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The linearity and stationarity of fMRI time series need to be understood due to their
important roles in the choice of approach for brain network analysis. In this paper, we
investigated the stationarity and linearity of resting-state fMRI (rs-fMRI) time-series data
from the Midnight Scan Club datasets. The degree of stationarity (DS) and the degree of
non-linearity (ON) were, respectively, estimated for the time series of all gray matter voxels.
The similarity and difference between the DS and DN were assessed in terms of voxels
and intrinsic brain networks, including the visual network, somatomotor network, dorsal
attention network, ventral attention network, limbic network, frontoparietal network, and
default-mode network. The test-retest scans were utilized to quantify the reliability of
DS and DN. We found that DS and DN maps had overlapping spatial distribution.
Meanwhile, the probability density estimate function of DS had a long tail, and that
of DN had a more normal distribution. Specifically, stronger DS was present in the
somatomotor, limbic, and ventral attention networks compared to other networks, and
stronger DN was found in the somatomotor, visual, limbic, ventral attention, and default-
mode networks. The percentage of overlapping voxels between DS and DN in different
networks demonstrated a decreasing trend in the order default mode, ventral attention,
somatomotor, frontoparietal, dorsal attention, visual, and limbic. Furthermore, the ICC
values of DS were higher than those of DN. Our results suggest that different functional
networks have distinct properties of non-stationarity and non-linearity owing to the
complexity of rs-fMRI time series. Thus, caution should be taken when analyzing fMRI
data (both resting-state and task-activation) using simplified models.

Keywords: resting-state fMRI, degree of stationarity, degree of non-linearity, test-retest, overlapping spatial

INTRODUCTION

Functional magnetic resonance imaging (fMRI) has become an important method for investigating
system-level brain activity (Biswal et al., 1995, 2010; He, 2013; Gordon et al., 2017; Gratton et al,,
2018). The majority of fMRI research to date has used a simplified model based on the assumptions
of stationarity and linearity (de Pasquale et al., 2010; Cabral et al., 2014; Panerai, 2014). Stationarity,
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in general, implies that the statistic or model parameter of interest
does not change over time (Smith et al.,, 2012, 2013; Liu and
Duyn, 2013; Allen et al, 2014; Shine et al.,, 2016; Suk et al,
2016; Yaesoubi et al., 2018). The stationarity assumption is also
important for the frequency analysis of fMRI time series, as
the Fourier transform is suitable for stationarity (Beck et al,
2006). Since resting-state fMRI (rs-fMRI) is a powerful tool for
studying human functional brain networks, it is necessary to
understand stationarity in the rs-fMRI time series. However, only
a few studies have used fMRI signals to characterize the non-
stationarity of time series. For example, Ou et al., used a Bayesian
connectivity change point model to statistically investigate rs-
fMRI signals and found that it could differentiate the temporal
dynamics of functional interactions between children with
attention deficit hyperactivity disorder and matched controls
(Ou et al, 2014). Results from the study suggested that
functional connectivity or interactions had temporally non-
stationary characteristics. Muhei-Aldin and colleagues used non-
parametric testing, i.e., the reverse arrangement test, to examine
the stationarity of the fMRI signal during a motor sequence
learning task and showed that the time series were non-stationary
(Muhei-aldin et al., 2014). Bullmore et al., provided a review
of wavelet methods used for the analysis of potentially non-
stationary fMRI time-series signals (Bullmore et al., 2004).
Recently, several studies have investigated the temporal
fluctuations in functional connectivity, i.e., dynamic functional
connectivity, in the human brain and have interpreted their
findings as evidence of non-stationary switching of discrete
brain states (Allen et al., 2014; Hansen et al., 2015). Hutchison
and colleagues used the rs-fMRI and sliding-window approach
to study stimulus-independent fluctuations of functional
connectivity within resting-state networks (Hutchison et al.,
2013). They found that resting-state functional connectivity
is not static and that resting-state networks can exhibit non-
stationary spontaneous relationships irrespective of conscious
and cognitive processing. Theoretically, the activity of neuronal
assemblies should be non-stationary since it reflects the
different stages of a self-organized process (Schoner and Kelso,
1988; Jin et al., 2017). However, several papers have reported
contradictory findings regarding the non-stationarity in fMRI
time series (Gaschler-Markefski et al., 1997; Hindriks et al,,
2016; Laumann et al., 2017). For example, Gaschler-Markefski
and colleagues reported that auditory tasks increased the
non-stationarity in the fMRI time series of the auditory cortex
(Gaschler-Markefski et al., 1997). Laumann et al., reported that
the resting state condition yielded mean kurtosis measures
closer to the stationary null model than task conditions, which
seemed to suggest stationarity in the rs-fMRI signal (Laumann
et al., 2017). Hindriks et al., found that the variation leading to
dynamic functional connectivity was related to the length of the
sliding window (Hindriks et al., 2016). To better understand
the fMRI signal profile underlying functional connectivity, it is
necessary to clarify whether the underlying processes are actually
stationary or non-stationary (Thompson, 2018). Previous studies
inferred non-stationarity in time series using task-related fMRI
or based on the evidence of dynamic functional connectivity

(Mubhei-aldin et al., 2014; Ou et al, 2014). The quantitative
non-stationarity profiles of rs-fMRI signals and various brain
regions remain unclear.

On the other hand, the linear time-invariant (LTI) system
plays a crucial role in modeling the fMRI time series to generate
a transfer function from the stimulus to the neural output. The
hemodynamic response used in fMRI data analysis is assumed
to be a linear model in which the neuronal activity is thought
to be linearly convolved with the underlying blood flow/volume
(hemodynamic) changes (Esposito et al., 2002). While the fMRI
time series approximates an LTI system for medium-duration
stimuli, the fMRI response has been found to be non-linear for
short-duration stimuli. For example, Wager et al., reported that
the non-linearity of fMRI data may substantially influence the
detection of task-related activations, particularly in rapid event-
related designs when considering the non-linear effects on the
response magnitude, onset time, and time to peak (Wager et al.,
2005). Therefore, the presence of non-linear or deterministic
behavior has been postulated in various physiological and
pathological states (Freeman, 2000). Non-linearity postulates
that irregular and seemingly unpredictable behaviors are not
necessarily attributed to random external inputs to the systems
but, on the contrary, can be the result of deterministic dynamical
systems (Stam, 2005). Therefore, the detection of non-linearity
is important and should be the first step before any non-linear
analysis. Previous studies have shown the non-linear dynamics
of brain activities by using EEG (Stam, 2005) and rs-fMRI
(LaConte et al., 2004; Deshpande et al., 2006; Xie et al., 2008).
For example, Xie et al.,, studied the spatiotemporal non-linear
dynamics property in rs-fMRI signals of the human brain by
using the spatiotemporal Lyapunov exponent analysis (Xie et al.,
2008). Furthermore, the Delay Vector Variance (DVV) method
has been used to characterize the non-linearity in fMRI time
series (Freeman, 2003). Gultepe et al. used the DVV method to
identify whether resting-state fMRI signals are linear or non-
linear and found that the default-mode network had more linear
signals compared to the visual, motor, and auditory networks,
while the visual network had more non-linear signals than the
others (Gultepe and He, 2013). Taken together, it is important
to comprehensively study the degree of non-linearity of rs-fMRI
time series in various large-scale brain networks and across
whole-brain gray matter.

To probe the complexity and stability of a system such as
the human brain, it is necessary to investigate both the non-
linearity and stationarity of underlying dynamic activities given
the inherent association and distinction between non-linearity
and stationarity. In this study, we aim to comprehensively assess
the profiles of non-stationarity and non-linearity in rs-fMRI
time series for whole-brain gray matter voxels and functional
networks. We compute quantitative measures for the degree
of stationarity (DS) and the degree of non-linearity (DN) in
nine healthy subjects with 10 test-retest rs-fMRI scans. We then
calculate the test-retest reliability of DS and DN measures. We
hypothesize that voxels and networks with stronger degrees of
non-stationarity and non-linearity partially overlap and have
varied test-retest reliability.
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MATERIALS AND METHODS

Data and Preprocessing

In total, 100 rs-fMRI scans were used in this study and were
obtained from the Midnight Scan Club data (https://openneuro.
org/datasets/ds000224/versions/1.0.0). Data were collected from
10 healthy, right-handed, young adult subjects (5 females and 5
males; age: 24-34 y) by using a Siemens Trio 3T MRI scanner
over the course of 10 sessions conducted on separate days, each
beginning at midnight. Within each session on 10 consecutive
days, 30 min of rs-fMRI data were collected in which subjects
visually fixated on a white crosshair presented against a black
background. One subject (MSCO08) was excluded due to the
subject falling asleep during the scan, in line with the previous
literature (Gordon et al., 2017). Therefore, the rs-fMRI data
includes nine subjects, each with 10 sessions. The details about
data acquisition and subject information have been reported
previously (Gordon et al., 2017). Our data analysis included the
following steps: (1) preprocess the rs-fMRI dataset; (2) calculate
the DS of the preprocessed fMRI time series and create the
network histogram map; (3) calculate the DN characterizations
of the preprocessed fMRI time series and create the network
histogram map; (4) determine the strength of DS and DN and
identify their spatial overlap; (5) quantify the test-retest reliability
of DS and DN.

The rs-fMRI preprocessing included the following: (1)
discarding the first 10 volumes of each scan for signal
equilibration, wherein subjects adapted to the environment; (2)
slice time correction to account for temporal shifts in fMRI
data acquisition; (3) correction for head motion; (4) use of the
Friston-24 model to control head motion effects (Friston et al.,
1996; Yan et al., 2013), followed by regressing out the signals
from white matter and cerebrospinal fluid to reduce respiratory
and cardiac effects (Fox and Raichle, 2007); (5) normalizing
functional images into the standard MNI space by using the EPI
template with the resampled voxel size of 4mm; (6) spatially
smoothing the result data using an 8-mm full width at half
maximum (FWHM) Gaussian kernel; (7) band-pass filtering
(0.009 Hz < f < 0.08 Hz); (8) extracting time series from whole-
brain gray matter voxels and from functional networks based on
Yeo’s atlas (Yeo et al., 2011).

The DS Characterization of fMRI Time

Series

The Hilbert-Huang transform (HHT) is an adaptive time-
frequency analysis method (Huang et al., 1998) and has been
used to analyze non-linear and non-stationary signals (Qian et al.,
2015). Compared to the sliding window approach, HHT can
directly and quantitatively characterize the degree of stationarity
in the time series. In addition, the HHT method has high
performance in terms of both time-space and frequency-space
resolution, which facilitates precise expressions of instantaneous
frequency and is conducive to feature extraction of biomedical
signals (Huang and Shen, 2005). The HHT mainly consists of
two parts, namely the empirical mode decomposition (EMD) and
the Hilbert transformation (Huang and Shen, 2005). The EMD is
an efficient and adaptive method for extracting a set of intrinsic

mode functions (IMFs) from non-linear and non-stationary time
series (Lin and Zhu, 2012).

Signal x (n) of length N can be decomposed by EMD to
obtain M basic mode components ¢y, ¢y, -+ ,cy and residual
componentry.

x(n) = ij\ilcj—i-rM (1)
For each of the IMFs, using Hilbert transform, we obtain
x(n) = Zjl\ilaj (n) ein(n)n (2)

The Hilbert spectrum of x (n) can thus be expressed as:

H(w,m) =Y bja, (n) Mitmn 3)
where
1 wi=w
C_ i
bj = {0 other (4)

The boundary Hilbert spectrum of x (n) is

h(w) = 3C0H (w,n) (5)

The average boundary spectrum is defined as
BOw) = Lh(w ©
w)=—h(w
N

Thus, the DS can be defined as

N-1
n=0 <1

DS (w) is capable of quantitatively detecting the stationarity of the
data. For the stationarity process, the Hilbert spectrum does not
change with time; it only contains the horizontal contour, that
is DS (w) = 0. If the Hilbert spectrum is time-dependent, then
DS (w) > 0, and as DS (w) increases, the signal’s non-stationarity
is enhanced.

The DN Characterization of fMRI Time

Series

The DVV method characterizes a time series based upon its
predictability and compares the result to those obtained for
linearized versions of the signal (surrogates) (Gautama et al,
2004). Based on a set of N delay vectors (DVs), denoted
by x(k) = [xk,m,xk,mﬂ)_“,xk,l], a vector containing m
consecutive time samples. Every DV x (k) has a corresponding
target, namely the following sample x;. For a given embedding
dimension m, the mean target variance, o *2, is computed over
all sets 2. A set Q is generated by grouping those DV that are
within a certain distance from x (k), which is varied in a manner
standardized with respect to the distribution of pairwise distances
between DVs. This way, the threshold automatically scales with

mm=% )

_Hw, n)>2
B(w)
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the embedding dimension m, as well as with the dynamical range
of the time series at hand, and thus, the complete range of
pairwise distances is examined. The proposed DVV method can
be summarized as follows for a given embedding dimension m:

- The mean, p4, and standard deviation, o4, are computed over
all pairwise distances between DV, |x (1) — x(j) H (i# j).

- The sets € are generated such that Qn =
{x @) | ||x(k) — x(i) || < rd}, i.e, sets that consist of all
DVs that lie closer to x (k) than a certain distance 74, taken
from the interval [min {0, uy — nzo,4}], e.g., uniformly spaced,
where n, is a parameter controlling the span over which to
perform the DVV analysis.

- For every set Q, the variance of the corresponding targets,
akz, is computed. The average over all sets €, normalized

by the variance of the time series, 02, yields the measure of
unpredictability, o *2:

N
* 1
o 2= N chakza)? (8)
k=1

The deviation from the bisector line is thus an indication of non-
linearity and can be quantified by the root mean square error
(RMSE) between the o*?’s of the original time series and the o *%’s
averaged over the DVV plots of the surrogate time series (note

that while computing this average, as well as with computing the
RMSE, only the valid measurements are taken into account, and
then the DN is obtained). In this way, a single test statistic is
obtained, and traditional (right-tailed) surrogate testing can be
performed (the deviation from the average is computed for the
original and surrogate time series).

Threshold for Strong DS and DN

The quartile method (Hyndman and Fan, 1996), as shown in
Figure 1, was used to determine the relative thresholds for strong
DS and DN, which made use of the whole-brain DS and DN
values. The quartile is a numerical value obtained when all values
are arranged from small to large in statistics and are divided into
four equal positions. The third quartile was arbitrarily selected as
the threshold for strong DS and DN in this study.

Definition

Qlower limit < value DS < Q;  weak level non-stationary
Q1 < value DS < Q3 medium level non-stationary (9)
Qs < value DS < Qupper limir  Strong level non-stationary

Qiower limit < value DN < Q; weak level non-linearity
Q1 < value DN < Q3 medium level non-linearity(10)
Qs < value DN < Qupper limit Strong level non-linearity

Upper limit = Q3+1.5(Q3-Q1)

/ .

< Strong level

< Medium level

< Weak level .

_Lower limit = Q1-1.5(Q3-Q1)

T
+
outlier \)i
+
i —
|
|
|
B |
|
|
|
L Q3-75% -~y |
Median —>
Q1-25%-7 |
|
|
|
| /
1
FIGURE 1 | Defined percentage ratio by using the quartile method.
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Where

(11)
(12)

Qupper limit = Q3 + 1.5 X (Q3 — Q1)
Qiower limit = Q1 — 1.5 X (Q3 — Q1)

Histogram Map and Overlap Map

After calculating voxel-based values of DS and DN within the
gray matter mask, 90 maps were obtained for nine subjects and
their 10 test-retests. Resulting maps were combined to identify
the histogram map of DS and DN and the distribution of strong
DS and DN as well as the overlap and distinctions by using an
a priori functional network atlas (Yeo et al., 2011) (including
VN: visual network, SMN: somatomotor network, DAN: dorsal
attention network, VAN: ventral attention network, LIMB: limbic
network, FPN: frontoparietal network, and DMN: default-mode
network). Finally, the percentage of overlapping voxels for each
network was calculated.

Test-Retest Reliability

Test-retest studies are essential to determine the reliability of rs-
fMRI measures (Noble et al., 2019). To evaluate the test-retest
reliability as well as the within- and between-subjects variability
of DS and DN, we computed the intraclass correlation (ICC)
(Shrout and Fleiss, 1979) and obtained the test-retest reliability
maps for DS and DN.

BMS — EMS

ICC =
BMS + (k — 1)EMS

(13)

Equation (13) estimates the correlation of the subject signal
intensities between sessions, modeled by a two-way analysis of
variance, with random subject effects and fixed session effects.
In this model, BMS is between-targets mean square, EMS is
error sums of squares, and k is the number of repeated sessions.
For statistical evaluations, a significance threshold of p < 0.05
was used.

Similarity Analysis

To explore the similarity of DS or DN between functional
networks, Pearson’s correlation was conducted across subjects
and sessions by using average values within each network.
Furthermore, we explored the similarity between DS and DN
within 10 axial slices. Average values of DS and DN across
subjects and sessions were correlated for each slice.

RESULTS

Distribution of DS and DN in Terms of

Voxels and Networks

As displayed by three slice maps in terms of voxels across nine
subjects and their 10 test-retest sessions, we found that the
resting-state brain had varied DS and DN values in different
regions (Figures 2A-E). Mean value maps were plotted by
using the average values of DS and DN across subjects and
sessions, respectively (Figures 2A,D). The variance value maps
were plotted by using the variance values of DS and DN across
subjects and sessions, respectively (Figures 2B,E). Although DS

and DN largely shared the same regions, they still had their
own unique distribution. For example, the peak intensity within
seven networks differed between DS and DN (Figures 2C,F). For
DS, the SMN (DS = 1.758 % 0.00270) is composed of relatively
higher non-stationary signals compared to the VN (DS = 1.752
+ 0.00240) and DAN (DS = 1.681 =+ 0.00300) resting-state
network time series, and the p-values from the two-sample ¢-
tests are p = 0.031 and p = 0, respectively; LIMB (DS = 1.744 +
0.00650) is composed of relatively higher non-stationary signals
compared to the FPN (DS = 1.681 £ 0.00190) and DMN (DS
= 1.685 =+ 0.00170), and the p-values in the corresponding two-
sample ¢-tests are both p = 0; VAN (DS = 1.735 =+ 0.00280) has
relatively higher non-stationarity signals than DAN (DS = 1.681
=+ 0.00300), and the p-value in the two-sample f-test is p = 0.
In addition, for DN, it was shown that the DAN (DN = 0.0955
=+ 0.00026) has lower non-linearity relative to the SMN (DN =
0.1065 % 0.00029), VN (DN = 0.1115 £ 0.00022), LIMB (DN =
0.1083 = 0.00041), and VAN (DN = 0.103 % 0.00024), and all
the corresponding p-values from the two-sample t-tests are p =
0. The DMN (DN=0.1085 =+ 0.00019) is composed of relatively
higher non-linear signals compared to the FPN (DN=0.0966
£ 0.00022) resting-state network time series, and the p-value
in the two-sample t-test is p = 0. Also, Figures 2G,H show a
probability density estimate for voxel-wise DS and DN values for
each subject and group average made by using ksdensity.m in
MATLAB. In Figures 2G,H, 75% is the strong threshold level; we
can use the quartile method (in Figure 1) to get it. As shown in
Figures 2G,H, the statistical characteristics of DS were different
from those of DN, in that DS has a long tail, while DN has tails
more similar to a normal distribution (Figures 2G,H).

Distribution of Strong DS and DN in Terms

of Voxels and Networks

Combining Figure 1 and the distribution of DS and DN in
terms of voxels (Figure 2) allows the distribution of strong DS
and DN maps in the whole brain (shown in Figures 3A,C)
to be obtained. The overlap maps between strong DS and
strong DN are shown in Figure 3E. We found that the same
regions exist in both DS and DN, but each has its own
unique distribution. The histogram maps of percentage ratios
of voxels of the DS and DN characterized networks are shown
in Figures 3B,D, respectively, and we found that the percentage
ratio of voxels for each network ranked from largest to smallest
was: DMN, VN, SMN, FPN, DAN, VAN, and LIMB. Based
on Figure 3F, the percentage ratio of overlap and non-overlap
ranked from largest to smallest was overlapping DS and DN
(25.72%), non-overlapping DN (24.72%), and non-overlapping
DS (16.73%).

Test-Retest Reliability for DS and DN

Test-retest reliability for DS and DN was analyzed in terms
of voxels and networks (Figure 4) by using all rs-fMRI data.
First, the spatial distribution of test-retest reliability for DS and
DN in terms of voxels as plotted, as shown in Figure 4A, and
the ICC values of DS were found to be higher than those of
DN. Then, test-retest reliability for DS and DN were analyzed
in terms of networks, as presented in Figure 4B, which shows
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A mean of DS value

VN SMN DAN VAN LIMB FPN DMN

probability density function

MSCO01
- MSCo02
MSC03
- MSCo04
= = MSCO05 1
- = MSCo06
MSC07
= = MSCo08
===-MSC09
===-MSC10 |
— Group average

DS value

FIGURE 2 | Distribution of DS and DN in terms of voxels and networks. (A) and (D) show spatial distribution of group average DS and DN in terms of voxels across
nine subjects and their 10 test-retest sessions; (B,E) show variance of spatial distribution of DS and DN in terms of voxels; (C,F) show bar plot of DS and DN,
respectively, within intrinsic brain networks according to a priori functional network atlas (Yeo et al., 2011); (G,H) show probability density estimates of voxel-wise DS
and DN values for each subject and group average, respectively; 75% is the strong threshold level, which is obtained by way of the quartile method (in Figure 1). The
two-sample t-test showed the significant differences between each other (o < 0.05, **p < 0.001).

D mean of DN value

E variance of DN value

DN vaule
1)
o
<3

VN SMN DAN VAN LIMB FPN DMN

probability density function

MSCO01

- MSC02

MSC03

- MSCo04

- = MSCO05

= = MSC06

MSCo7

= = MSCo08

MSC09

=-=-MSC10
3 = Group average

0 0.05 0.1 0.15 0.2
DN value

025 03

ICC maps from the DS and DN with networks: VN, SMN,
DAN VAN, LIMB, FPN, and DMN. From Figures 4A,B, we
found that the ICC values of DS and DN for each network
were different and also found that the ICC values of DS were
higher than those of DN in each network. Furthermore, upon
inspecting Figures 4A,B, it was found that most of the voxels still
have ICCs hovering around 0.2-0.3. Each network demonstrated
lower ICC for DN and DS, while DS and DN displayed significant
correlation (correlation coefficient r = 0.3337, p < 0.001) across
voxels and networks as calculated by using the cftool.m in
MATLAB. The spatial distribution of test-retest reliability for DS
in terms of voxels when ICC >0.5 was plotted in Figure 4C. From
Figure 4C, voxels reaching an ICC of at least 0.5 were mainly
found on the DMN, FPN, LIMB, and VAN. More specific to the
brain regions, there were also some voxels with ICC >0.5, such
as Tempor_Pole_Sup_R (X =34, Y = 6, Z = —24), Caudate_L
(X=-18,Y = —6,Z=24), Caudate_R (X =18,Y =6, Z = 20),
Cingulum_Mid_R (X =6,Y = —20, Z = 40), Rectus_R (X = -2,
Y =18, Z = —20), and Congulum_Ant_L (X=2,Y=30,Z=0).

Similarity Analysis for DS and DN
For the similarity between networks (Figure 5A), we found that
DAN and VAN were correlated for DS and DN (r = 0.6559, p

= 0), whereas the association was not significant for the other
five networks (Figure 4A). Furthermore, we used correlation
matrices for the DS and DN associated with different spatial brain
slices (Figure 5B). The slice-based similarity analysis showed a
low correlation between DS and DN (r = 0.3400), which varied
in different slices. High correlation corresponds to the similarity
of the DS and DN in intra-slice variability and the correlation
coefficients are different in different slices.

DISCUSSION

The human brain is a complex system, and there has been
growing research interest in analyzing the complex brain
networks by using rs-fMRI time series (Fox and Raichle, 2007;
Biswal et al., 2010; de Pasquale et al., 2010; Liu and Duyn,
2013; Gao et al.,, 2018). In this work, the non-stationarity and
non-linearity in rs-fMRI data of the human brain were detected
by using the DS and DN measures. We quantified the degrees
of non-stationarity and non-linearity in the time series of rs-
fMRI by using the HHT and DVV methods. DS and DN were
computed in terms of voxels across nine subjects and for their 10
test-retest sessions. We found that DS and DN had overlapped
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spatial distributions together with varied characteristics across
typical intrinsic brain networks, as well as different test-retest
reliabilities. The DS and DN characterization of the rs-fMRI time
series analysis has provided a new method of analyzing ongoing
activities within the resting-state brain.

Distribution of DS

In this study, voxel-based and network-specific DS were
examined. The mean DS value ranged from 0.1 to 2.1
over the whole brain, with the higher DS values in the
brainstem, thalamus, striatum, temporal and occipital cortex,
and cerebellum (Figure 2A), as well as in the networks SMN,
VN, LIMB, and VAN (Figure 2B). From a theoretical point
of view, the activity of neuronal assemblies should be non-
stationary since it reflects the different stages of a self-organized
process (Schoner and Kelso, 1988; Jin et al., 2017). A previous
study revealed by analyzing EEG signals that brain activity
is essentially non-stationary (Kaplan et al, 2005). An fMRI
study also confirmed that there was non-stationary brain
activity during an auditory task (Gaschler-Markefski et al.,
1997). Using rs-fMRI, dynamic functional connectivity has
been researched to delineate the non-stationary changes in
brain activity synchronization (Xie et al., 2008; Ou et al,
2014). However, a recent study revealed that it is difficult
to detect the non-stationarity in a typical rs-fMRI scan of
10 min using the sliding window approach because the effect
of non-stationarity detection varies with the amount of data.
Therefore, the authors pointed out that it is not optimal to
use the sliding window approach for non-stationarity analysis
(Hindriks et al., 2016). Using the HHT method, the current study
demonstrated non-stationary signal fluctuation in widespread
brain regions and functional networks, which confirmed the non-
stationarity in the rs-fMRI signal and provides a quantitative
DS map.

Distribution of DN

Using the DVV method, we found that voxels with strong DN are
spatially distributed across different functional networks. From
the DN value, the DAN showed a lower non-linear signal, and the
VN, DMN, LIMB, and SMN showed higher non-linear signals
(Figure 2F). The ranking of the DN value for each network
from largest to smallest is as follows: VN, DMN, LIMB, SMN,
VAN, FPN, and DAN. This suggests that despite the absence of
external stimuli to VN, DMN, and LIMB, the baseline activity
of those networks may be more complex than that of other
systems. Both Gautama and Mandic have shown that the default-
mode resting-state network time series is relatively more linear
than time series in the auditory and motor networks (Gautama
et al., 2003; Mandic et al., 2008). Gultepe and He previously
reported that visual networks were more non-linear than the
motor and auditory systems (Gultepe and He, 2013). Our finding
supported the conclusion that without external stimulus, during
resting state, the baseline activity of the visual cortex is more
complex than the motor and auditory systems, which may
be associated with complex functional organization for visual
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(B) The similarities between DS and DN for each slice, across subjects and sessions, according to Pearson’s correlation.

processing. Gultepe and He (2013) showed that in a task-based
study using macaque BOLD and monocrystalline iron oxide
particle (MION) signals the recruitment of physiological inputs
such as cerebral blood volume, flow, and metabolic rate of
oxygen into these two systems may be increased compared to
in a resting state study where there is no task (Gautama et al,,
2003). This may reflect their conclusion that the BOLD signal
is more non-linear than the MION signal, which depends on
fewer physiological parameters. The lower embedding dimension
may be indicative of the lower complexity of resting-state systems
within the brain; it is necessary to choose dimensions high
enough to capture the phase space of the dynamical system
(Gautama et al., 2004).

Overlap Between DS and DN

From the overlap of the spatial distributions of strong DS
and DN in terms of voxels, the percentage ratio of voxels
overlapping between strong DS and DN values was 25.72%
and was relatively high compared to unique regions of strong
DN (that is, those regions that have strong DN and weaker
DS properties) (24.72%) and unique regions of strong DS
(those regions that have strong DS and weaker DN properties)
(16.73%). This suggests that regions that overlap between DS and

DN exist but that each has its own unique distribution. Both
stationarity and linearity can be determined by the complexity
and stability of the activities of brain regions, making them
inseparable. The two indicators reflect the profile of stationary
time series and linear system, respectively, which have their
own unique characteristics. For example, the larger the DS
value in the fMRI signals, the more complex brain activities
will be, while the larger the DN value, the more unstable brain
activities will be. Thus, overlapping of strong DN and strong
DS in certain regions demonstrated that those brain regions
have simultaneous non-stationary and non-linear signals. The
DMN showed the largest percentage ratio of voxels with strong
DN and DS values. Thus, among the overlapping regions of
strong DN and DS, DMN was the largest. This suggests that
the DMN has both non-stationary and non-linear signals. It
has been hypothesized that the activity of the DMN is related
to spontaneous thoughts, i.e., intrinsic attention/information
processing (Raichle et al., 2001). The DMN has been observed
to be active at rest and deactivated during active task-states
(Damoiseaux et al., 2008). In addition, the existence of unique
regions of strong DN (24.72%) and unique regions of strong DS
(16.73%) revealed that there are also some regions with their
own unique characteristics, such as those with more complex and
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more stable brain activities, contrasting with those with simpler
and more unstable brain activities. This further demonstrates that
the brain is a complex system.

Test-Retest Reliability and Similarity

Analysis
We inferred that the ICC values of DS were larger than those of
DN in terms of voxels and networks and that the ICC values
of DS and DN for each network were different. DS and DN
exhibited significant correlation across voxels and networks for
each network. Moreover, the test-retest reliability values for DS
and DN across 10 sessions were surprisingly low because most
voxels had ICC values below 0.5. Most of the voxels had ICCs
hovering around 0.2-0.3, while a few voxels reached 0.6, and
voxels reaching an ICC of at least 0.5 were mainly found on
certain brain regions, such as Tempor_Pole_Sup_R (X = 34,
Y =6, Z = —24), Caudate_ L X = —18, Y = —6, Z = 24),
Caudate_R (X = 18, Y = 6, Z = 20), Cingulum_Mid_R (X =
6,Y = —20, Z = 40), Rectus_R (X = —2, Y = 18, Z = —20), and
Congulum_Ant_L (X=2,Y =30, Z =0); the ICC values in other
brain regions were no larger than 0.5. These results provide a
quantitative basis for the test-retest reliability of non-stationarity
or non-linearity. In terms of similarity between networks, DAN
and VAN were correlated for DS and DN, while the association
was not significant for other networks. Thus, DS and DN
can be recognized to have a good ability to predict network
types. Moreover, the slice-based similarity analysis showed low
correlation between DS and DN, which varied in different slices.
High correlation corresponds to similarity of the DS and DN
in intra-slice variability, and the correlation coefficients are
different in different slices. The main reason for this is that
the percentage ratio of overlapping voxels with strong DS and
DN values was 25.72%. The overall reliability of topological
measures was similar to that of other parameters derived from
rs-fMRI, such as correlation significance, correlation valence
(positive vs. negative correlations), and network membership
(Shehzad et al., 2009). Resting-state data itself is a complex
aggregation of different brain networks whose activity profiles
overlap (Greicius et al., 2003), but this is also so in brain states
that reflect cognitive and emotional processing (Damoiseaux
et al., 2006).

Previous works have suggested that the fMRI signal consists
of non-linear and non-stationary components (Xie et al., 2008;
Ou et al., 2014), but these components have often been discarded
in conventional generalized linear modeling and functional
connectivity (analysis based on Pearson’s correlation). In this
study, we introduced a quantitative statistical method to identify
the scale of non-linearity and non-stationarity in fMRI signals.
The DS and DN measures enable the characterization of not
only the brain’s signal properties across specific regions but also
the individual subject’s brain dynamic features. Future fMRI
research should compute DS and DN as part of the quality
control step for preprocessing as indicators of data quality,
particularly when dealing with cross-sectional comparisons. For
example, individual DS and DN values should be identified
for clinical populations and healthy controls, respectively,

and then controlled as covariates in the group comparison
of their functional connectivity. In the study of dynamic
functional connectivity associated with non-stationary features,
future research should investigate the potential relationship
between dynamic measures and both DS and DN. It is also
worth understanding the alterations of DS and DN linked
with fMRI preprocessing, such as the complex influence of
micromovement on fMRI signals. Taken together, the current
study revealed that the quantitative map of the whole-brain
DS/DN will provide a tool for future research to further
explore the effect of DS/DN on fMRI measures such as
functional connectivity.

LIMITATIONS

The present work has several potential limitations worth
considering. In this paper, we estimated non-stationarity/non-
linearity effects, respectively. Our major findings showed
that these non-stationarity/non-linearity effects varied across
different functional networks. One potential limitation was that
this work focused on rs-fMRI signals and thus did not provide
DS/DN measures based on task-fMRI data, although several
previous studies have pointed out that non-stationarity/non-
linear effects may differ among different tasks (Wager et al,
2005; Mubhei-aldin et al., 2014; Ou et al., 2014). The second
potential limitation of this study is that this work only
focused on voxels and seven functional networks from Yeo’s
functional network atlas (Yeo et al., 2011). Depending on the
parcellation number of functional networks (up to hundreds),
the corresponding ICC may be different. The spatial extent of
a region and how it may affect the ICC should be carefully
investigated. The third limitation might be the imaging length
of 30 min used in this study, which might affect the DS/DN.
Previous studies have shown the ICC of functional connectivity
is improved by long scan length (Braun et al, 2012; Birn
et al, 2013). It is worth investigating the influence of scan
length on the ICC of DS/DN. Lastly, there is the potential
influence of scan sessions occurring at midnight, since we
used the Midnight Scan Club dataset. Hill and Smith have
examined the effect of time of day on the relationship between
mood state, anaerobic power, and capacity, and they found
that the relationship between mood state and subsequent
performance is dynamic and is dependent upon the time of
day (Hill et al, 1993). This study identified the whole-brain
distribution of DS/DN in resting-state fMRI; however, it remains
unclear whether DS/DN is more associated with neuronal
activity or non-neuronal noises such as head motion. With
the quantitative measures reported in the current study, more
research is needed to further explore the mechanism underlying
DS/DN in relation to fMRI preprocessing and the underlying
functional connectivity.

CONCLUSION

In this paper, we investigated the degree of stationarity (DS)
and the degree of non-linearity (DN) of rs-fMRI time series of
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all gray matter voxels and intrinsic brain networks from the
Midnight Scan Club datasets. Results from this study suggest that
the baseline signals from the VN, LIMB, SMN, and DMN have
relatively greater non-stationarity and non-linearity compared
with those of the VAN, DAN, and FPN. This suggests that
when we compute the “static” functional connectivity, it is
necessary to take into account the relative contribution from
the non-linearity and non-stationarity components from the
respective brain regions. For example, when analyzing static
functional connectivity, the VN needs to have more non-
linear and non-stationary components eliminated than does
the FPN. Moreover, the VN, LIMB, and DMN networks
were more non-linear and non-stationary, so shorter-time
data can be used, because the shorter the time, the closer
the characteristics of the data are to being stationary and
linear, so the optimal length of time is required. If the non-
stationary and non-linear properties are not considered, then
the results will be an approximate phenomenological description
of the real characteristics. Our results suggest that different
functional networks have distinct non-stationarity and non-
linearity owing to the complexity and stability of rs-fMRI time
series. Moreover, the DS and DN measures not only enable the
characterization of the brain’s regional signal properties but also
of the individual subject’s brain dynamic features. Therefore,
this quantitative DS/DN method provides a tool for future
research to further explore the effect of DS/DN on fMRI measures
such as functional connectivity and to improve neural activity
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