervised group-level analysis performed by subtracting one and two subjects from the whole training set. Green line notes a

newly appearing link, and the red line denotes a disappearing path. Fixed window is indicated by (τ ) and variable window by (τi ).

4. DISCUSSION AND CONCLUDING
REMARKS

Validation of real-world EEG data shows that the use of piecewise
segmentation, together with the supervised thresholding, results
in a set of relevant brain areas, which are estimated with
more confidence, enabling a meaningful explanation of
oddball paradigm stimuli. Nonetheless, for implementation
of the proposed supervised piecewise group-level analysis, the
following aspects are to be regarded:

4.1. Pairwise Estimation Subject-Level
Connectivity
We validated the proposed approach through the weighted Phase
Lock Index, proving that this functional connectivity measure
grows meaningfully after the stimulus onset. We found that
the lower the wave, the higher the number of connections
to agree the required confidence level, and this was even
bigger in the case of visual tasks. Of note, the use of wPLI,
together with stationary unsupervised thresholding, does not
reach the fixed level of confidence p ≤ 0.05. Overall, the used
FC metric provides an adequate performance of multi-subject
connectivity analysis; however, wPLI-based measures are ad-
hoc modifications to statistical methods, giving rise to questions

related to formal interpretation. Although, there is no consensus
about one standard method that would outperform the other
connectivity approaches, it would of benefit to validate the
proposed piecewise multi-subject analysis using another metric,
such as effective connectivity (Hassan and Wendling, 2018).

4.2. Piecewise Computation of
Multi-Subject Connectivity Graphs
To deal with the non-stationarity, we extracted the connectivity
assessments from a set of quasi-stationary time segments of EEG
data. Furthermore, through a developed thresholding algorithm,
we evaluated the statistical differences in the measured functional
connectivity within a set of non-overlapping time segments.
The piecewise thresholding rule was validated across the whole
subject set in two classification scenarios: unsupervised and
supervised (between the labels of target and non-target sets).
Although both learning scenarios outperformed the conventional
thresholding rule significantly when no segmentation is carried
out, the inclusion of label sets into the rule positively provided
better confidence.

Furthermore, we estimated the areas of relevance
experimenting two strategies of piecewise segmentation of
EEG recordings: an equally lasting time window and a variable
window with intervals placed at the change points of the
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time-varying classifier performance. Using the supervised
thresholding rule, validation of real-world EEG data shows that
the areas of relevance, estimated by the piecewise rule, allow us
to explain the more differentiating EEG channels in the case
of validated oddball tasks. Moreover, the variable piecewise
segmentation requires some links less than the fixed window
does, which are estimated with better confidence. As a result,
the supervised variable-window strategy produces a group-level
connectivity analysis, ruling a trade-off between computational
cost and the required confidence of estimates (p ≤ 0.05) even
after withdrawing two subjects.

Still, two main issues of implementation are yet to be
mentioned: either of the tested piecewise strategies makes the
EEG connectivity patterns shift gradually from one place to other
neighboring electrodes, yielding a relevant connection set that
depends on the used piecewise window. Therefore, the time
window must be tuned carefully, and two improving approaches
can be of interest. (i) Measuring the statistical diversity among
time segments: though we applied the false discovery rate among
time segments, as we had a low rate of false negatives, more
rigorous tests are to be studied (like the Bonferroni correction),
as we aim to have a more robust comparison of physiological
measurements. (ii) Improving the changeable piecewise window
may include more robust approaches of adaptive segmentation
for extracting connectivity patterns. In this regard, a considerable
amount of work has been directed to assessing and characterizing
dynamic FC, including segmenting the time courses (Mahyari
et al., 2016; Betzel and Bassett, 2017; Preti et al., 2017; Allen et al.,
2018; Duc and Lee, 2019)

4.3. Brain Graph Topology
As said before, the node strength evolution varies slowly between
neighboring electrodes along the evoked potential time-course,
showing that an adequate tracking of evolving connectivity
distribution across the time may help in ERP interpretation.
Furthermore, to increase the distinction between classes, the
piecewise thresholding can be further optimized by enlarging the
difference between the node strength time-courses of stimuli.

As for future work, to validate the proposed non-stationary
group-level analysis, we plan to experiment with key issues:
more complex functional and effective measures of connectivity,

thresholding rules with distances, as well as more priors about
ERP dynamics and/or optimizing the distinction between multi-
label classification tasks. A particular concern to study is the
minimization of false-positive inferences by the developed in this
work instantaneous interaction to determine whether field spread
effects are too large to warrant analysis, as suggested in Bastos and
Schoffelen (2016) and Vinck et al. (2015).
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