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The fruit fly compound eye is a premier experimental system for modeling human
neurodegenerative diseases. The disruption of the retinal geometry has been historically
assessed using time-consuming and poorly reliable techniques such as histology or
pseudopupil manual counting. Recent semiautomated quantification approaches rely
either on manual region-of-interest delimitation or engineered features to estimate the
extent of degeneration. This work presents a fully automated classification pipeline
of bright-field images based on orientated gradient descriptors and machine learning
techniques. An initial region-of-interest extraction is performed, applying morphological
kernels and Euclidean distance-to-centroid thresholding. Image classification algorithms
are trained on these regions (support vector machine, decision trees, random forest,
and convolutional neural network), and their performance is evaluated on independent,
unseen datasets. The combinations of oriented gradient + gaussian kernel Support
Vector Machine [0.97 accuracy and 0.98 area under the curve (AUC)] and fine-tuned
pre-trained convolutional neural network (0.98 accuracy and 0.99 AUC) yielded the best
results overall. The proposed method provides a robust quantification framework that
can be generalized to address the loss of regularity in biological patterns similar to the
Drosophila eye surface and speeds up the processing of large sample batches.

Keywords: Drosophila melanogaster, neurodegeneration, rough eye phenotype, spinocerebellar ataxia, machine
learning, classification, deep learning

INTRODUCTION

Drosophila melanogaster stands out as one of the key animal models in today’s modern genetic
studies, with an estimated 75% of human disease genes having orthologs in flies (Reiter et al., 2001).
Its growth as a powerful experimental model of choice has been supported by the wide array of
genetic and molecular biology tools designed with the fruit fly in mind (Johnston, 2002), easing

Abbreviations: AdaBoost, adaptative boosting; AUC, area under the ROC curve; BN, batch normalization; CNN,
convolutional neural network; DT, decision tree; gmr, glass multimer reporter; HOG, histogram of oriented gradients; IREG,
regularity index; MLP, multilayer perceptron; NN, neural network; PolyQ, polyglutaminated; RBF, radial basis function;
RGB, red, green, blue (colorspace); RF, random forest; ROC, receiver operating characteristic; ROI, region of interest; SCA,
spinocerebellar ataxia; SEM, scanning electron micrograph; SGD, stochastic gradient descent; SVM, support vector machine;
UAS, upstream activating sequence; WT, wild type.
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the creation of genetic deletions, insertions, knock-downs, and
transgenic lines. Fly biologists have greatly contributed to
our knowledge of mammalian biology, making Drosophila the
historical premier research system in the fields of epigenetics,
cancer molecular networks, neurobiology, and immunology
(Wangler et al., 2015). The relative simplicity of Drosophila
genetics (four pairs of homologous chromosomes, in contrast
to 23 in humans) and organization (i.e., ∼2 × 105 neurons in
opposition to roughly 1011 neurons in humans) makes the fruit
fly an especially well-suited model for the analysis of subsets of
phenotypes associated with complex disorders.

Specifically, the retinal system in Drosophila has been widely
used as an experimental setting for high-throughput genetic
screening and for testing molecular interactions (Thomas
and Wassarman, 1999). Eye development is a milestone in
the Drosophila life cycle, with a massive two-thirds of the
essential genes in the fly genome required at some point
during the process (Thaker and Kankel, 1992; Treisman, 2013).
Therefore, it constitutes an excellent playground to study the
genetics underlying general biological phenomena, from the basic
cellular and molecular functions to the pathogenic mechanisms
involved in multifactorial human diseases, such as diabetes or
neurodegeneration (Garcia-Lopez et al., 2011; Lenz et al., 2013;
He et al., 2014).

The fruit fly compound eye is a biological system structured
as a stereotypic array of 800 simple units, called ommatidia,
which display a highly regular hexagonal pattern (Figure 1).
This strict organization precisely allows to evaluate the impact
of altered gene expression and mutated proteins on the
external eye morphology and to detect subtle alterations on
the ommatidia geometry due to cell degeneration. One special
type of cellular deterioration largely studied using Drosophila
retina encompasses polyglutamine-based neurodegenerative
diseases, namely, Huntington’s and spinocerebellar ataxias (SCA)
(Ambegaokar et al., 2010).

The overexpression of polyQ-expanded proteins via the
UAS/Gal4 system in the fly retina results in a depigmented,
rough eye phenotype caused by the loss of interommatidial
bristles (see the wild-type pattern in the inset of Figure 1B),
ommatidial fusion, and necrotic tissue (Figure 2). The vast

FIGURE 1 | Drosophila compound eye structure. Different eye imaging
techniques demonstrating the hexagonal packing of the ommatidia and the
trapezoidal arrangement of the photoreceptors. (A) Schematic representation
of a tangential section through the eye. Numbers depict photoreceptors. (B)
Scanning electron micrograph (SEM). Higher magnification view in inset. (C)
Bright field microscope picture.

majority of studies assessing the rough eye morphology rely on
qualitative examination (i.e., visual inspection) of its external
appearance to manually rank and categorize mutations based
on their severity (Roederer et al., 2005; Bilen and Bonini,
2007; Cukier et al., 2008). Even though evident degenerated
phenotypes are easily recognizable, weak modifiers or subtle
alterations may go undetected for the naked eye. Quantitative
approaches addressing this issue involve histological preparations
from which to evaluate the retinal thickness and the regularity of
the hexagonal array or scoring scales for the presence of expected
features in the retinal surface (Jonshon and Cagan, 2009; Jenny,
2011; Caudron et al., 2013; Mishra and Knust, 2013; Song et al.,
2013). Recently, there have been efforts to fully computerize
the analysis of Drosophila’s rough eye phenotype in bright-field
and scanning electron micrograph (SEM) images in the form
of ImageJ plugins, called FLEYE and Flynotiper (Diez-Hermano
et al., 2015; Iyer et al., 2016). Whereas both methods propose
automatized workflows, the former prompts the user to manually
delimit the region of interest (ROI) to extract the hand-crafted
features from it, which serve as input to a statistical model
and finally output a regularity index (IREG) to the user. The
second method relies upon a single engineered feature and lacks
statistical background to support it.

Hence, there is a need to tackle a fully automatized, statistically
multivariate assessment of Drosophila eye’s quantification, given
its utmost relevance as a simple, yet comprehensive, model
for testing general biology hypotheses and human neurological
diseases. Particularly, machine learning algorithms have proven
to be incredibly efficient image classifiers during the past decade
(Bishop, 2006), rapidly permeating in the fields of cell biology and
biomedical image-based screening (Sommer and Gerlich, 2013;
Chessel, 2017; Tyagi, 2019). Machine learning methods greatly
ease the analysis of complex multi-dimensional data by learning
processing rules from examples that can be later on generalized
to classify new, unseen data (Figure 3A).

The machine learning techniques typically applied to image
classification includes support vector machines (SVM) (Ben-Hur
et al., 2008; Chauhan et al., 2019), decision trees (DT) (Orrite
et al., 2009), random forests (RF) (Schroff et al., 2008), and neural
networks (NNs) (Giacinto and Roli, 2001). Alongside processing
power and graphic card-dedicated coding, deep learning methods
have exponentially grown in importance during the last few years
(LeCun et al., 2015; Po-Hsien et al., 2015). The conventional
machine learning algorithms aforementioned require data
processing and feature enrichment prior to the training phase as
they are not suited to work with raw input. In contrast, the deep
learning procedures are general-purpose learners in the sense that
they can be fed with raw data, automatically suppress irrelevant
information, and select discriminant characteristics, composing
simple layers of non-linear transformations into a higher, more
abstract level of representation (Figure 3B). The convolutional
neural networks (CNNs) are a well-known architecture for
deep learning and have been continuously outperforming the
previous machine learning techniques, especially in computer
vision and audio recognition (Po-Hsien et al., 2015). With the
increasing availability of large biological datasets, its popularity
in bioinformatics and bioimaging has quickly escalated, and
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FIGURE 2 | Bright field photographs of rough eye phenotype surfaces. SCA1 gene modifiers can be tested on the fly eye using the UAS/Gal4 system. Complete
loss of surface regularity and depigmentation can be appreciated between the WT and SCA1 phenotypes. SCA1 modifiers show intermediate levels of degeneration.

currently CNNs are addressing problems hardly resolvable by
former top-notch analysis techniques (Angermueller et al., 2016;
Chen et al., 2016; Kraus et al., 2016; Spanhol et al., 2016; Yang
et al., 2016; Anwar et al., 2018; Badar et al., 2020). The striking
advantage of these networks is that a feature’s hand-crafting and
engineering are completely avoided as they implement functions
insensitive to perturbations, thanks to the multilayer mapping
representation of discriminant details.

The novelty of the present work consists in applying and
comparing the different image classification strategies mentioned
so far in an extensively used biological model, D. melanogaster,
which has been scarcely addressed before and is in dire need of a
state-of-the-art quantification framework.

MATERIALS AND METHODS

Fly Lines and Maintenance
All stocks and crosses were grown in a temperature-controlled
incubator at 25◦C, 60% relative humidity, and under a 12-
h light–dark cycle. They were fed on conventional medium
containing wet yeast 84 g/L, NaCl 3.3 g/L, agar 10 g/L, wheat
flour 42 g/L, apple juice 167 ml/L, and propionic acid 5 ml/L.
To drive transgene expression to the eye photoreceptor, we used
the line gmr:GAL4. Rough eye phenotype was triggered using
the UAS:hATXN182Q transgene (Fernandez-Funez et al., 2000)

that models human type 1 spinocerebellar ataxia (SCA1), and
different UAS:modifier-gene constructs were used to test the
system capability to recognize intermediate phenotypes.

Sample Size
A total of 308 image files were saved using NIS-Elements software
in TIFF format. The number of pictures by category is as follows:
82 wild type (WT), 44 gmr > SCA1, 55 modifier #1, 62 modifier
#2, and 65 modifier #3.

External Eye Surface Digital Imaging
Digital pictures (2,880 × 2,048 pixels) of the surface of fly eyes
were taken with a Nikon DS-Fi3 digital camera and viewed with a
Nikon SMZ1000 stereomicroscope equipped with a Plan Apo× 1
WD70 objective. The flies were anesthetized with CO2 and their
bodies were immobilized on dual adhesive tape, with their heads
oriented to have an eye parallel to the microscope objective. The
fly eyes were illuminated with a homogeneous fiber optic light
passing through a translucid cylinder so that the light rays were
dispersed and did not directly reach the eyes. The images taken
with this method show a better representation of the surface
retinal texture in contrast to the pictures where light fell upon
the eye and the lens’ reflection was captured by the camera,
forming bright-spotted grids. The additional settings include an
8× optical zoom in the stereomicroscope.
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FIGURE 3 | Supervised image classification pipelines. Both workflows start with a dataset labeled with predefined classes. A final performance assessment is also
mandatory to test whether the classifier is able to generalize to independent datasets. (A) Conventional machine learning methods heavily depend on raw data
preprocessing. Splitting into training and test sets occurs only after relevant features have been extracted from the curated data. (B) Deep learning techniques
receive raw pixel intensities directly as input, so the pipeline begins by splitting the datasets. A simple CNN architecture is depicted as an example. Relevant feature
representation occurs in the inner layers of the network, after subsequent convolution and pooling steps. Adapted from Tarca et al. (2007) and Sommer and Gerlich
(2013).

ROI Selection Algorithm
All image analyses were performed using R programming
language (R Core Team, 2018). The eye images in red/green/blue
(RGB) color space were first resized to one-fourth of their original
resolution to help fit the image data to the memory capacity
of the computer system used. White TopHat morphological
transformation with a disc kernel of size 9 was applied using
the package EBImage (Pau et al., 2010). The transformed
images are converted to grayscale and thresholded to keep
only pixels with intensity >0.99 quantile. The overall centroid
of the remaining pixels is estimated using the Weiszfeld
L1-median (Vardi and Cun-Hui, 2000). For each pixel, the
Euclidean distance to the centroid is calculated, and those
with distances >0.8 quantile are discarded. A 0.90 confidence

level ellipse is estimated on the final selected pixels, and
its area is superimposed to the original resized picture to
extract the final ROI.

HOG Descriptor and Machine Learning
Classifiers
Firstly, RGB ROIs were converted to grayscale while maintaining
the original luminance intensities. The histogram of gradient
(HOG) features was extracted using the OpenImageR package
(Mouselimis, 2017). A 5 × 5 cell descriptor with five
orientations covering a gradient range of 0–180◦ was estimated
per cell in the gradient, resulting in a final 125-dimensional
vector for each ROI.
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FIGURE 4 | Drosophila eye ROI detection strategy. Representative examples of healthy and degenerated eyes are shown. (A) Morphological transformation and
intensity thresholding extract pixels mostly contained within the eye. (B) Euclidean distance to the centroid (red dot) and frequency histogram for quantile selection.
Dark blue points are discarded as potential pixel outliers outside the eye limit. (C) Selected pixels are superposed to the original image and those within the area of a
0.90 confidence ellipse are extracted as the final ROI (blue shaded ellipse).
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FIGURE 5 | ROI selection optimization and extensibility. (A) L1-median centroid alongside stricter thresholds improve the eye area detection. (B) Bright-spotted fly
eye images can also be successfully segmented using this method.

TABLE 1 | Machine learning classifier confusion matrix.

Reference

Predicted WT gmr > SCA SCA modifier #1 SCA modifier #2 SCA modifier #3

WT 20 16 20 20 0 2 2 2 1 4 3 1 0 0 0 1 0 4 3 1

gmr > SCA 0 2 0 0 11 7 7 8 0 2 0 0 0 1 1 0 0 2 3 0

SCA modifier #1 0 0 0 0 0 0 2 0 12 7 10 11 0 0 0 0 0 0 0 0

SCA modifier #2 0 1 0 0 0 0 0 0 0 0 0 1 14 12 11 12 0 3 0 0

SCA modifier #3 0 1 0 0 0 2 0 1 0 0 0 0 1 2 3 2 16 7 10 15

Colors scheme: SVM, DT, Boost DT, RF.

The SVM, DT, and RF algorithms were trained on the
extracted HOG features. The dataset was split into training and
test sets with a 75/25 ratio using stratified random sampling
to ensure class representation. The modeling strategy for all
classifiers included cross-validation to assess generalization, grid
search for parameter selection and performance evaluation on
test set via confusion matrix, global accuracy, Kappa statistic,
and multiclass pairwise area under the curve (AUC) (Ferri
et al., 2003). We tested a radial basis function (RBF) kernel
SVM, DT, adaptative boosting DT, and 1,000-trees RF using the
R packages kernlab, C50, and caret (Karatzoglou et al., 2004;
Kuhn et al., 2015).

Deep Learning Classifiers
The extracted ROIs were resized to a 224 × 224 × 3 RGB array
and stored in vectorized form, resulting in a final data frame of
308 × 150,528 dimensions. The dataset was split into training
and test sets with a 75/25 ratio using stratified random sampling
to ensure class representation. We further confirmed that the
training and test partitions were representative of the sample
variability via a loss plot (Supplementary Figure S1). Two CNNs
were trained on this data:

(i) A simple CNN trained from scratch, with hyperbolic
tangent as activation function, two convolutional layers,
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TABLE 2 | Machine learning performance evaluation metrics on test data.

Classifier

Metric SVM RBF DT AdaBoost DT 1000 RF

Accuracy 0.973
(0.907–0.997)

0.653
(0.535–0.760)

0.773
(0.662–0.862)

0.880
(0.784–0.944)

Kappa 0.966 0.560 0.711 0.847

Multiclass AUC 0.978 0.665 0.763 0.906

True positives are shaded in gray.

two pooling layers, two fully connected layers (200 and
five nodes), 30 epochs, and a typical softmax output. Each
convolutional layer uses a 5 × 5 kernel and 20 or 50
filters, respectively. The pooling layers apply a classical
“max pooling” approach. All the parameters in kernels,
bias terms, and weight vectors are automatically learned by
back-propagation with a learning rate equal to 0.05 and a
stochastic gradient descent (SGD) optimizer to ensure that
the magnitude of the updates stayed small (Bottou, 2010).

(ii) A fine-tuned CNN using an ImageNet pretrained model
with a batch-normalization network structure (Deng et al.,
2009; Ioffe and Szegedy, 2015), 30 epochs, a very slow
learning rate (0.05), and a SGD optimizer. The final fully
connected (five nodes) and softmax output layers are tuned
to fit the new fly eye ROIs.

For the CNN training, the R package MXNet compiled for
the central processing unit (CPU) was used (Tianqi et al., 2015).
Performance was assessed in terms of confusion matrix and
global accuracy using the caret package (Kuhn, 2008).

RESULTS

Automatized Detection of Drosophila Eye
ROIs From Bright-Field Images
The first step in the quantification workflow is the extraction
of pixels corresponding to the fly eye from the rest of the
image. One concern is that the eye is not flat but convex in
morphology, so under white light only the central surface is at the
camera focus. To address this issue, white TopHat morphological
transformations were performed, defined as the difference
between the input image and its opening by a structuring kernel.
The opening operation involves erosion followed by a dilation
of the image, retrieving the objects of the input image that are
simultaneously smaller than the structuring element and brighter
than their neighbors.

Best results were obtained using a 9 × 9 disc-shaped kernel
followed by a thresholding of pixels with intensities over the 0.99
percentile (Figure 4A). Afterward, the centroid of the selected
pixels was calculated as the L1-median, which is a more robust
estimator of the central coordinates than the arithmetic mean.
Points with Euclidean distance to the centroid greater than 0.8
percentile are more likely to lie outside the eye area and were
discarded (Figure 4B). A 0.90 confidence ellipse calculated on
the selected pixels conforms the area of the final ROI, which

was superimposed and cropped from the original eye image
(Figure 4C). As can be appreciated in the example images,
the method is invariant to the location of the eye within the
image. Various combinations of the thresholds and the centroid
estimator were tested (Figure 5A). The proposed segmentation
method also works well on bright-field images where light falls
directly onto the ommatidium and the eye is seen as a region
enriched in reflection spots (Figure 5B). The full array of the final
ROIs is represented in Supplementary Figure S2.

We also addressed whether there was any anatomical
preference in the ROI extraction that could be biasing the
classification procedure. To this extent, heatmaps overlaying all
the elliptic ROIs were generated genotype-wise (Supplementary
Figure S3). There were a few instances in which the selected
ROI included areas outside the eye. This happened more easily
in the modifier genotypes and can be seen in the figure
as shades that lay outside the eye border. Overall, the ROI
extraction seems to be robust against the different ommatidial
distribution and eye shapes.

HOG Feature Extraction
Region of interests cannot be directly input to classical machine
learning techniques, so the information contained in their pixels
must be extracted beforehand. This is done by estimating a HOG,
which can be interpreted as a feature descriptor of a picture that
outputs summarized information about predominant shapes and
structures. The HOG technique starts by dividing the picture into
cells and identifying whether a given cell is an edge or not. HOG
provides the edge direction as well, which is done by extracting
the gradient and orientation (magnitude and direction) of the
edges across neighbor cells. These cells comprise the local regions
of related pixels, from which the HOG generates a histogram
using the gradients and the orientations of the pixel values, hence
the name “histogram of oriented gradients.”

Prior to the HOG extraction, the ROIs were transformed to
grayscale, preserving the luminance of the original RGB image.
Then, a 125-dimensional feature vector is extracted for each ROI,
representing the frequency of a certain gradient within the image
(Supplementary Figure S4). The matrix formed by the 125-
D vectors of all ROIs conforms to the input for the machine
learning classifiers.

Note that HOG is only used to feed the classical machine
learning algorithms (SVM, DT, and RF), not the deep learning
CNN, which directly uses the pixels’ values as input. This is due to
the internal structure of the CNN, the inner layers of which serve
as border and edge detectors themselves. This is a reason that led
us to believe that pigmentation was not affecting the classification
procedure, given that all the methods we used relied on structure
detectors rather than color differences.

Comparison of Machine Learning
Classifiers
Support vector machine with RBF kernel, DT, AdaBoost DT,
and 1,000-trees RF algorithms were tested on the extracted
HOG features. The sample consisted in 308 fly eye images
distributed in five different phenotype classes with varying
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FIGURE 6 | Class pairwise AUC and ROC. (A) SVM with RBF kernel outperforms the other classifiers in all comparisons. (B) ROC plots corresponding to the AUCs
in (A).

degrees of retinal surface degeneration. The data were split using
stratified random sampling in 75% training and 25% test set.
The optimal parameters for each classifier were found using
10-fold cross-validation on the training set. Table 1 shows the
confusion matrix, and Table 2 represents the global accuracy,
Kappa statistic, and multiclass AUC, defined as the average AUC
of class pairwise comparisons (Figure 6A), which was calculated
on the test data. The pairwise receiver operating characteristic
(ROC) plots are represented in Figure 6B.

In general, the four classifiers performed fairly well on unseen
data. Both DT algorithms fell on the low spectrum either in
accuracy and AUC (<0.80), whereas RF achieved a remarkable
AUC of 0.90. Overall, SVM accomplished the best results among

FIGURE 7 | IREG boxplots. WT and SCA1 eyes show opposing IREG values
and no distribution overlap. SCA modifiers show intermediate rough eye
phenotypes and slight distribution overlapping, but the median and central
boxes differentiate them. Gray dotted lines mark 0.25, 0.5 and 0.75 IREG
values. Sample sizes are as follows: 82 WT, 44 gmr > SCA1, 55 modifier #1,
62 modifier #2, and 65 modifier #3.

all the error metrics evaluated, with a global accuracy of 0.97
(0.90–0.99), Kappa of 0.96, and a multiclass AUC of roughly 0.98.
The parameters that yield these results were a Gaussian kernel, a
cost penalty = 1, and sigma = 0.005. The WT eyes were the most
correctly classified phenotype by the four methods.

From the SVM estimated class probabilities, it is possible
to derive a IREG that ranges from 0 (total degeneration) to
1 (healthy eye) (Diez-Hermano et al., 2015). It is based on
the knowledge of the degeneration intensity of the phenotypes
involved in the model: WT < modifier #1 < modifier
#2 < modifier #3 < SCA1, from absence to full presence of rough
eye phenotype. IREG is then calculated as:

IREG =

4 · P
(
eye =WT

)
+ 3 · P

(
eye = Mod#1

)
+2 · P

(
eye = Mod#2

)
+ P(eye = Mod#3)

4

when estimated on the test data, the IREG distribution fits to the
expected values and properly reflects the intrinsic variability of
the fly model and the rough eye phenotype (Figure 7).

Deep Learning Classifiers
In contrast with the previous machine learning classifiers that
needed a transformation of the cropped images into an enriched
feature space (HOG), deep learning algorithms directly use the
ROI pixel intensity arrays as input. The features are automatically
learned during the learning process, from gross edge and
contour detection to discrimination of fine details the deeper the
layer in the network.

Two different strategies were followed to train the deep
networks: learning a de novo model and transfer learning. The
latter approach takes advantage of CNNs pre-trained on very
large samples, which is especially well suited for classifying new
small datasets as the majority of patterns and motifs commonly
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FIGURE 8 | CNN architectures and learning curve. (A) Inception-BN is a 15-layered CNN pre-trained on thousands of natural images. A six-nodes fully connected
layer and softmax output are trained with new fly eye images on top of the Inception blocks. (B) De novo CNN with five layers and a six-nodes fully connected and
softmax output. (C) Training accuracy in the pre-trained model starts pretty high and quickly rises in the first few epochs. In contrast, de novo model accuracy
remains low and fluctuates around the initial value with no apparent signs of improvement.

TABLE 3 | Convolutional neural networks classifier confusion matrix.

Reference

Predicted WT gmr > SCA SCA modifier #1 SCA modifier #2 SCA modifier #3

WT 20 20 0 11 0 13 0 15 0 16

gmr > SCA 0 0 11 0 0 0 0 0 0 0

SCA modifier #1 0 0 0 0 13 0 0 0 0 0

SCA modifier #2 0 0 0 0 0 0 14 0 0 0

SCA modifier #3 0 0 0 0 0 0 1 0 16 0

Color scheme: Inception-BN de novo CNN.

found in the images are already known to the model internal
representation. Thus, it is only necessary to fine-tune the final
layers to learn the particularities of the new images, which is
many times faster than training a CNN from scratch and does
not require thousands of labeled examples. The architectures of
both de novo and pre-trained CNN are depicted in Figures 8A,B.
The pre-trained model chosen uses the inception structure,
characterized by including mini-batch normalization (BN) for

each training epoch, which allows for high learning rates and
acts as regularizer. In comparison, the de novo CNN is much
shallower due to computational constraints.

Accuracy during the training phase is usually a reliable
indicator of a CNN capability to learn the discriminative features
with the available sample size (Figure 8C). The curve of the de
novo CNN is a clear sign that either the network is not deep
enough or the training sample is too small for the complexity
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TABLE 4 | Convolutional neural networks performance evaluation
metrics on test data.

Classifier

Metric Inception-BN De novo CNN

Accuracy 0.986 0.146

Multiclass AUC 0.997 0.5

True positives are shaded in gray.

of the classification task at hand. One major concern with the
pre-trained inception-BN was the possibility that the network
was memorizing the training set, given the few epochs it needed
to achieve perfect training accuracy. A performance assessment
in an independent test set of unseen images gave impressive
accuracy and AUC values close to 1 (Tables 3, 4), refuting the
possibility of overfitting. The CNN trained from scratch predicted
every eye to be WT, indicative of the weak classifying rule
learned in training.

Transfer learning CNN was also the only model capable of
properly quantifying the pictures taken under drastically different
illumination techniques, relative to the sample that it was
trained on (dispersed indirect light). The genetic background also
differed from the training sample and corresponds to tau-related
neurodegeneration, the accumulation of which contributes to
the pathology of Alzheimer disease (Lasagna-Reeves et al., 2016;
Rousseaux et al., 2016; Galasso et al., 2017). Supplementary
Figure S5 shows how IREG estimations coming from CNN were
more representative of the surface regularity than IREG coming
from the SVM, which was the top-performance machine learning
technique. In fact, the SVM predicted all eyes to have essentially
the same IREG value. Additionally, retraining all models with
our original sample of bright-spotted eyes (Supplementary
Figure S2B) resulted in transfer learning CNN being the only
model that could successfully generalize to a set of new eyes
(Supplementary Table S1).

Given its classification accuracy and versatility, transfer
learning with the pre-trained inception-BN model is
arguably the top performer classifier among all the methods
tested in this work.

DISCUSSION

The present work provides a novel and fully automated method
to quantitatively assess the degeneration intensity of the fruit flies’
compound eye using reliable and robust state-of-the-art machine
learning techniques. This new method consists in the acquisition
of bright-field images from the external retinal surface, the
automatic extraction of a ROI enriched in information of the eye
morphology, and a classification algorithm built around a pre-
trained deep learning algorithm, fine-tuned to the particularities
of the eye degeneration’s images. Additionally, a model based on
the combination of HOG features extraction and Gaussian kernel
SVM offered performance on par with the CNN and, in fact,
required much less training time.

In contrast with previous quantification approaches (Caudron
et al., 2013; Diez-Hermano et al., 2015; Iyer et al., 2016), this
method does not rely on patterns that are created by light
reflecting in the eye lenses, so it can be applied to extract ROIs
from a variety of illumination conditions. While performing the
experiment to validate the method, we have estimated the total
time that it takes for a researcher to analyze an experimental
group of 50 flies: 1.5 h from anesthetizing the flies until the final
IREG plot was statistically assessed. It is noteworthy that the
most part of that estimation was devoted to capturing the images,
which is a mandatory step, whether the flies are to be manually
or automatically classified later on. The proposed pipeline can
process a 2,880 × 2,048-resolution image in less than 10 s and
batches of 50 images in approximately 90 s, depending on the
hardware that it runs on.

One of the major goals of this work was to analyze the
potentiality of deep learning techniques to extract feature maps
directly from the raw pixel array, which could be used as
input to other conventional machine learning algorithms (i.e.,
SVM). Due to computational constraints, it was not possible
to tune up the graphics processing unit-compiled versions of
the software utilized, and the prohibitive CPU computational
time and memory usage in its absence made the evaluation
of the former objective not feasible. HOG was chosen as
an alternative descriptor, given its successful application in
object detection (Dalal and Triggs, 2005; Orrite et al., 2009; Li
et al., 2012), and ended up resulting in a surprisingly powerful
classifier in combination with conventional SVM. Nonetheless,
the pre-trained CNN will still be preferable for pictures taken
under illumination conditions different from the ones the
models were trained on as it has been shown to have greater
discriminative power.

A drawback of CNNs is the staggering amount of labeled
training examples that they need to learn adequate internal
representations of image patterns and motifs. Although the
sample size in Drosophila experiments ranks among the largest of
any animal model in genetics, it is still a titanic effort to go beyond
1,000 images in a typical fruit fly assay. This limitation affected
the performance of the de novo CNN, which led to the alternative
strategy of transfer learning. Using inception-BN, a CNN pre-
trained on millions of natural images (Ioffe and Szegedy, 2015),
proved to be a well-thought solution that definitely opens up the
field of deep learning to small-scale biology setups.

Future lines of work include developing the fly eye detection
algorithm further to make it extensible to other image capturing
techniques (i.e., SEM). A more immediate priority is the creation
of a user-friendly Shiny application (Winston et al., 2017) that
will allow the researcher to tweak the ROI selection parameters to
fit the peculiarities of its own dataset prior to the degeneration
quantification. Depending on the particular hardware settings,
the app may also offer the user the possibility to train its own
SVM or deep learning model.

The aim of this work is to provide a workflow that results in
a quantitative assessment of the degree of eye degeneration of
hundreds of flies in a quick and unbiased manner. This makes
our method particularly suitable for discriminating potential
genetic rescues or aberrations. We believe that our algorithm
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could be easily implemented in fully robotized environments
as the final quantification step. The highlighted strengths
of the proposed framework will enhance the sensitivity
of high-throughput genetic screens based on rough eye
phenotypes and demonstrate that fly eye imaging is a
top-notch technique for the quantitative modeling of
human diseases.
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