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Individuals with autism spectrum disorder (ASD) often exhibit abnormal processing of
sensory inputs from multiple modalities and higher-order cognitive/behavioral response
to those inputs. Several lines of evidence suggest that altered γ-aminobutyric acid
(GABA), the main inhibitory neurotransmitter in the brain, is a central characteristic of the
neurophysiology of ASD. The relationship between GABA in particular brain regions and
atypical sensory processing in ASD is poorly understood. We therefore employed 1H
magnetic resonance spectroscopy (1H-MRS) to examine whether GABA levels in brain
regions critical to higher-order motor and/or multiple sensory functions were associated
with abnormal sensory responses in ASD. We evaluated atypical sensory processing
with a clinically-validated assessment tool. Furthermore, we measured GABA levels in
four regions: one each in the primary visual cortex, the left sensorimotor cortex, the
left supplementary motor area (SMA), and the left ventral premotor cortex (vPMC). The
latter two regions are thought to be involved in executing and coordinating cognitive
and behavioral functions in response to multisensory inputs. We found severer sensory
hyper-responsiveness in ASD relative to control participants. We also found reduced
GABA concentrations in the left SMA but no differences in other regions of interest
between ASD and control participants. A correlation analysis revealed a negative
association between left vPMC GABA and the severity of sensory hyper-responsiveness
across all participants, and the independent ASD group. These findings suggest that
reduced inhibitory neurotransmission (reduced GABA) in a higher-order motor area,
which modulates motor commands and integrates multiple sensory modalities, may
underlie sensory hyper-responsiveness in ASD.

Keywords: autism spectrum disorder, gamma-aminobutyric acid, sensory hyper-responsiveness, magnetic
resonance spectroscopy, ventral premotor cortex
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INTRODUCTION

Individuals with autism spectrum disorder (ASD) often exhibit
sensory abnormalities [for more, see Marco et al. (2011)].
Sensory hyper- and hypo-responsiveness are frequently observed
in autistic individuals, although this is not part of the core
definition of autism (APA, 2013). There is individual variation
in the sensory modalities that are most disrupted in individuals
with autism, and the sensory abnormalities could be seen in all
sensory domains (Kientz and Dunn, 1997; Tomchek and Dunn,
2007; Lane et al., 2014). Findings from clinical contexts have
revealed abnormal sensory processing in autism, not just in the
sensitivity to sensory inputs, but also in later cognitive/behavioral
reactivity, including passive avoiding and/or seeking external
stimuli (Lane et al., 2014; Damiano-Goodwin et al., 2018; Schulz
and Stevenson, 2019). Sensory processing involves registration
and modulation of sensory information, as well as an internal
organization of afferent inputs (Humphry, 2002). Indeed, sensory
hyper-responsiveness is a key feature included in the restricted
interests and repetitive behaviors central to an ASD diagnosis
(APA, 2013), and some studies have further demonstrated that
sensory stimuli detection sensitivity was insufficient to describe
the severity of sensory hyperresponsiveness in autism (Ide et al.,
2019; Schulz and Stevenson, 2019). Altered sensory processing
therefore, may occur in the stream of information processing
involving higher-order cognitive processing (Thye et al., 2018).

The molecular biology of autism has revealed that altered
γ-aminobutyric acid (GABA)-mediated signaling within some
brain circuits, may explain the sensory abnormalities seen in
ASD (Rubenstein and Merzenich, 2003; Cellot and Cherubini,
2014; Braat and Kooy, 2015; Foss-Feig et al., 2017; Robertson and
Baron-Cohen, 2017). Altered inhibitory GABAergic transmission
may lead to an abnormal excitatory/inhibitory balance in
the brain, which can alter neural signaling and information
processing, as well as responding behavior (Foss-Feig et al.,
2017). Recent in vivo studies have also revealed reduced GABA
concentrations across multiple cortical areas of the autistic brain
(Harada et al., 2011; Gaetz et al., 2014; Rojas et al., 2014; Puts et al.,
2017; Sapey-Triomphe et al., 2019). Collectively, these findings
indicate that altered GABAergic signaling may be related to the
abnormal daily sensory experience of individuals with autism.

The aim of the present study was to examine the relationship
between subjectively evaluated atypical sensory processing and
GABA concentrations in primary sensory and motor areas and
cortical regions involved in higher-order cognitive and behavioral
functions. While higher-order motor related areas have been
implicated in action responses and multimodal cognitive
processes (Rizzolatti et al., 2014), whether GABA concentrations
in those areas correlate with abnormal sensory processing in
ASD remains unknown. To assess this, we measured GABA
concentrations in multiple brain regions using 1H magnetic
resonance spectroscopy (1H-MRS) in the present study.

We analyzed two major higher-order motor regions-the
ventral premotor cortex (vPMC) and the supplementary motor
area (SMA), which have been demonstrated to have tight
neural connections with sensorimotor cortex in humans and
primates (Luppino et al., 1993; Yeo et al., 2011). Previous studies

have suggested that the vPMC is involved in multiple sensory
processing (Iacoboni and Dapretto, 2006; Bekrater-Bodmann
et al., 2011; Ide et al., 2020), especially for response modulation
or inhibition to sensory signals when a change of the reaction
patterns is needed (Buch et al., 2010). As the execution of motor
sequences and imitation of actions involved in higher-order
motor areas further lateralizes to the left hemisphere (Hlustík
et al., 2002; Vingerhoets et al., 2013; Reader and Holmes, 2018),
we hypothesized that weakened inhibition in the left vPMC
would associate with atypical sensory processing observed in
ASD. The SMA is known to be involved in voluntary motor
execution, motor planning, and coordinated body movements
(Roland et al., 1980; Tanji et al., 1988; Sumner and Husain,
2008) rather than functions in the sensory domains. We further
assessed two additional regions [the primary visual cortex (V1)
(Robertson et al., 2016) and the sensorimotor cortex (SMC) (Puts
et al., 2017)] in which GABA levels and perceptual performance
may be related and abnormal in ASD.

MATERIALS AND METHODS

Participants
Seventeen adolescent and adult participants with ASD (12 males)
and 18 typically developing (TD) participants (11 males) were
recruited. Demographic data for both groups are summarized
in Table 1. Individuals with a clinical diagnosis of ASD were
recruited from parent groups of children with developmental
disorders and the Department of Child Psychiatry at the
National Rehabilitation Center for Persons with Disabilities. We
recruited all the participants by random sampling, regardless
of their genetic background and diagnosis of abnormal sensory
processing. It should also be noted that we have no information
regarding any motor disabilities in each individual. None of
the participants recruited in this study were excluded from the
analysis. To assess the validity of diagnostic group differences,
we used the Japanese version of the Autism Quotient (AQ)
scale (Baron-Cohen et al., 2001; Wakabayashi et al., 2004), in

TABLE 1 | Demographic information and differences between groups.

ASD group TD group

Sex (M:F) 12:5 (N = 17) 11:7 (N = 18)

Age, mean years (range) 21.5 ± 3.2 22.7 ± 6.0

LQ, mean (range) 68.9 ± 36.9 82.1 ± 33.3

AQ, mean (range)** 32.6 ± 8.1 20.1 ± 6.2

VIQ, mean (range) 111.8 ± 16.0 115.5 ± 12.1

PIQ, mean (range) 105.4 ± 17.8 112.4 ± 13.5

FIQ, mean (range) 109.4 ± 14.2 115.6 ± 11.3

**p < 0.01. M, male; F, female; ASD, autism spectrum disorder; TD, typically
developing; LQ, laterality quotient; AQ, Autism spectrum Quotient; VIQ, verbal
intelligence quotient; PIQ, performance intelligence quotient; FIQ, full-scale
intelligence quotient. The AQ score was evaluated by the Autism spectrum Quotient
(AQ) scale. The LQ score was assessed using the Edinburgh Handedness Inventory
(Oldfield, 1971). The intellectual quotients (IQs) were assessed by the Wechsler
Adult Intelligence-Third Edition (WAIS-III). Asterisk indicates significant difference
between groups found by two-tailed t test.
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which higher scores indicate stronger autistic traits. None of
the TD participants had AQ scores above the threshold (cut-
off: 33) and a two-tailed t test revealed significantly higher AQ
scores in ASD participants than in TD controls (t33 = 5.162,
p < 0.01, Cohen’s d = 1.75). One female ASD participant (age
23), who did not receive a clinical diagnosis, was included
in the ASD group because of her AQ score of 37, which
exceeded the diagnostic threshold. We further used the Wechsler
Adult Intelligence Scale-Third Edition (WAIS-III) to assess
participant Intelligence Quotients (IQs). No participants had
full-scale IQs below 75. All participants and their parents gave
written informed consent for study participation after all study
procedures were fully explained. The present study was approved
by the Ethics committee of the National Rehabilitation Center
for Persons with Disabilities. The present experiment adhered to
institutional safety procedures for human brain imaging. Note
that the participants and their 1H-MRS data of the left SMC
and SMA were partially overlapped with those employed in
Umesawa et al. (2020); 14 ASD (three females) and 11 TD (five
females) participants.

Adolescent/Adult Sensory Profile
We evaluated individual sensory responsiveness using the
Japanese version of the Adolescent/Adult Sensory Profile (AASP)
(Brown et al., 2001), which originated from Dunn’s model of
sensory processing disorders (Dunn, 1997) and is based on
Ayres’ theory of sensory integration (Ayres, 1979). The AASP
is broadly accepted for the characterization of altered sensation
in individuals with ASD and is a subjective questionnaire
which consists of 60 items classified into four subscales (normal
range): low registration (23–38), sensation seeking (30–47),
sensory sensitivity (25–42), and sensation avoiding (25–41). Low
registration reflects how easily an individual misses sensory
information, while sensation seeking indicates a tendency to
seek out sensory stimulation. Sensory sensitivity indicates a
heightened awareness of sensory stimuli and sensory avoiding
reflects a tendency to withdraw from strong sensory input.
The first two scales indicate the severity of sensory hypo-
responsiveness and the others represent hyper-responsiveness
(Dunn, 2001).

MR Acquisition
We acquired magnetic resonance imaging (MRI) data on
a 3T Siemens Skyra scanner (Siemens, Erlangen, Germany)
with a 64-channel head coil. We ran two sessions with
a sequence designed to obtain anatomical images and two
sequences for 1H-MRS within a day (i.e., each participant
underwent four sessions total). First, we obtained a high-
resolution T1-weighted anatomical image using a magnetization-
prepared rapid acquisition by gradient echo sequence [number
of slices = 224, slice thickness = 1 mm, repetition time
(TR) = 2300 ms, echo time (TE) = 2.98 ms, flip angle = 9◦]
to set regions of interest (ROIs) with a voxel size of
20 mm× 20 mm× 20 mm (Nakai and Okanoya, 2016). Based on
this anatomical image, we manually determined different ROIs
(see section “Regions of Interest (ROI)”) across multiple sessions.

Regions of Interest (ROI)
Recent studies have found that specific perceptual functions, are
associated with an atypical role for GABA in several ASD brain
regions. We set two ROIs, the bilateral V1 and the left SMC based
on those previous knowledges, in addition to the left SMA and
vPMC (referred to as PMC: Figure 1).

Typically developing individuals with higher GABA
concentrations in the visual cortex exhibited increased
suppression of visual perception, but this association was
absent in ASD participants (Robertson et al., 2016). Autistic
children with higher GABA levels in the sensorimotor cortex had
lower sensitivity to vibrotactile input amplitude after adaptation
to it (Puts et al., 2017). While neurotypical children with
higher GABA levels in that region exhibited greater sensitivity
to the frequency of a given stimuli, children with autism
didn’t exhibit this (Puts et al., 2017). Another study examined
associations between subjective individual difficulties in
sensory processing, a psychophysical index, and somatosensory
cortex GABA levels (Sapey-Triomphe et al., 2019). This study
reported higher GABA levels and higher frequencies of atypical
tactile experiences (as per a self-reported questionnaire) in
individuals with ASD.

The anatomical definitions of ROIs were as follows; the V1
ROI was midline of the occipital cortex (Muthukumaraswamy
et al., 2012). The SMC ROI included the “hand-knob” of the

FIGURE 1 | Regions of interest. Regions of interest (ROI) for 1H magnetic
resonance spectroscopy for both populations. V1, the bilateral primary visual
cortices; SMC, the left sensory motor cortex; SMA, the left supplementary
motor area; PMC, the left ventral premotor cortex.
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left central sulcus (Yousry et al., 1997). The SMA ROI was the
superior and medial part of Brodmann area (BA) 6, with its
inferior face anterior to the cingulate sulcus and extending to
the dorsal premotor cortex. The PMC ROI included the lower
and lateral parts of BA6, with its inferior face anterior to the
lateral sulcus [mainly including the ventral PMC (vPMC)]. We
used a MEGA-PRESS sequence for GABA-edited MRS (Mescher
et al., 1998) to quantify GABA in each ROI (TR = 2000 ms;
TE = 70 ms; 128 averages; 20 mm × 20 mm × 20 mm). We
used LCModel (Provencher, 2001) to quantify resultant spectra
and calculated a ratio of GABA+ (reflecting GABA+ co-edited
macro-molecules) to N-acetyl aspartate acid (NAA) to quantify
the GABA concentration in each ROI (Harada et al., 2011;
Gaetz et al., 2014).

RESULTS

AASP Scores
Comparisons of AASP scores by two-tailed t test revealed
that ASD participants had significantly greater low registration
(t33 = 3.01, p = 0.005, d = 1.02), sensory sensitivity (t33 = 2.03,
p = 0.05, d = 0.69), and sensation avoiding (t33 = 3.09, p = 0.004,
d = 1.04) scores, but not sensation seeking (t33 =−0.77, p = 0.45,
d =−0.26; Figure 2) scores, than TD controls.

GABA+ Concentrations
The mean GABA+ concentrations across four ROIs in each
group are shown in Figure 3. The mean GABA+ /NAA ratio in
the left SMA of ASD participants was significantly lower than that
of TD controls (two-tailed t test: t33 =−2.74, p = 0.01, d =−0.93).
No other regions had significant group-wise differences (V1:
t33 = 1.35, p = 0.19, d = 0.46; PMC: t33 = −0.65, p = 0.52,
d =−0.22; SMC: t33 =−0.64, p = 0.52, d =−0.22).

FIGURE 2 | Distribution of AASP scores in each group. The upper and lower
boundaries of the standard boxplots represent the 25th and 75th percentiles.
The horizontal line across the box marks the median of the distribution. The
ends of vertical lines below and above the box represent the minimum and
maximum values, respectively. Asterisks represent significant difference by
two-tailed t test.

FIGURE 3 | Distribution of GABA+/NAA ratio of every ROIs in each group.
The upper and lower boundaries of the standard boxplots represent the 25th
and 75th percentiles. The horizontal line across the box marks the median of
the distribution. The ends of vertical lines below and above the box represent
the minimum and maximum values, respectively. Asterisks represent
significant difference by two-tailed t test. V1, the bilateral primary visual
cortices; SMC, the left sensory motor cortex; SMA, the left supplementary
motor area; PMC, the left ventral premotor cortex.

Correlation Analyses
Figure 4 shows associations between individual GABA+ /NAA
ratios and each AASP subscale score across the ROIs.
Correlation analyses across all participants (N = 35) revealed
negative correlations between GABA+ /NAA ratios and sensory
sensitivity (Pearson’s correlation coefficient r = −0.43, p = 0.01,
95% confidence interval (CI) = [−0.67, −0.11]) and sensation
avoiding scores (r = −0.41, p = 0.013, CI = [−0.66, −0.09]) in
the PMC. Some associations were significant in ASD participants,
including those for sensory sensitivity (r = −0.63, p = 0.007,
CI = [−0.80, −0.38]) and sensation avoiding (r = −0.59,
p = 0.014, CI = [−0.77, −0.31]), but not in the TD group
(p > 0.7 for both). Furthermore, there was a significant positive
correlation between GABA+ /NAA ratio in the left SMC and
sensation seeking in the TD group (r = 0.56, p = 0.015,
CI = [0.28, 0.76]), but not in the ASD group (p > 0.6). No
other subscales were significantly associated with GABA+ levels
in either all participants or independently in either of the
two groups.

DISCUSSION

The present study assessed whether GABA+ concentrations
in specific brain areas were associated with different domains
of abnormal sensory experiences in individuals with ASD. An
analysis of sensory processing patterns, as assessed by a self-
report questionnaire, revealed that participants with ASD had
increased low registration, sensory sensitivity, and sensation
avoiding subscale scores. Although we found a difference
in GABA+ relative to NAA concentrations only in the left
SMA between the ASD and TD groups, the other ROIs,
the bilateral V1, the left SMC, and the left vPMC did not
differ in this measure. Correlation analyses demonstrated that
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FIGURE 4 | Correlation analysis between individual AASP and GABA+ level. Individual sub-scale scores are plotted against individual GABA+ /NAA ratio in each
ROI. Red triangles indicate ASD individuals and blue circles indicate TD individuals. Shaded bands represent 95% confidence intervals across individuals for each
group (green: all participants, red: ASD group, blue: TD group). V1, the bilateral primary visual cortices; SMC, the left sensory motor cortex; SMA, the left
supplementary motor area; PMC, the left ventral premotor cortex.

individuals with lower GABA+ levels in the left vPMC had
increased sensory hyper-responsiveness (i.e., higher scores in
the sensory sensitivity and sensation avoiding subscales of
the AASP). This trend was obvious in ASD but not in TD
participants. Recent studies in transgenic mice with deletions of
autism-related genes have further revealed that reduced GABA-
mediated inhibitory signals can induce hyper-responsiveness to
sensory stimuli (Orefice et al., 2016, 2019; He et al., 2017).
Our finding suggest that reduced inhibitory neurotransmission,
caused by reduced GABA in the higher-order motor areas that
modulate motor commands and integrate sensory information

across multiple modalities, is related to increased sensory
hyperresponsiveness in ASD.

Atypical sensory processing in people with ASD would involve
behavioral patterns in extraordinary response to sensory inputs
and not just restricted in sensitivity (e.g., low threshold of
perception: Ide et al., 2019; Schulz and Stevenson, 2019). Two
major higher-order motor-related areas, the SMA and vPMC
have connections with sensorimotor cortices in human and
non-human primates (Luppino et al., 1993; Yeo et al., 2011).
Previous studies have suggested that the vPMC is involved in
multiple sensory processing, especially for response modulation
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or inhibition to sensory signals when a change of the reaction
patterns is needed (Buch et al., 2010). The vPMC is involved in
low-level sensory encoding and motor functions, such as goal-
directed behavior in response to multiple sensory information
(Rizzolatti et al., 2002). For instance, in hand grasping, this
area is critical in using visual information to for appropriately
shaping hands (Rizzolatti et al., 2002; Davare et al., 2008; Prabhu
et al., 2009). Furthermore, inhibition of M1 activity by the
vPMC is critical for rapid behavioral modulation based on
action plan changes (Buch et al., 2010). Neurons in the primate
vPMC respond to multiple sensory inputs, especially to tactile
stimuli and partially to visual (Gentilucci et al., 1988) and
auditory stimuli (Graziano et al., 1999). A human functional MRI
study demonstrated that the left vPMC activated during tactile
orientation judgment (Zhang et al., 2005). Previous work has
shown that the secondary motor (M2) area in mice, which is
functionally homologous to the human PMC, has synchronized
neural activity with the primary somatosensory area and is crucial
for tactile texture discrimination (Manita et al., 2015). Given
those and the present result, atypical neural modulation of earlier
cortical regions by the vPMC may lead to sensory and motor
processing dysfunction.

Previous accounts of highly cognitive domains, such as
temporal processing of stimulus, in ASD may also implicate
links between the left vPMC and sensory hyper-responsiveness
given reduced inhibitory cortical neuron activity (Poole et al.,
2017; Ide et al., 2019). Our previous study elucidated that
individuals with ASD who showed high resolution of tactile
stimulus temporal order tended to have severer sensory hyper-
responsiveness (Yaguchi et al., 2020). Functional MRI studies
have demonstrated that multiple cortical regions are involved in
temporal order judgment of multisensory stimuli, including the
left vPMC, which likely plays a key role (Takahashi et al., 2013;
Binder, 2015; Miyazaki et al., 2016; Ide et al., 2020). The vPMC
is also involved in bodily awareness, which may derive from the
integration of visual and somatosensory information (Bekrater-
Bodmann et al., 2011; Brozzoli et al., 2012). The vPMC is
also involved in sensation and decision-making during auditory
discrimination (Lemus et al., 2009). Considering the findings
presented here, the vPMC may additional be involved in the
awareness of multiple sensory stimuli, leading to later action
responses to these inputs. Because of its integrative function,
reduced inhibitory neurotransmission in the left vPMC in ASD
may induce increased reactivity across multiple stages of sensory
processing in ASD (Dunn, 1997; Schulz and Stevenson, 2019).

The data presented here are somewhat inconsistent with
a previous study which reported greater GABA levels in the
sensorimotor cortex and a higher frequency of subjective atypical
tactile experiences in individuals with ASD (Sapey-Triomphe
et al., 2019). In this previous work, however, the researchers
evaluated sensory hypersensitivity and hyposensitivity using the
same index and by extracting only tactile domain features.
The difference between our own work and this prior study
may be due to a focus on modality-dependent predictability
of ordinary stimuli (Sapey-Triomphe et al., 2019) and the
GABA in the corresponding primary sensory region. In the
present study, AASP was used, which differentiates between

hypersensitivity and hyposensitivity using Dunn’s model (Dunn,
1997). Additionally, given the multisensory processing role
of the vPMC, this region is likely more closely related
to domain-general atypical sensory hyper-responsiveness, as
reported previously in functional associations between GABA
and psychophysical measurements in autism (Robertson et al.,
2016; Puts et al., 2017).

Despite early reports of reduced GABA across brain areas,
we found significant reductions only in the left SMA and
no difference in other regions. Most children with ASD have
co-morbid developmental coordination disorder, which reflects
dysfunction in coordinated body movements (Green et al.,
2009). The SMA is thought to be essential for coordinated body
movements (Roland et al., 1980; Tanji et al., 1988; Sumner
and Husain, 2008). In agreement with our recent report,
the present study’s finding indicates that reduced GABA+ in
the SMA may reflect complicated motor disability in ASD
(Umesawa et al., 2020). Prior work has found that GABA
concentrations in V1 did not differ between adults with
ASD and controls, but rather were associated with functional
measures that characterized that population (Robertson et al.,
2016). Additional studies have reported reduced GABA in the
sensorimotor cortex in autistic children (Gaetz et al., 2014;
Puts et al., 2017), though only one study has reported this
in autistic adults (Sapey-Triomphe et al., 2019). At present,
little is known about GABA concentrations in frontal areas,
including higher-order motor regions, in individuals with ASD.
One study demonstrated significant reductions in frontal lobe
GABA in children with autism compared to controls and no
changes in striatal GABA levels (Harada et al., 2011). Another
study of adults with ASD revealed no differences in GABA
concentrations in either the medial prefrontal cortex or the
striatum (Horder et al., 2018). Critically, GABA concentration
may also change with age (Clement et al., 1987; McQuail
et al., 2015; Rowland et al., 2016). Our findings in adolescents
and adults reveal that increased variation of cerebral GABA
concentration across the participants by age might reduce the
clear between-group difference.

In the present study, GABA+ levels in the left SMC in TD
participants were positively correlated with their sensation
seeking index scores, which measures one’s preference for
behaviors being proximal to stimuli to create a sensation (Brown
et al., 2001; Dunn, 2001). Previous work in an autism-unrelated
mouse strain demonstrated that GABAergic parvalbumin
neurons in the primary motor cortex are essential for the
inhibition of sensory-triggered motor reaction behaviors
(Estebanez et al., 2017). The present study suggests that
individual variation in sensorimotor GABA+ levels modulates
subjective impulsivity and associated responses to external
stimuli, but not in individuals with ASD. Previous work
in autistic adults has reported that sensation seeking
in ASD individuals differed from the other three scales
(Crane et al., 2009). Our sample did not replicate sensation
seeking abnormalities in participants with ASD, but this
cognitive/behavioral aspects of ASD may reflect another potential
association between the neurobiological and pathognomonic
traits of autism.
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We should note that the findings of our study from a small
cohort has limitations to be extended to the larger population.
We had no information regarding genetic backgrounds of each
individual. Some autism-related genes have been considered to
relate to GABAergic inhibition (Orefice et al., 2016, 2019; He
et al., 2017). We also did not screen for any motor disabilities
of the participants. Thus, whether these uncontrolled factors had
any influence on our present results is unknown.

To date, a number of studies in ASD patients have examined
modality-dependent atypical sensory processing and respective
neural correlations. Although individual variability in sensory
modality abnormalities and later behavioral response in ASD
are well known, associations between clinically-validated sensory
assessments and brain metabolites are less well understood.
The present study is the first to comprehensively analyze
the relationship between GABA+ levels in multiple brain
regions and multiple aspects of sensory processing deficits in
ASD. As discussed above, the left vPMC may be involved
in the processing of multiple sensory information, though
its specific function which accounts for sensory processing
disorder in autism remains unknown. Future work should
examine whether a specific cognitive capacity which the left
vPMC is involved in, such as temporal processing of stimuli
(Takahashi et al., 2013; Binder, 2015; Miyazaki et al., 2016;
Ide et al., 2020), bodily-awareness (Bekrater-Bodmann et al.,
2011; Brozzoli et al., 2012), and decision-making (Lemus
et al., 2009), mediates the association between GABA and
atypical sensory processing. Furthermore, whether there is
an altered role for GABA in the vPMC in individuals with
autism should be evaluated by whole-brain functional and
anatomical connectivity (Ameis et al., 2016; Yahata et al.,
2016). Findings from those studies may allow us to evaluate
the possibility of GABA levels in the left vPMC as a
significant biomarker and therapeutic target for autistic sensory
processing disorder.
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