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In this study, research was carried out on the end-effector force estimation of two
representative multi-muscle contraction tasks: elbow flexion and palm-pressing. The
aim was to ascertain whether an individual muscle or a combination of muscles is more
suitable for the end-effector force estimation. High-density surface electromyography
(HD-sEMG) signals were collected from four primary muscle areas of the upper arm
and forearm: the biceps brachii (BB), brachialis (BR), triceps brachii (TB), brachioradialis
(BRD), and extensor digitorum communis (EDC). The wrist pulling and palm-pressing
forces were measured in elbow flexion and palm-pressing tasks, respectively. The deep
belief network (DBN) was adopted to establish the relation between HD-sEMG and
the measured force. The representative signals of the four primary areas, which were
considered as the input signal of the force estimation model, were extracted by HD-
sEMG using the principle component analysis (PCA) algorithm, and fed separately or
together into the DBN. An index termed mean impact value (MIV) was proposed to
describe the priority of different muscle groups for estimating the end-effector force.
The experimental results demonstrated that, in multi-muscle isometric contraction tasks,
the dominant muscles with the highest activation degree could track variations in
the end-effector force more effectively, and are more suitable than a combination
of muscles. The main contributions of this research are as follows: (1) To fuse the
activation information from different muscles effectively, DBN was adopted to establish
the relationship between HD-sEMG and the generated force, and achieved highly
accurate force estimation. (2) Based on the well-trained DBN force estimation model, an
index termed MIV was presented to evaluate the priority of muscles for estimating the
generated force.

Keywords: multi-muscle isometric contraction, end-effector force estimation, high-density surface
electromyography, deep belief network, mean impact value

INTRODUCTION

In general, it is challenging to measure the muscle force produced by skeletal muscle contraction
accurately. The direct measurement method is commonly used for accurate determination of
muscle force, wherein mechanical sensors are surgically placed in the tendons of skeletal muscles
(Dennerlein et al., 1997; Finni et al., 1998; Huang and Gu, 2008). For example, Huang and Gu (2008)
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transplanted photoconductive devices into human muscle to
measure muscle force directly. Finni et al. (1998) placed an
optic fiber inside a volunteer’s tendon to collect the Achilles
tendon force of gait. The disadvantage of direct measurement
is that it is invasive, thereby limiting its scope of application.
Therefore, indirect measurement methods, which are generally
non-invasive, have been extensively employed to estimate the
muscle force in related applications (Ayusawa et al., 2014;
Martin et al., 2018). For example, in the work of Martin
et al. (2018), a strain pressure sensor, which is implantable,
extensible, and biodegradable, was presented to monitor patients’
mechanical force on tendons after a surgical repair period.
Ayusawa et al. (2014) used a high-speed and high-precision
video motion capture device to obtain human joint kinematic
parameters. They then established a mechanical equilibrium
equation between the joint and muscle forces based on inverse
kinematics (Ayusawa et al., 2014).

Surface electromyography (sEMG), which is a non-invasive
measurement method, has garnered particular interest for its
advantages of safety, low cost, and convenient operation. In
the research fields of biomechanics and kinesiology (Zajac
et al., 2002; Christophy et al., 2012), physical rehabilitation, and
myoelectric prostheses (Zheng et al., 1998; Heo et al., 2012),
sEMG has been widely used to estimate muscle activation level
and contraction force (Disselhorst-Klug et al., 2009; Li et al.,
2014; Naik and Nguyen, 2015). The end-effector force estimation
based on sEMG mainly includes two key procedures: muscle
activation information extraction from raw sEMG signals, and
establishment of a force estimation model. In early studies, the
muscle activation information that was used to estimate the end-
effector force was extracted from an individual channel or several
channels of sEMG signals (Hayashibe and Guiraud, 2013; Cao
et al., 2015). For example, Mobasser et al. (2007) placed two
sEMG electrodes on the biceps brachii (BB) and triceps brachii
(TB) to perform force estimation at the wrist during the elbow
flexion–extension task. However, owing to the heterogeneity in
the spatial distribution of muscle activation, the sEMG signals
detected by the discrete electrodes could not effectively reflect
the contraction characteristics of the whole muscle, thereby
limiting the force estimation accuracy. In recent years, high-
density surface electromyography (HD-sEMG), which is capable
of collecting substantial amount of spatial muscle activation
information, has demonstrated remarkable performance in
related applications, particularly in improving force estimation
precision (Staudenmann et al., 2005, 2006; Rojas-Martinez et al.,
2012). In a series of related studies, Staudenmann et al. validated
the good performance of HD-sEMG in the end-effector force
estimation (Staudenmann et al., 2005, 2006, 2009). Huang et al.
(2017) also realized highly accurate estimation of contraction
force of the biceps brachii during elbow flexion task, by extracting
the muscle activation information from HD-sEMG signals.

In most researches on sEMG-based force estimation, simple
contraction tasks and individual skeletal muscles were involved.
Taking the elbow flexion/extension task as an example, the
BB was regarded as the main driving muscle in some studies
(Huang et al., 2017; Xu et al., 2018), however, TB was
regarded as the main driving muscle in some other researches

(Staudenmann et al., 2005, 2006). It has been established that
both complex and simple human motion tasks generally involve
the contraction of multiple pieces of skeletal muscles, and
the phenomenon of muscle co-contraction or muscle synergy
patterns appears occasionally (Amarantini et al., 2010; Atoufi
et al., 2013). Force estimation based on an individual muscle is
conveniently realized, and is established as being practical for
certain applications. However, there may be a few theoretical
limitations when considering only an individual muscle. To
improve the force estimation accuracy, a few researchers have
attempted to explore force estimation frameworks based on
multiple muscles (Luh et al., 1999; Hoozemans and van Dieen,
2005; Mobasser et al., 2007; Bai and Chew, 2013; Al Harrach
et al., 2017; Chen X. et al., 2018). In the work of Harrach et al.
(Al Harrach et al., 2017), three elbow flexor muscles, namely,
BB, brachialis (BR), and brachioradialis (BRD) were considered
for estimating the integrated force at the wrist. Considering
the handgrip force as the prediction object, Hoozemans et al.
compared the performance of a section of forearm muscle and
the combinations of three, four, five, and six forearm muscles.
They observed that all the combinations outperformed the
application of an individual section of muscle (Hoozemans and
van Dieen, 2005). Although certain progress has been achieved,
the investigation of force estimation based on multiple muscles
is relatively preliminary. It is necessary to investigate whether an
individual muscle or a combination of muscles is appropriate for
force estimation.

Various force estimation models have been developed in
the literature. Specifically, the Hill Type model (Hill, 1938),
polynomial model (Huang et al., 2017), fast orthogonal search
(Mobasser et al., 2007; Chen X. et al., 2018), and simple artificial
neural network (Luh et al., 1999; Bai and Chew, 2013; Wu et al.,
2017) have been adopted successfully to establish the relation
between EMG and the end-effector force. In recent years, deep
learning algorithms have also been introduced to the field of
force estimation. Xu et al. (2018) used convolutional neural
network (CNN), long short-term memory (LSTM) network,
and their combination (C-LSTM) to predict the end-effector
force generated by static isometric elbow flexion. They achieved
highly accurate, subject-independent force estimation (Xu et al.,
2018). Choi et al. (2010) mapped sEMG signal to force by a
deep artificial neural network and achieved good performance
in real-time pinch force estimation. In above researches, only
individual skeletal muscle was considered for force estimation.
It is generally acknowledged that deep learning frameworks
can extract features from raw data without handcrafted feature
selection. In the deep architecture, the output of each layer,
which contains all the information from the input data, can be
considered as the deep fusion of the original data. For multi-
muscle contraction task, a key problem is effectively fusing the
activation information of different muscles for force estimation.
Consequently, deep learning algorithms exhibit the potential for
fusing the contraction characteristics of multiple muscles for
realizing highly accurate force estimation.

To explore whether the individual muscle or the combination
of muscles is more suitable for the end-effector force estimation
during multi-muscle contraction tasks, this paper carried out
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a novel HD-sEMG-based force estimation research. The main
features of this research are as follows: (1) To fuse the activation
information from different muscles effectively, DBN was adopted
to establish the relation between HD-sEMG and the generated
force. (2) Based on the well-trained DBN force estimation model,
an index was presented to evaluate the priority of muscles for
estimating the generated force. (3) Taking elbow flexion task and
palm-pressing task as examples, the priority of the BB, BR, TB,
BRD, and extensor digitorum communis (EDC) for estimating
the generated force were investigated.

MATERIALS AND METHODS

The block diagram in Figure 1 demonstrated the overall research
route of this study. When the multi-muscle contraction tasks
were performed, HD-sEMG signals were collected from four
primary areas of the upper arm and forearm. These areas mainly
included muscles of the BB, BR, TB, BRD, and EDC. The
representative signals of the four primary areas, which were
considered as the input signal of the force estimation model,
were extracted from HD-sEMG by principal component analysis
(PCA) algorithm. They were then fed separately or together into
the DBN to estimate the generated force. Finally, the priority of
individual muscle groups for estimating the generated force was
analyzed with an index termed the mean impact value (MIV).

Two Multi-Muscle Isometric Contraction
Tasks and Data Collection
In this study, 13 right-handed male participants aged 22–27 years
(and without neural or musculoskeletal diseases) voluntarily
participated. Nine subjects participated Task 1, but part of
them were not involved in Task 2 due to personal time
arrangement, and some new subjects were recruited for sufficient
experimental data in Task 2. Overall, the amount of total
subjects is 13 and the subjects in two tasks were not same
entirely. All the participants were informed of the experimental
procedures and signed an informed consent approved by the
Ethics Review Committee of First Affiliated Hospital of Anhui
Medical University (No. PJ 2014-08-04).

The main feature of isometric contraction is that no
contraction movement is occurred during the contraction and the
length of muscle fiber is not changed. Because they are relatively
simple to perform, isometric tasks are usually targeted as the
research subject in related muscle force prediction researches.
In this study, we also designed two specific isometric tasks as
the research subjects. The two multi-muscle contraction tasks
are described as follows: (1) Elbow Flexion Task: As shown in
Figure 2A, during this task, the participants were seated upright
on a chair. Their right forearm clung vertically to the front layer
of an apparatus, whereas the elbow joint was placed at 90◦. The
wrist was connected tightly to the force sensor (LAS-B, Norson,
China), which was fixed in the groove of the back layer of the
apparatus. The participants were asked to perform elbow flexion
with the wrist pulling force, following the guiding force displayed
on the screen from a human–computer interaction interface. In
total, 9 of the 13 participants conducted the elbow flexion task.

(2) Palm-Pressing Task: As shown in Figure 2B, during this task
also, the participants were seated upright on a chair. Their right
forearm clung horizontally to the front layer of the apparatus,
and the palm was placed closely above the force sensor. The
participants were asked to perform a palm-pressing task with
the press force following the guiding force. In total, 10 of the
13 participants conducted the palm-pressing task. Concretely,
during the experiment, the participants were asked to perform the
two contraction tasks by contracting BB, BR, TB, BRD, and EDC
as much as possible. This setup guaranteed that other muscles
(including shoulder muscles) were not basically involved in the
contraction. In addition, based on our previous investigation on
the muscle force estimation in dynamic random scenario (Hu
et al., 2019), sinusoidal mode which have the potential to make
the model generalized for any other force pattern, was selected as
the target force mode in this study.

Custom-built apparatus (shown in Figure 2) was used to aid
the participants in performing the two multi-muscle contraction
tasks. Four pieces of in-house manufactured HD-EMG grids (E1,
E2, E3, and E4; shown in Figure 2C) were used to collect HD-
sEMG data. Each HD-EMG grid contains 32 electrodes (four
rows and eight columns) with 3 mm diameter and 10 mm inter-
electrode interval, covering a collection surface of 8 × 4.6 cm.
The carrier material of the HD-EMG array is a polyimide flexible
material, so that all the electrodes could fit well with the skin.
Surface EMG signals were amplified by a factor of 1371.1, and
then physically filtered using a 20–500 Hz band-pass (Huang
et al., 2017). The skin of the front and back of both upper arm
and forearm was wiped with alcohol to reduce skin–electrode
impedance. As shown in Figure 2B, four arrays were placed to
cover the muscles BB and BR (E1), TB (E2), BRD (E3), and
EDC (E4) of the right arm. The mode of signal acquisition is
monopolar, i.e., the signals are differences between the measured
electrodes and reference electrode. The reference electrode was
self-adhesive and attached to the back of the right hand. A ground
electrode that could reduce the interference from a 50 Hz power
line was attached to the back of the left hand. Both force and
sEMG signals were sampled at 1 kHz using a 16 bit A/D converter
(ADS1198) (Huang et al., 2017).

At the beginning of each data collection experiment,
participants were first asked to perform maximal voluntary
contraction (MVC) to produce the maximal wrist pulling force
(elbow flexion task) or maximal palm-pressing force (palm-
pressing task). Each participant repeated the MVC tasks three
times, and the maximum one was selected as the MVC value.
During the experiment, the participants were asked to perform
a specific task in sinusoidal mode force using the right arm.
Each task was carried out at three force levels with the amplitude
of sinusoidal force ranging from 0–20%MVC, 0–40%MVC, and
0–60%MVC, respectively. The duration of the sinusoidal mode
force was 6 s. The trail was repeated 10 times at each force
level for each participant. The data used for training and
testing of the model contained eight repetitions. The other two
repetitions were adopted for validation. To aid the participants
in better completing the contraction protocols in sinusoidal
mode force, the real-time feedback of the force-tracking curve
and the target force were displayed on a human–computer
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FIGURE 1 | Block diagram of proposed force estimation framework.

FIGURE 2 | Two multi-muscle contraction tasks and home-made HD-sEMG grids. (A) Elbow flexion task (B) Palm pressing task, and (C) Home-made HD-sEMG
grids.

interaction interface. It is noteworthy that all the participants
were asked to practice each muscle contraction protocol until
they could perform the tasks according to the experimental
requirements. All the data were saved to a disk for off-line analysis
by Matlab R2016a.

Signal Pre-processing and
Representative Activation Signal
Extraction Based on PCA Algorithm
Raw HD-sEMG signal was preprocessed to promote the
signal quality according to the following procedures. First,
some channels whose signal amplitude was below or beyond
the reasonable range, or the random noise interference
exist would be discarded and replaced by the mean value
of neighboring channels. Then, the signals were high-pass
filtered (finite impulse response filter, cutoff frequency 20 Hz,
Hanning window, 80th order) to remove the low frequency
noise. The envelope of each channel was obtained by full-
wave rectification and moving average filtering (window
size 100 ms) (Popovic et al., 2016). In each contraction

cycle, the measured force signals were normalized using
the maximum value.

For reducing the number of input units of the force estimation
model and saving computation cost, the mean-removed envelope
matrix of each HD-sEMG grid was decomposed by the PCA
algorithm for dimensionality reduction in this study. That is, the
PCA algorithm was used to extract the representative activation
signals from each HD-sEMG grid. The processing by PCA is
to transform a mean-removed sEMG envelope matrix X = [X1,
X2,., XM] (M represents the number of channels) into a matrix
Y = [Y1,Y2,., YN] consisting of a series of uncorrelated principal
components or modes by orthogonal transformation technique
(Wold et al., 1987; Abdi and Williams, 2010). The first principal
component Y1 accounting for the highest variance can be
represented by the linear combination of X1, X2,., Xm as shown
in Formula (1) (Wold et al., 1987; Abdi and Williams, 2010).

Y1 = a11X1 + a12X2 + · · · + a1MXM (1)

The second principal component Y2, which accounts for the
next highest variance, can be calculated similarly. The process
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continues until M principal components, whose amount equals
to the number of channels, have been calculated. Consequently,
the transformation of the original signal X to the principal
component matrix Y can be described by Formula (2) (Wold
et al., 1987; Abdi and Williams, 2010):

Y = AX (2)

The rows of the matrix A are the eigenvectors of the covariance
matrix X. The elements of each eigenvector are the weights.
The corresponding eigenvalues are the variance explained by
each principal component, which decreased monotonically from
the first principal component to the final one (Wold et al.,
1987; Abdi and Williams, 2010). The principal component
with larger eigenvalues is accompanied by larger energy.
Therefore, it also includes substantial valid information of
the original data. In many studies, the principal components
whose cumulative variance explained contribution rate attains
0.85 were generally selected to reflect the information and
characteristics of the original data (Jeffers, 1967; Chen et al.,
2000; Webster, 2001). In this study as well, the threshold of
variance explained was set to 0.85. The principal components,
which were extracted from each HD-sEMG array and satisfied
the criteria, were selected as the representative activation signal
of the corresponding array.

sEMG-Force Relation Establishment
Based on Deep Belief Network
Deep Belief Network
Deep belief network (DBN) is a layer-by-layer network
constructed by stacking multiple layers of restricted Boltzmann
machines (RBMs) (Hinton, 2002; Hinton et al., 2006). It exhibits

higher generative modeling capability than other shallow
architectures even for a marginal amount of sample data. As
shown in Figure 3A, RBM is a two-layer, undirected, and energy-
based model. The visible units in the bottom layer represent
observations and are connected to the hidden units, which
represent the abstract features. The detailed formula derivation
of RBM was presented in Supplementary Appendix I.

With the unsupervised learning algorithm for RBM, the
training of a DBN can be implemented as two steps: layer-
wise pre-training and fine-tuning. The first step is to train
a stack of RBMs recursively and rapidly layer by layer. This
produces a series of initial net parameters. After pre-training, the
RBMs are unfolded to establish the DBN model with the initial
parameters. Then, the gradient-based optimization algorithm is
applied further to minimize differences between the input and
output data (Hinton, 2002; Hinton et al., 2006; Xiong et al., 2015;
Su et al., 2016; Chen J. C. et al., 2018).

In this study, a DBN that has four layers (including
two hidden layers) was constructed (shown in Figure 3B)
to establish the EMG–force relationship. The inputs of the
DBN model were the principal components after min–max
normalization extracted using the minimum and maximum
absolute values among all the extracted principal components
from four HD-sEMG arrays. Consequently, the number of
input units was determined by the number of principal
components. To ensure the consistency of the structure of
neural network, for all the participants, the minimum amount
of principal components that satisfied the threshold of variance
explained was selected as the number of input units in the
model training phase. In the testing phase, the threshold of
variance explained was not considered. Moreover, the numbers
of principal components and model input units were kept
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accordant with those in the training phase. The output layer
contains one unit. The number of units in two hidden layers
was optimized during the model establishment and parameter
adjustment. Except for the training data and testing data, the
validation data was set to prevent the model over fitting to
the training data.

Evaluation Index of Significance of Individual Muscle
Group to Integrated Force
In many studies, the MIVs of the artificial neural network
were used to evaluate the importance of different inputs to the
output of the model (Dombi et al., 1995). The significance of an
individual muscle group for force estimation was explored in this
study by evaluating the effect of different model inputs on the
output. Specifically, based on a well-trained DBN model, each
model input was marginally altered sequentially. In addition, the
influence of different inputs was evaluated by comparing the
variation in the model output. The procedures are provided in
detail as follows.

Assume that the sample matrix Pm×n = [P1, P2, . . ., Pm]T

represents the model input signals of a contraction cycle. Here,
m is the number of principal components extracted from all
the four arrays, and n is the number of samples. The DBN
was trained with Pm×n and the corresponding measured force
signal. After the model was established, the principal component
P1 was increased and decreased each by 10% × P1 to obtain
two new training vectors P

′

1 and P
′′

1. The other principal
components (from P2 to Pm) remained unaltered. The two new
sample matrixes [P

′

1, P2, . . ., Pm]T and [P
′′

1, P2, . . ., Pm]T

were input to the well-trained DBN model to obtain two results
R
′

1 and R
′′

1. Then, the mean difference of R
′

1 and R
′′

1, which
is defined as the MIV of P1, was calculated using Formula
(3) (Dombi et al., 1995; Liu et al., 2012; Qi et al., 2016):

MIV1 =
∑

n
(R1 − R1)/n (3)

MIV2, . . ., MIVm was calculated similarly. All the principal
components were sorted according to the absolute values of the
MIVs to obtain the relative impact of each model input on the
output. The one corresponding to the largest MIV exerted the
most important influence on the output (Dombi et al., 1995; Liu
et al., 2012; Qi et al., 2016). If over one input corresponds to
a muscle group, the maximum MIV of these input units was
considered as the final index for this muscle group. Consequently,
the MIVs of model input signals extracted from each array can
reflect the relative significance of individual muscle groups to the
integrated force.

Evaluation Parameters of Muscle
Activation Level
In each contraction cycle, HD-sEMG signals were normalized
using the maximum absolute value of all the 128 channels.
Moreover, the root mean square (RMS) value of each normalized
HD-sEMG channel was calculated first. Then, the sum of square
of RMS in a contraction cycle was defined as the activation level
according to Formula (4). RMSj (j = 1, 2, 3, 4) represents the

RMS of the jth array in a contraction cycle, i (i = 1, 2, . . ., 32)
is the channel number, and k represents the force level (20, 40,
and 60%MVC).

Ik
j =

32∑
i=1

RMSk
j (i)2 (4)

Statistical Analysis
The root mean square difference (RMSD) (Huang et al., 2017)
and goodness of fit (R2) (Zhang et al., 2018) between the
normalized measured force and estimated force were selected
to evaluate the performance of the proposed end-effector force
estimation framework. In Formulas (5) and (6), y and ỹ are the
normalized measured force and estimated force, respectively. N
is the number of samples, and ȳ is the mean of the measured force
of the N samples.

The analysis of variance (ANOVA; SPSS 22, Chicago,
IL, United States) was used for statistically analyzing the
experimental results. The fixed factor “HD-sEMG grid” was
tested. The dependent variables were RMSD, R2, and MIV. The
null-hypothesis of the ANOVA test for RMSD and R2 was that
there is no difference in the force estimation accuracy among
different grids. The null-hypothesis for MIV was that there is no
difference in the impact on end-effector force among different
grids. The significance level was 5%.

RMSD =

√∑N
i=1[y(i)− ỹ(i)]2

N
(5)

R2
= 1−

∑N
i=1[y(i)− ỹ(i)]2∑N

i=2[y(i)− ȳ]2
(6)

EXPERIMENTAL RESULTS AND
ANALYSIS

Muscle Group Activation State Analysis
Figure 4 demonstrates the RMS maps of the four HD-sEMG
grids in typical contraction cycles of two tasks at three target
force levels, for a representative participant (Participant 1). In
the two sub-figures, each row corresponds to an array, and each
column corresponds to force level. The electrode arrangement is
consistent with the actual HD-sEMG grid. It should be indicated
that the normalization was implemented among the four HD-
sEMG grids in each contraction cycle. Therefore, the RMS maps
can reflect only the relative differences in muscle activation at
each force level. Figure 4A reveals that the activation intensities
of the BB and BR seem to be higher than those of the BRD,
TB, and EDC at all the three force levels in Task 1. From the
discrepancy of the activation intensity of each muscle group, the
BB and BR are always in the dominant activation state at the
three force levels. Moreover, the BRD is in the co-activation state
at 20%MVC and 40%MVC. In Task 2, as shown in Figure 4B,
the activation intensity of the TB is higher than that of the
other muscles. Furthermore, certain scattered areas of the BRD
and EDC are activated at the middle and low force levels. The
activation level results of the four HD-sEMG grids of all the
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FIGURE 4 | RMS maps of four HD-sEMG grids in typical contraction cycles from Participant 1 (D, Distant; P, Proximal; L, Lateral; M, Medial). (A) Task 1. (B) Task 2.

participants are illustrated in Figure 5. In Task1, for all the
participants, the activation level of the BB and BR is higher than
that of the other muscle groups. In Task 2, the TB is always in the
state of high activation level. The experimental results reveal that
the muscle synergy or muscle co-activation situation generally
appears at the middle and low force levels and that the impact
of the dominant muscle on the target task is remarkable at a
high force level.

Representative Activation Signal
Extraction Results
When the PCA algorithm was applied to the normalized and
mean-removed envelope matrix of each HD-sEMG grid, it was
observed that for almost all the data at the three force levels of
all the participants, the first principal component can attain the
threshold standard of variance explained (0.85). Consequently,
only the first principal components of each array were selected
as the representative signals. These were then normalized by
the minimum and maximum values among the four principal
components as the input signals of the force estimation model.

Figure 6 shows the representative activation signals extracted
from the four primary muscle groups and the corresponding
measured force for Participant 1 in two tasks. The results of
10 typical contraction cycles at each force level (20, 40, and
60%MVC) are provided. Table 1 demonstrates the correlation
coefficient (r) between the extracted activation signals and
measured force. Figure 7 shows the results of the correlation
coefficient (r) between the extracted activation signals and
measured force for all the participants. For both the tasks and
four muscle groups, r increases gradually when the force level
increases. In Task 1, the correlation between the activation signal
extracted from the BB and BR and the measured force is higher
than that of the other muscle groups. In Task 2, the activation
signal extracted from the TB is more related to the measured
force compared with the other three muscle groups. Combining
the results of the correlation analysis and the muscle activation
state analysis, it is concluded that the muscles that are activated
strongly in the task are more related to the generated force.

Force Estimation Results
For the two multi-muscle contraction tasks (elbow flexion
task and palm-pressing task), two types of force estimation
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FIGURE 5 | Activation level I of four muscle groups of all participants. (9
participants for Task 1 and 10 participants for Task 2. Error bars represent the
standard deviation.) (A) Task 1 and (B) Task 2.

experiments were carried out with the leave-one-out cross
validation method for verifying the feasibility of the proposed
force estimation framework, and the statistical analysis was also
based on the results of force estimation with cross validation.
First, HD-sEMG signals from all the four muscle groups and
an individual muscle group were used to estimate the respective
integrated force. Then, based on the DBN model well-trained
with signals from all the four muscle groups, the MIVs of the
four muscles were calculated, and the impact of the different
muscle groups on the target force was investigated. The number
of hidden layer units of DBN was adjusted according to the
training error and generalization error. When the training error
was convergent and generalization error decreased to a relatively
lower level, the number of hidden layer units was the optimal
selection. We have tried one, two, and three hidden layers,
and found that double hidden layers can well meet the needs
of high recognition rate and low computation cost. For the
number of neural units in each layer, we have tried 32–128
units, and found that 80 units for one-dimensional input and 100
units for four-dimensional input were the appropriate selection,
which was easy to converge and has a higher recognition rate
meanwhile. Finally, when individual muscle group was input,
four layers of DBN were set to 1, 80, 80, 1 respectively; when four
muscle groups were input, four layers were set to 4, 100, 100, 1
respectively. All following results were based on the test phase of
the DBN analysis.
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FIGURE 6 | Normalized activation signals extracted from four arrays and measured force of Participant 1 (10 typical contraction cycles are provided at each force
level). (A) Task 1 and (B) Task 2.

The measured force and estimated force in a contraction
cycle (6 s trail) of Participant 1 are shown in Figure 8 as an
example. It should be note that Participant 1 did not always
perform best among all subjects, but in the top quarter among
all participants. It is evident that using the signals from an
individual muscle and from all the four muscles obtained
different force estimation performances. In Task 1, the force
estimation performance of E1 (BB and BR) was the highest
(RMSD = 0.0918 for 20%MVC, 0.0765 for 40%MVC, and
0.0593 for 60%MVC) and that of the combination of all the
four muscle was the second (RMSD = 0.1040 for 20%MVC,
0.0794 for 40%MVC, and 0.0740 for 60%MVC). In Task 2,
the best estimation was from E2 (TB) (RMSD = 0.0836 for
20%MVC, 0.0699 for 40%MVC, and 0.0429 for 60%MVC), and
the suboptimal estimation originates from the combination of
the four muscles (0.0894 for 20%MVC, 0.0740 for 40%MVC, and
0.0731 for 60%MVC). In particular, at the high contraction force
level of 60%MVC, the estimation performances using signals
from the BB and BR or TB are superior.

A one-way ANOVA was performed for two tasks and the result
was shown in Table 2. Across two tasks, a significant RMSD
difference (p < 0.05) and R2 difference (p < 0.05) both occurred

among different grids. As the fixed factor was significant, post hoc
multiple comparisons were executed. The force estimation results
and the pairwise post hoc tests of the two tasks for all the
participants were presented in Figures 9, 10, respectively. With
regard to Task 1, E2 and E4 exhibit low performance. Therefore,
the statistical analysis results are marked among only “E1,” “E3,”
and “All” for higher visibility. “All” represents all representative
signals from E1 to E4 were fed into DBN together as the four-
dimensional input. At 20 and 40%MVC, the force estimation
performances (both RMSD and R2) do not exhibit significant
discrepancy between E1, E3, and all arrays. However, E1 is
significantly higher than the other scenarios at 60%MVC in the
results of 0.0392–0.0641 RMSD and 0.8809–0.9817 R2 (p < 0.05).
For Task 2, the performances of E1, E3, and E4 are inferior.
Therefore, the statistical analysis results are marked only between
“E2” and “All” for higher visibility. At 20 and 40%MVC, good
force estimation performance was obtained for both E2 and
all arrays. However, E2 is significantly higher than all arrays
at 60%MVC (p < 0.05). At 60%MVC, the results of 0.0189–
0.0925 RMSD and 0.9112–0.9918 R2 obtained from E2 were
the best among those of the all the scenarios. Based on the
above results, we can conclude that the highest force estimation
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TABLE 1 | Correlation coefficients between extracted activation signals and measured force for Participant 1.

r (mean ± std) Task 1 Task 2

20%MVC 40%MVC 60%MVC 20%MVC 40%MVC 60%MVC

E1 0.82 ± 0.03 0.90 ± 0.02 0.94 ± 0.01 0.61 ± 0.01 0.76 ± 0.03 0.85 ± 0.02

E2 0.75 ± 0.02 0.81 ± 0.02 0.88 ± 0.02 0.74 ± 0.02 0.84 ± 0.02 0.92 ± 0.02

E3 0.79 ± 0.02 0.86 ± 0.01 0.90 ± 0.02 0.64 ± 0.01 0.77 ± 0.02 0.86 ± 0.02

E4 0.72 ± 0.03 0.77 ± 0.02 0.82 ± 0.07 0.62 ± 0.01 0.75 ± 0.01 0.83 ± 0.03
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FIGURE 7 | Correlation coefficient between different activation signals and
measured force. (9 participants for Task 1 and 10 participants for Task 2.)
(A) Task 1 and (B) Task 2.

performance was not always obtained by considering the HD-
sEMG signals from all the four muscles involved. Dominant
muscles can better describe the generated force characteristic in
multi-muscle related contraction task.

To demonstrate the effects of the different muscles on the
force estimation further, the MIVs from Participant 1, which
were calculated based on the well-trained DBN, are presented
in Table 3. The contraction cycles are in accordant with those
in Figure 8. MIV1, MIV2, MIV3, and MIV4 correspond to
E1, E2, E3, and E4, respectively. The MIVs across all the
participants are shown in Figure 11. The one-way ANOVA was
also implemented. Combining the results of force estimation
using an individual muscle, it is observed that the MIV can reflect
the influence of individual muscle groups on the generated force.
In Task 1, the MIVs of the input units corresponding to E1 and
E3 are higher than those of the other two arrays at the low and
middle force levels. E1 has the largest value (p < 0.05) at all the
three force levels. Therefore, the BB and BR can be considered
to exert the largest effect on the generated force. In Task 2, the
MIV of the input unit corresponding to E2 has the largest value
(p < 0.05) at all the three force levels. Therefore, the TB is always
the main contributing muscle, and the other three muscle groups
exert less impact on the generated force compared to the TB. In
summary, according to the ranking of the MIVs, in multi-muscle
contraction tasks, the priority of different muscle groups suitable
for force estimation can be obtained.

DISCUSSION

In this study, a research on the end-effector force estimation in
multi-muscle contraction task was carried out. In particular, two

types of multi-muscle contraction tasks were considered as the
research objects. In addition, whether a combination of muscles
or an individual muscle is more suitable for the end-effector force
estimation in a multi-muscle contraction task was explored. The
main contribution, limitations, and future work are summarized
and discussed as follows.

Performance of the Deep Learning
Algorithm-Based Force Estimation
Framework
To achieve highly accurate force estimation in multi-muscle
contraction tasks, a framework based on HD-sEMG and DBN
was proposed in this study. To our knowledge, although DBN is
one of the mainstream architectures widely used in the artificial
intelligence field, there are few researchers using it to undertake
force estimation. The results of force estimation experiments
using an individual muscle and those using multiple muscles
verify the feasibility and effectiveness of the proposed framework.
The minimum RMSD of 0.0189 (corresponding R2 of 0.9804)
was achieved for the elbow-flexion force estimation. An average
RMSD of 0.0724 was obtained among all the repetitions in
the two tasks when using only the co-activated or dominant
muscle. In a work of Staudenmann et al. (2006), the end-
effector force was estimated by the sEMG of TB during the
isometric elbow extension. PCA algorithm was used to discard
redundant information and noise in the HD-sEMG signals, and a
minimal RMSD of 0.0940 was obtained. In a work using sEMG
obtained from several forearm muscles to estimate the palmar
pinch force by an artificial neural network, the force estimation
error was 0.081 ± 0.023 RMSD (Choi et al., 2010). Considering
these results, the performance of the proposed force estimation
framework is effective.

However, the proposed framework does not achieve the
highest performance reported in the available literature. For
example, in the work of Harrach et al. (Al Harrach et al.,
2017), three elbow flexors including the BB, BR, and BRD were
jointly considered to estimate the generated force at the wrist.
A remarkably low RMSD (approximately 0.0121) was obtained
at 90%MVC for a participant. Related research (Gandevia and
Kilbreath, 1990; Staudenmann et al., 2006; Al Harrach et al.,
2017; Huang et al., 2017) has demonstrated that because the
relative signal-to-noise ratio increases with the muscle activation
level, the higher is the muscle contraction level, the higher is the
force estimation accuracy. In this study, the largest target force
level is 60%MVC. We consider that the relatively low estimation
performance may be related to the low muscle contraction level.
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FIGURE 8 | Illustration of force estimation results for Participant 1 in a contraction cycle. The statistical values shown in each sub-graph are presented in the form of
RMSD (R2). (A) Task 1 and (B) Task 2.

For force estimation in multi-muscle contraction tasks, the
fusion of the activation information from multiple muscles and
the establishment of the non-linear relationship between sEMG
and the end-effector force are two critical issues. The frequently
used force estimation model in the past decades consisted mainly
of physiological models (e.g., Hill Type model; Hill, 1938) and
mathematical models (e.g., polynomial model; Huang et al., 2017)
and fast orthogonal search (Mobasser et al., 2007; Chen X. et al.,
2018). Although these traditional models can address the simple
regression fitting for force prediction under certain requirements
of precision, they more or less exhibit limitations. The polynomial
model and fast orthogonal search are both incapable of fusing
multiple homologous sEMG signals effectively. With regard to
the Hill type model, the physiological parameters need to be
measured by ultrasound or other means for each participant.
Moreover, it is challenging to determine the relationship among
the muscle force, muscle length, and contraction velocity over
time during a complex contraction task. Neural networks based
on deep learning algorithm can theoretically approximate any

non-linear function to fit the relationship between force and
EMG to the extent feasible. That is, they have the potential to
capture the overall outline and local details of the force profile
for highly accurate force estimation. However, deep learning
algorithm also has some limitations. For example, the demand of
sample size for model training is large, the calculation and time
cost of network training is high, and the interpretability of the
hidden layer is poor.

Although two specific isometric tasks was targeted to verify
the performance of the proposed framework. The DBN-based
force estimation method is not only designed for the isometric
contraction task, but also can be extended to other types of
muscle contraction tasks. Because the neural network is effective
for data fitting and has the good generalization ability, so as
long as the contraction task does not change much (such as
just changing the profile of the force, or adding some simple
dynamic scenarios), only fine-tuning the parameters of the
network using diverse training data is needed, rather than
changing the structure. When the amount of muscles involved
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in the contraction task is changing, different model inputs would
lead to different amount of input units and hidden layer units.
In generally, up to five hidden layers would be tried, the one
that can well meet the needs of high recognition rate and low
computation cost would be considered as the final selection. The
number of hidden layer units of DBN can be adjusted according
to the training error and generalization error. When the training
error is convergent and generalization error decreases to a
relatively lower level, the number of hidden layer units is the
optimal selection.

In addition, only sinusoidal shaped force profile was targeted
in this study. Because no a priori information about the
force profile was considered in the design of the network, the
prediction of the model was only determined by the quality
of training process. The reason for the selection of sinusoidal
shaped force profile is that it has a good coverage for different
force patterns. As shown in Supplementary Appendix II,
taking the Task 1 as an example, force estimation experiments
were supplemented on two new contraction tasks with force
profiles termed ramp and hold (R&H) pattern and staircase
(or piecewise constant) pattern respectively. The experimental
results confirmed that the model trained with data of sinusoidal
force pattern can be used for force estimation in a new force
pattern that never occurred in the training data.

Finally, it is important to point out that the usage of HD-
sEMG is beneficial for improving force estimation performance.
In general, the attachment of the HD-sEMG grid does not need
to be as precise as the discrete electrode, so a slight deviation
will not affect the experimental results. However, we still checked
the approximate position of each muscle via the knowledge of
human anatomy to ensure that the target muscles could be
covered as much as possible. In addition, the PCA algorithm was
used to extract the main activation information of each muscle
group, which will also reduce the impact of different electrode
attachment positions.

Preference for Force Estimation in
Multi-Muscle Contraction Tasks:
Individual Muscle or Multiple Muscles?
For multi-muscle contraction tasks, the generated force is
the result of the contraction of multiple muscles. In theory,

TABLE 2 | Results of the one-way ANOVA on RMSD, R2 with different HD-sEMG
grids as fixed factors.

Task (with different force levels) Significance (p)

RMSD R2

1 20%MVC 0.000139* 0.000452*

40%MVC 0.000354* 0.007224*

60%MVC 0.004166* 0.011007*

2 20%MVC 0.004003* 0.000006*

40%MVC 0.003761* 0.007249*

60%MVC 0.002229* 0.009139*

9 participants for Task 1 and 10 participants for Task 2, 0p ≥ 0.05, ∗p < 0.05.

the highest performance should be obtained when the force
estimation is carried out using activation information from all
the involved muscles. However, contradictory research results
exist with regard to whether an individual muscle or a
combination of muscles is more suitable for force estimation.
Hoozemans and van Dieen (2005) carried out a study on
handgrip force estimation using different forearm muscles and
their combinations. They observed that the performance of force
estimation using the combinations were better than that obtained
using any individual muscle. Chen X. et al. (2018) estimated
the elbow force during static isometric elbow flexion using
the HD-sEMG signals collected from the upper arm muscles.
Their experimental results demonstrated that compared with
the combined use of agonist and antagonist, consideration of
either the agonist or antagonist can improve the end-effector
force estimation performance at different force levels (Chen X.
et al., 2018). In the study of Gandevia and Kilbreath, they asked
subjects to lift an object of standard weight; estimated the pulling
force using the hand muscle (first dorsal interosseous), forearm
muscle (flexor pollicis longus), upper limb muscle (elbow flexor),
and a combination of them; and observed that the upper limb
muscle (elbow flexor) is more suitable for force estimation
(Gandevia and Kilbreath, 1990).

In this study, two representative multi-muscle tasks were used
as experimental research trials, and the problem of whether
individual muscle or multiple muscles are more suitable for force
estimation was investigated. First, the muscle activation analysis
shows that the BB and BR (E1) are always in the dominant
activation state at the three force levels in Task 1. The BRD (E3)
is in the co-activation state at 20 and 40%MVC. The TB (E2) is
always in the dominant activation state at the three force levels
in Task 2. Second, the correlation coefficient analysis shows that
the activation signal extracted from the key muscle can well track
the variations of the measured force. In Task 1 (Figure 7A), the
correlation between the activation signal extracted from the BB
and BR and the measured force is higher than that of other muscle
groups. In Task 2 (Figure 7B), the activation signal extracted from
the TB is more related to the measured force compared with other
three muscle groups. Third, the force estimation results show that
the estimation accuracy obtained using the key muscle is similar
or even better than that obtained using all muscles. In other
words, the best force estimation performance could not always be
obtained by taking the HD-sEMG signals from all the involved
muscles. In Task 1 (Figure 9), the force estimation performance
of E1 (BB and BR) was the highest and that of the combination
of all the four muscle was the second. BRD (E3) outperformed
the combination of four muscle groups when it was in the co-
activation state at 20 and 40%MVC. In Task 2 (Figure 10), the
best estimation was from E2 (TB), and the suboptimal estimation
originated from the combination of the four muscles. Based on
above results, we conclude that the dominant muscles with the
highest activation level are more suitable for highly accurate force
estimation than the combination of muscles.

The MIV index is proposed to evaluate the effect of an
individual muscle group on the end-effector force. It was verified
that it is feasible to rank muscle priority for force estimation in
multi-muscle contraction tasks. The concept of measuring the
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TABLE 3 | MIV results in a typical contraction cycle of Participant 1.

MIV Task 1 Task 2

20%MVC 40%MVC 60%MVC 20%MVC 40%MVC 60%MVC

M 0.0 0.01 0.01 0.00 0.0132 0.0107

IV1 168 71 74 86

M 0.0 0.01 0.01 0.01 0.0170 0.0182

IV2 122 32 13 64

M 0.0 0.01 0.01 0.00 0.0134 0.0100

IV3 144 46 20 79

M 0.0 0.00 0.00 0.01 0.0101 0.0103

IV4 085 76 94 09

contribution of different muscles to the generated force with the
MIV index is innovative, and has practical application value in
the field of biomechanics.

We try to interpret the experimental results from the
perspective of physiology. First, according to the principles of
physiology, BB and TB are an agonist-antagonist pair and play
a significant role in the process of elbow flexion (Nordin and
Frankel, 2001). Both experimental tasks of this study were in the
state of elbow flexion. Because there was a trend of concentric
contraction in Task 1, BB and BR were the main agonist muscles.
For Task 2, there was a trend of eccentric contraction, so TB was
the main agonist muscle (Jaskolski et al., 2007). The results of
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FIGURE 11 | MIVs for all participants. (9 participants for Task 1 and 10
participants for Task 2, *p < 0.05, the statistical analysis mark represents that
the value of this factor is significantly higher than all the others. Error bars
represent the standard deviation.) (A) Task 1 and (B) Task 2.

muscle activation level analysis was consistent with physiological
view. Second, it was pointed out that, in some literature, although
multiple muscles are involved in one contraction task, some
of them only play the role of assisting and maintaining the
force, and some contribute to the subtle fluctuations of the force
(Gandevia and Kilbreath, 1990; Oliver et al., 2010). Combining
Figures 5, 7, it is observed that the muscle activation signals with
high activation level exhibited high correlation with the force
curve. Thus, they could track the variation in the force more
effectively. This result supports the physiological view as well.
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In addition, we attempt to explain the phenomenon that
high force estimation performance could be obtained by using
the sEMG signals from the highly activated muscle from the
perspective of neural network. According to Figure 11, we
could observe that when all the muscle activation signals were
considered, inputs with higher force correlation exerted higher
impact on the output of the DBN. This phenomena revealed that
the DBN network could concentrate its attention on the inputs
with high force correlation.

Limitations and Future Work
The main shortcoming of this study is that only two simple multi-
muscle contraction tasks were investigated. The conclusions that
dominant muscles can track variations in the generated force
more effectively, and that the MIV index could be used to rank
the muscles suitable for force estimation, need to be validated
in more complex multi-muscle contraction tasks. Moreover,
the ideal experimental condition in this study is uneasy to
guarantee. Specifically, the shoulder muscles may participate
in the contraction task more or less during the experiment.
Furthermore, the utilization of a deep learning algorithm is still
highly preliminary, and certain neural nets with an optimal net
structure would be explored in the future for implementation of
real-time and highly accurate force estimation. The sequential
neural network, which can link the activation information
at front and rear time-points, can be adopted to improve
the force estimation accuracy in certain regular or periodic
contraction tasks.

CONCLUSION

To investigate whether an individual muscle or a combination of
muscles is more suitable for the end-effector force estimation,
a multi-muscle contraction force estimation framework is
proposed. It was implemented on elbow flexion and palm-
pressing tasks in this study. In the proposed framework, the
relation between HD-sEMG and elbow flexion force/palm-
pressing force was established using DBN. HD-sEMG was
collected from four primary areas of the upper arm and forearm,
mainly including muscles of the biceps brachii, brachialis,
triceps brachii, brachioradialis, and EDC. The experimental
results demonstrated that the dominant muscles with the highest
activation degree could better track the variation in the generated

force in a multi-muscle contraction task, and were more suitable
for highly accurate force estimation than the combination of
muscles. In addition, the proposed MIV index was effective for
ranking muscle priority for force estimation in multi-muscle
contraction tasks.
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