
ORIGINAL RESEARCH
published: 24 June 2020

doi: 10.3389/fnins.2020.00535

Frontiers in Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 535

Edited by:

Arindam Basu,

Nanyang Technological University,

Singapore

Reviewed by:

Guoqi Li,

Tsinghua University, China

Mostafa Rahimi Azghadi,

James Cook University, Australia

*Correspondence:

Abhronil Sengupta

sengupta@psu.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 04 March 2020

Accepted: 30 April 2020

Published: 24 June 2020

Citation:

Lu S and Sengupta A (2020) Exploring

the Connection Between Binary and

Spiking Neural Networks.

Front. Neurosci. 14:535.

doi: 10.3389/fnins.2020.00535

Exploring the Connection Between
Binary and Spiking Neural Networks
Sen Lu and Abhronil Sengupta*

School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, United States

On-chip edge intelligence has necessitated the exploration of algorithmic techniques

to reduce the compute requirements of current machine learning frameworks. This

work aims to bridge the recent algorithmic progress in training Binary Neural Networks

and Spiking Neural Networks—both of which are driven by the same motivation

and yet synergies between the two have not been fully explored. We show that

training Spiking Neural Networks in the extreme quantization regime results in near

full precision accuracies on large-scale datasets like CIFAR-100 and ImageNet. An

important implication of this work is that Binary Spiking Neural Networks can be

enabled by “In-Memory” hardware accelerators catered for Binary Neural Networks

without suffering any accuracy degradation due to binarization. We utilize standard

training techniques for non-spiking networks to generate our spiking networks by

conversion process and also perform an extensive empirical analysis and explore simple

design-time and run-time optimization techniques for reducing inference latency of

spiking networks (both for binary and full-precision models) by an order of magnitude

over prior work. Our implementation source code and trained models are available at

https://github.com/NeuroCompLab-psu/SNN-Conversion.

Keywords: Spiking Neural Networks, Binary Neural Networks, In-Memory computing, neuromorphic computing,

ANN-SNN conversion

1. INTRODUCTION

The explosive growth of edge devices such as mobile phones, wearables, smart sensors and robotic
devices in the current Internet of Things (IoT) era has driven the research for the quest of machine
learning platforms that are not only accurate but are also optimal from storage and compute
requirements. On-device edge intelligence has become increasingly crucial with the advent of a
plethora of applications that require real-time information processing with limited connectivity to
cloud servers. Further, privacy concerns for data sharing with remote servers have also fueled the
need for on-chip intelligence in resourced constrained, battery-life limited edge devices.

To address these challenges, a wide variety of works in the deep learning community have
exploredmechanisms for model compression like pruning (Han et al., 2015; Alvarez and Salzmann,
2017), efficient network architectures (Iandola et al., 2016), reduced precision/quantized networks
(Hubara et al., 2017), among others. In this work, we primarily focus on “Binary Neural Networks”
(BNNs)—an extreme form of quantized networks where the neuron activations and synaptic
weights are represented by binary values (Courbariaux et al., 2016; Rastegari et al., 2016). Recent
experiments on large-scale datasets like ImageNet (Deng et al., 2009) have demonstrated acceptable
accuracies of BNNs, thereby leading to their current popularity. For instance, Rastegari et al.
(2016) has shown that 58× reduction in computation time and 32× reduction in model size
can be achieved for a BNN over a corresponding full-precision model. The drastic reductions in
computation time simply result from the fact that costly Multiply-Accumulate operations required

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00535
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00535&domain=pdf&date_stamp=2020-06-24
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sengupta@psu.edu
https://doi.org/10.3389/fnins.2020.00535
https://www.frontiersin.org/articles/10.3389/fnins.2020.00535/full
http://loop.frontiersin.org/people/952549/overview
http://loop.frontiersin.org/people/614469/overview
https://github.com/NeuroCompLab-psu/SNN-Conversion

Lu and Sengupta Connecting Binary and Spiking Neural Networks

in a standard deep network can be simplified to simple
XNOR and Pop-Count Operations. While current commercial
hardware (Cass, 2019) already supports fixed point precision
(as low as 4 bits), algorithmic progress on BNNs have
contributed to the recent wave of specialized “In-Memory”
BNN hardware accelerators using CMOS (Zhang et al., 2017;
Biswas and Chandrakasan, 2018) and post-CMOS technologies
(Sun et al., 2018) that are highly optimized for single-bit
state representations.

As a completely parallel research thrust, neuromorphic
computing researchers have long advocated for the exploration
of “brain-like” computational models that abstract neuron
functionality as a binary output “spike” train over time. The
binary nature of neuron output can be exploited to design
event-driven hardware that is able to demonstrate significantly
low power consumption by exploiting event-driven computation
and data communication (Deng et al., 2020). IBM TrueNorth
(Akopyan et al., 2015) and Intel Loihi (Davies et al., 2018)
are examples of recently developed neuromorphic chips. While
the power advantages of neuromorphic computing have been
apparent, it has been difficult to scale up the operation
of such “Spiking Neural Networks” (SNNs) to large-scale
machine learning tasks. However, recent work has demonstrated
competitive accuracies of SNNs in large-scale image recognition
datasets like ImageNet by training a non-spiking deep network
and subsequently converting it to a spiking version for event-
driven inference (Rueckauer et al., 2017; Sengupta et al., 2019).

There has not been any exploration or empirical study at
exploring whether SNNs can be trained with binary weights
for large-scale machine learning tasks. Note that this is not a
trivial task since training standard SNNs itself from non-spiking
networks has been a challenge due to the several constraints
imposed on the base non-spiking network (Sengupta et al.,
2019). If we assume that, in principle, such a network can be
trained then the underlying enabling hardware for both BNNs
and SNNs become equivalent1 (due to the binary nature of
neuron/synapse state representation) except for the fact that
the SNN needs to be operated over a number of time-steps.
This work is aimed at exploring this connection between BNN
and SNN.

While a plethora of custom BNN hardware accelerators have
been developed recently, it is well-known that BNNs suffer from
significant accuracy degradation in complex datasets in contrast
to full-precision networks. Recent work has demonstrated that
while weight binarization can be compensated by training
the network with the weight discretization in-loop, neuron
activation binarization is a serious concern (Hubara et al.,
2017). Interestingly, it has been shown that although SNNs
represent neuron outputs by binary values (Maass, 1997), the
information integration over time can be approximated as a
Rectified Linear transfer function (which is the most popular
neuron transfer function used currently in full-precision deep
networks). Drawing inspiration from this fact, we explore
whether SNNs can be trained with binary weights as a means to

1“near-equivalent” since neuron states are discretized as −1,+1 in BNN while

SNN neuron outputs are discretized as 0, 1.

bridge the accuracy gap of BNNs. This opens up the possibility
of using BNN hardware accelerators for resource constrained
edge devices without compromising on the recognition accuracy.
This work also serves as an important application domain
for SNN neuromorphic algorithms that can be viewed as
augmenting the computational power of current non-spiking
binary deep networks.

2. RELATED WORK AND MAIN
CONTRIBUTIONS

The obvious comparison point of this paper would be recent
efforts at training quantized networks with bit-precision greater
than single bit. There have been a multitude of approaches
(Li et al., 2016; Zhou et al., 2016, 2017; Choi et al., 2018;
Deng et al., 2018; Zhang et al., 2018) with recent efforts
aimed at designing networks with hybrid precision where
the bit-precision of each layer of the network can vary
(Prabhu et al., 2018; Wu et al., 2018; Chakraborty et al.,
2019; Wang et al., 2019). However, in order to support
variable bit-precision for each layer, the underlying hardware
would need to be designed accordingly to handle mixed-
precision (which usually is characterized by much higher
area, latency and power consumption than BNN hardware
accelerators. Further, peripheral circuit complexities like sense
amplifier input offset, parasitics limit their scalability; Xue
et al., 2019). This work explores a complementary research
domain where the core underlying hardware can be simply
customized for a BNN. This enables us to leverage the recent
hardware developments of “In-Memory” BNN accelerators
and provides motivation for the exploration of time (SNN
computing framework) rather than space (Mixed Precision
Neural Networks) as the information encoding medium to
compensate for accuracy loss exhibited by BNNs. Distributing
the computations over time also implies that the instantaneous
power consumption of the network would be much lower than
mixed-precision networks and approach that of a BNN in the
worst-case (savings observed due to SNN event-driven behavior
discussed in the next section) which is the critical parameter
governing power-grid design and packaging cost for low-cost
edge devices.

There has been also recent efforts by the neuromorphic
hardware community at training SNNs for unsupervised learning
with binary weights enabled by stochasticity of several emerging
post-CMOS technologies (Suri et al., 2013; Sengupta et al.,
2018; Srinivasan and Roy, 2019). Earlier works on analog
CMOS VLSI implementations of bistable synapses have been also
explored (Indiveri et al., 2006). However, such works have been
typically limited to shallow networks for simple digit recognition
frameworks and do not bear relevance to our current effort at
training supervised deep BNNs/SNNs.

We utilize standard training techniques for non-spiking
networks and utilize the trained models for conversion
to a spiking network. We perform an extensive empirical
analysis and substantiate several optimization techniques
that can reduce the inference latency of spiking networks

Frontiers in Neuroscience | www.frontiersin.org 2 June 2020 | Volume 14 | Article 535

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Connecting Binary and Spiking Neural Networks

by an order of magnitude without compromising on the
network accuracy. A key facet of our proposal is the run-
time flexibility. Depending on the application level accuracy
requirement, the network can be simply run for multiple
time-steps while leveraging the core BNN-catered “In-Memory”
hardware accelerator.

3. B-SNN PROPOSAL

We first review preliminaries of BNNs and SNNs from literature
and subsequently describe our proposed B-SNN (SNN with
binary weights).

3.1. Binary Networks
Our BNN implementation follows the XNOR-Net proposal in
Rastegari et al. (2016). While the feedforward dot-product is
performed using binary values, BNNs maintain proxy full-
precision weights for gradient calculation. To formalize, the dot-
product computation between the full-precision weights and
inputs is simplified in a BNN as follows:

I ∗W ≈ (sign(I) ∗ sign(W))α (1)

where, α is a non-binary scaling factor determined by the
L1-norm of the full-precision proxies (Rastegari et al., 2016).
Straight-Through Estimator (STE) with gradient-clipping to
(−1,+1) range is used during the training process (Rastegari
et al., 2016). Note that the above formulation reduces both
weights and neuron activations to −1,+1 values. Although
a non-binary scaling factor is introduced per layer, yet the
number of non-binary operations due to the scaling factor is
significantly low.

3.2. Spiking Networks
SNN training can be mainly divided into three categories: ANN2-
SNN conversion, backpropagation through time from scratch
and unsupervised training through Spike-Timing Dependent
Plasticity (Pfeiffer and Pfeil, 2018). Since ANN-SNN conversion
relies on standard backpropagation training techniques, it has
been possible to scale SNN training using such conversion
methods to large-scale problems (Sengupta et al., 2019). ANN-
SNN conversion is driven by the observation that an Integrate-
Fire spiking neuron is functionally equivalent to a Rectified
Linear ANN neural transfer function. The functionality of an
Integrate-Fire (IF) spiking neuron can be described by the
temporal dynamics of a state variable, vmem, that accumulates
incoming spikes and fires an output spike whenever the
membrane potential crosses a threshold, vth.

vmem(t + 1) = vmem(t)+
∑

i

wi.Xi(t) (2)

Considering E[X(t)] to be the input firing rate (total spike count
over a given number of time-steps), the output spiking rate

2ANN refers to standard non-spiking networks, Analog Neural Networks (Diehl

et al., 2015), where the neuron state representations are analog or full-precision in

nature, instead of binary spikes.

FIGURE 1 | An example to illustrate the mapping of ReLU to IF-Spiking

neuron.

of the neuron is given by E[Y(t)] =
w.E[X(t)]

vth
(considering

the neuron being driven by a single input X(t) and a positive
synaptic weight w). In case the synaptic weight is negative, the
neuron firing rate would be zero since the neuron membrane
potential would be unable to cross the threshold. This is in
direct correspondence to the Rectified Linear functionality and
is described by an example in Figure 1. An ANN trained
with ReLU neurons can therefore be transformed to an SNN
with IF spiking neurons with minimal accuracy loss. The
sparsity of binary neuron spiking behavior can be exploited for
event-driven inference resulting in significant power savings
(Sengupta et al., 2019).

3.3. Connecting Binary and Spiking
Networks
Our B-SNN is trained by using BNN training techniques
described earlier. However, we utilize analog ReLU neurons
instead of binary neurons. Conceptually, the network structure
is analogous to Binary-Weight Networks (BWNs) introduced
in Rastegari et al. (2016). However, we also include additional
constraints like bias-less neural units and no batch-normalization
layers in the network structure (Sengupta et al., 2019). This is
due to the fact that including bias and batch-normalization can
potentially result in huge accuracy loss during the conversion
process (Rueckauer et al., 2017). Much of the success of
training BNNs can be attributed to Batch-Normalization.
Hence, it is not trivial to train such highly-constrained
ANNs with binary weights and without Batch-Normalization
aiding the training process. Additional constraints like the
choice of pooling mechanism, spiking neuron reset mechanism
are discussed in details in the next section. This work
is aimed at performing an extensive empirical analysis to
substantiate the feasibility of achieving high-accuracy and
low-latency B-SNNs.

Note that the threshold of each network layer is an additional
hyper-parameter introduced in the SNN model and serves
as an important trade-off factor between SNN latency and
accuracy. Due to the neuron reset mechanism, the SNN
neurons are characterized by a discontinuity at the reset time-
instants. If the threshold is too low, the membrane potential
accumulations would be always higher than the threshold
causing the neuron to continuously fire. On the other hand,

Frontiers in Neuroscience | www.frontiersin.org 3 June 2020 | Volume 14 | Article 535

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Connecting Binary and Spiking Neural Networks

too high thresholds result in increased latency for neurons
to fire. In this work, we normalize the neuron thresholds
to the maximum ANN activation (recorded by passing the
training set once after the ANN has been trained) (Rueckauer
et al., 2017). Other thresholding schemes can be also applied
(Sengupta et al., 2019) to minimize the conversion accuracy
loss further.

Considering that the SNN is operated for N time-steps, the
network converges to a Binary-Weight Network as N → ∞.
However, for a finite number of timesteps, we can consider the
network to be a discretized ANN, where the weights are binary
but the neuron activations are represented by B = log2N number
of bits. However, since the neuron states are represented by
0 and 1 values, B-SNNs are event-driven, thereby resulting in
power consumption only when triggered, i.e., on receiving a
spike from the previous layer. Hence, while the representative
bit-precision can be ∼7 bits for networks simulated over 100
timesteps, the network’s computational power does not scale-up
corresponding to a multi-bit neuron model. This is explained
in Figures 2A–E. The left-panel depicts a bit-cell for an “In-
Memory” Resistive Random Access Memory (RRAM) based
BNN hardware accelerator (Yin et al., 2019). The RRAM can
be programmed to either a high resistive state (HRS) or a low
resistive state (LRS). The RRAM states and input conditions for
+1,−1 are tabulated in Figure 2 and shows the correspondence
to the binary dot-product computation. Note that two rows
per input are used due to the differential nature +1,−1 of
the neuron inputs. Hence, irrespective of the value of the
input, one of the rows of the array will be active resulting
in power consumption. Figure 2B depicts the same array for
the B-SNN scenario. Since, in a B-SNN, the neuron outputs
are 0 and 1, we can use just one row per bit-cell, thereby
reducing the array area by 50%. Note that a dummy column
will be required for referencing purposes of sense amplifiers
interfaced with the array (Yin et al., 2019). Additionally, the
neuron circuits interfaced with the array need to accumulate
the dot-product evaluation over time. Such an accumulation
process can be accomplished using digital accumulators (Han
et al., 2017) or non-volatile memory technologies (Sengupta
et al., 2016; Wijesinghe et al., 2018). Note that energy expended
due to this accumulation process is minimal in contrast to
the overall crossbar power consumption (Ankit et al., 2017).
However, the input to the next layer will be a binary spike,
thereby enabling us to utilize the “In-Memory” computing
block as the core hardware primitive. It is worth noting here
that the power-consumption involved in accessing the rows of
the array occurs only on a spike event, thereby resulting in
event-driven operation.

4. EXPERIMENTS AND RESULTS

4.1. Datasets and Implementation
We evaluate our proposal on two popular, publicly available
datasets, namely the CIFAR-100 (Krizhevsky et al., 2009) and
large-scale ImageNet (Deng et al., 2009) dataset. CIFAR-100
dataset contains 100 classes with 60, 000 32 × 32 colored
images where 50, 000 images were used for training and

A

B

C D

Input WL[0] WL[0] Input WL[0]

−1 1 0 0 0

+1 0 1 1 1

E F

Weight R0 R1 Weight R

−1 LRS HRS −1 HRS

+1 HRS LRS +1 LRS

FIGURE 2 | BNN vs. B-SNN RRAM based “In-Memory” computing kernel. (A)

BNN RRAM array. (B) B-SNN RRAM array. (C) BNN input encoding. (D)

B-SNN input encoding. (E) BNN resistor state. (F) B-SNN resistor state.

10, 000 images were used for testing. The more challenging
ImageNet 2012 dataset contains 1, 000 classes of images of
various objects. The dataset contains 1.28 million training
images and 50, 000 validation images. Randomly cropped
224 × 224 pixel regions were used for the ImageNet dataset.
All empirical analysis and optimizations were performed on
the CIFAR-100 dataset and the resultant conclusions and
settings were used for the final ImageNet simulation. All
experiments are run in PyTorch framework using two GPUs.
For both datasets, the image pixels were normalized to
have zero mean and unit variance. Other standard pre-
processing techniques used in this work can be found at
https://github.com/NeuroCompLab-psu/SNN-Conversion. It is
worth mentioning here that while evaluations in this paper

Frontiers in Neuroscience | www.frontiersin.org 4 June 2020 | Volume 14 | Article 535

https://github.com/NeuroCompLab-psu/SNN-Conversion
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Connecting Binary and Spiking Neural Networks

are based on static datasets, SNNs are inherently suited for
spatio-temporal datasets generated from event-driven sensors
(Amir et al., 2017; Li et al., 2017) and such sensor-
algorithm co-design is currently an active research area
(Rückauer et al., 2019).

Our network architecture follows a standard VGG-16 model.
We purposefully chose the VGG architecture since many of the
inefficiencies and accuracy degradation effects of BNNs are not
reflected in shallower models like AlexNet or already-compact
models like ResNet. However, we observed that VGG XNOR-
Nets could not be trained successfully with 3 fully connected
layers at the end. Hence, to reduce the training complexity,
we considered a modified VGG-15 structure with one less
linear layer. Note that only top-1 accuracies are reported in
the paper.

As mentioned earlier, we used ANN-SNN conversion
technique to generate our B-SNN. While ANN-SNN conversion
is currently the most scalable technique to train SNNs, it
suffers from high inference latency. However, recent work
has shown SNNs trained directly through backpropagation are
characterized by much lower latency than networks obtained
through ANN-SNN conversion, albeit for simpler datasets and
shallower networks (Lee et al., 2016). Due to the fact that such
training schemes are computationally much more exhaustive,
a follow-up work has explored a hybrid training approach
comprising ANN-SNN conversion followed by backpropagation-
through-time fine-tuning to scale the latency reduction effect to
deeper networks (Rathi et al., 2020). However, as we show in
this work, the full design space of ANN-SNN conversion has
not been fully explored. Prior work on ANN-SNN conversion
(Sengupta et al., 2019) has mainly considered conversion
techniques optimizing accuracy, thereby incurring high latency.
In this work, we show that there exists extremely simple
control knobs (both at design time and at run time) that
can be also used to reduce inference latency drastically in
ANN-SNN conversion methods without compromising on the
accuracy or involving computationally expensive training/fine-
tuning approaches. Since our SNN training optimizations are
equally valid for full-precision networks, we report accuracies
for full-precision models along with their binary counterparts in
order to compare against prior art.

Our ANNs were trained with constraints of no bias and
batch-normalization layers in accordance with previous work
(Sengupta et al., 2019). A dropout layer was inserted after every
ReLU layer (except those followed by a pooling layer) to aid the
regularization process in absence of batch-normalization. Our
XNOR and B-SNN networks do not binarize the first and last
layers as in previous BNN implementations. We apply the pixel
intensities directly as input to the spiking networks instead of
an artificial Poisson spike train (Rueckauer et al., 2017). Once
the ANN is trained, it is converted to an iso-architecture SNN
by replacing the ReLUs with IF spiking neuron nodes. The SNN
weights are normalized by using a randomly sampled subset of
images from the training set and recording the maximum ANN
activities. Note that normalization based on SNN activities can
be used to further reduce the ANN-SNN accuracy gap (Sengupta
et al., 2019). The SNN implementation is done using a modified

version of the mini-batch processing enabled SNN simulation
framework (Saunders et al., 2019) in BindsNET (Hazan et al.,
2018), a PyTorch based package.

4.2. Training B-SNNs
In order to train the B-SNN, we first trained a constrained-BWN,
as mentioned previously. ADAM optimizer is used with an initial
learning rate of 5e − 4 and a batch size of 128. Lower learning
rates for training binary nets have proven to be also effective in a
recent study (Tang et al., 2017). The learning rate is subsequently
halved every 30 epochs for a duration of 200 epochs. The weight
decay starts from 5e−4 and is then set to 0 after 30 epochs similar
to XNOR-Net training implementations (Rastegari et al., 2016).
As shown in Figure 3, we find that the final validation accuracy
improvement for the constrained-BWN is minimal over an iso-
architecture XNOR-Net. This is primarily due to the constrained
nature ofmodels suitable for ANN-SNN conversion coupled with
weight binarization.

However, previous work has indicated that careful weight
initialization is crucial for training networks without batch-
normalization (Sengupta et al., 2019). Drawing inspiration from
that observation, we performed a hybrid training approach,
where a constrained full-precision model was first trained
and then subsequently binarized with respect to the weights.
The resultant constrained-BWNs exhibited accuracies close to
original full-precision accuracies, as shown in Figure 3. A similar
hybrid training approach was also recently observed to speed up
the training process for normal BNNs (Alizadeh et al., 2019).
Note that the full precision networks are trained for 200 epochs
with a batch size of 256, an initial learning rate of 5e − 2, weight
decay of 1e−4 and SGD optimizer with a momentum of 0.9. The
learning rate was divided by 10 at 81 and 122 epochs. The trained
full-precision models are also used for substantiating the benefits
of the SNN optimization control knobs discussed next.

FIGURE 3 | Validation results on CIFAR-100 dataset. Note that full-precision

model training is plotted from 0 to 200 epochs. The constrained-BWN model

is trained subsequently from the 200-th epoch. The BWN model trained from

scratch and XNOR-Net convergence plots are also shown for comparison.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2020 | Volume 14 | Article 535

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Connecting Binary and Spiking Neural Networks

4.3. Design-Time SNN Optimizations
4.3.1. Architectural Options
An important design option in the SNN/BNN architecture
is the type and location of pooling mechanism. Normal
deep networks usually have pooling layers after the neural
node layer to compress the feature map. Among the two
options typically used—Max Pooling and Average Pooling—
architectures with Max Pooling are usually characterized by
higher accuracy. However, because of the binary nature of
neuron outputs in BNN/SNN, Max Pooling after the neuron
layer should result in accuracy degradation. To circumvent
this issue, BNN literature has explored using Max Pooling
before the neuron layer (Rastegari et al., 2016) while SNN
literature has considered Average Pooling after the neuron layer
(Sengupta et al., 2019). A comprehensive analysis in this regard
is missing.

In this work, we trained network architectures with four
possible options—Average/Max-Pooling before/after the
ReLU/IF neuron layer (Figure 4). All four constrained-BWN
architectures perform similarly on CIFAR-100, as full-precision
ANNs, and converge to accuracy of 64.9%, 65.8%, 67.7% and
67.6% for Average-Pooling before and after ReLU, Max-
Pooling before and after ReLU respectively. As expected, the
Max-Pooling architectures perform slightly better. However,
converted SNNs with Max-Pooling would result in accuracy
degradation during the conversion process since the max-
pooling operation is not distributed linearly over time. In
contrast, the linear Avg-Pooling operation would not involve
such issues during the conversion process. This tradeoff was
evaluated in this design space analysis. We would like to mention
here that two architectural modifications were performed
while converting the constrained-BWN to B-SNN. First, as
shown in Figure 4B, an additional IF layer was added after
the Average-Pooling layer to ensure that the input to the
next Convolutional layer is binary (to utilize the underlying
binary hardware primitive). Also, for the Max-Pooling before
ReLU option (Figure 4C), we inserted an additional IF
neuron layer after the Convolutional layer. We observed that
absence of this additional layer resulted in extremely low
SNN accuracy (33%). We hypothesize this to occur due to
Max-Pooling the Convolutional outputs directly over time at
every time-step.

The variation of SNN accuracy with time-steps is plotted
in Figure 5 for full-precision and B-SNN models respectively.
While the baseline ANN Max-Pooling architectures provide
better accuracies, they undergo higher accuracy degradation
during the conversion process. For the Average-Pooling models,
the option with pooling after the neuron layer have higher
latency due to additional spiking neuron layers. We find that
the Average-Pooling before ReLU/IF neuron layer offers the
best tradeoff between inference latency and final accuracy.
We therefore chose this design option for the next set of
experiments. Note that Figure 5 shows the convergence graph for
this architecture. Similar variation was also observed for the other
options. For this architecture option, the full-precision (binary)
SNN accuracy is 63.2% (63.7%) in contrast to full-precision
(binary) ANN accuracies of 64.9% (64.8%).

A B

C D

FIGURE 4 | Network architectural options: average/max-pooling before/after

ReLU/IF neuron layers. (A) Avg-Pooling Before ReLU. (B) Avg-Pooling After

ReLU. (C) Max-Pooling Before ReLU. (D) Max-Pooling After ReLU.

4.3.2. Neural Node Options
Another underexplored SNN architecture option is the choice
of the spiking neuron node. While prior literature has mainly
considered IF neurons where the membrane potential is reset
upon spiking, Rueckauer et al. (2017) considers the membrane
potential subtracted by the threshold voltage at a firing event.
We will refer to the two neuron types as Reset-IF (RIF) and
Subtractive-IF (SIF) respectively. SIF neurons assist in reducing
the accuracy degradation of converted SNNs by removing the
discontinuity occurring in the neuron function at a firing
event (Rueckauer et al., 2017). However, this is achieved at
the cost of higher spiking activity. We would like to stress
here that while SNNs reduce the power consumption due to
time-domain redistribution of computation, optimizing the SNN
energy consumption is a tradeoff between the power benefits

Frontiers in Neuroscience | www.frontiersin.org 6 June 2020 | Volume 14 | Article 535

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Connecting Binary and Spiking Neural Networks

A

B

FIGURE 5 | SNN accuracy variation with time-steps on CIFAR-100 dataset for

various architectural options. Note that all SNNs used here have Subtractive-IF

layers. (A) Full-precision SNN. (B) Binary SNN.

and latency overhead—which is a function of such architectural
options considered herein.

For our analysis, we consider the following proxy metrics for
the energy consumption of the ANN and SNN. Assuming that
the major energy consumption would occur in the “In-Memory”
crossbar arrays discussed previously, the energy consumption
of the ANN will be proportional to the sum of the number
of operations in the convolutional and linear layers (due to
corresponding activations of the rows of the crossbar array).
However, in case of SNNs, the operation is conditional in the
case of a spiking event. The calculation for ANN operations in
convolutional and linear layers are performed using Equations
(3) and (4).

Convolution Layer #OPS = nIP∗kH∗kW ∗nOP∗oH∗oW (3)

Linear Layer #OPS = iS ∗ oS (4)

where, nIP is the number of input planes, kH and kW are the
kernel height and width, nOP is the number of output planes, oH
and oW are the output height and width, and iS and oS are the
input and output sizes for linear layers.

In order to measure the efficiency of the SNN with respect
to ANN in terms of energy consumption, we use the following
Normalized Operations count henceforth.

Normalized #OPS =

∑L−1
i=2 IFRi ∗ Layer #OPSi+1∑

Layer #OPS
(5)

where, IFR stands for IF Spiking Rate (total number of spikes over
the inference time window averaged over number of neurons),
and Layer #OPS include the operation counts in convolution
and linear layers. L represents the total number of layers in the
network. Note that, lower the value of normalized operations,
higher is the energy efficiency of converted SNN, with 1 reflecting
iso-energy case. Note that we do not consider the operation count
for the first and last layers since they are not binarized.

Considering a baseline accuracy of 62%, Figures 6A,C shows
that the SNN structure with SIF has a much smaller delay than
the RIF structure. This is intuitive since the spiking rate is much
higher in SIF due to subtractive reset. We also observed that
the RIF topology was more error-prone during conversion due
to the discontinuity occurring on reset to zero. For instance,
the full-precision RIF SNN model was unable to reach 62%
during 400 timesteps. The total number of normalized operations
for SIF and RIF are 4.40 and 4.38 respectively for the B-SNN
implementation, and 2.35 and 6.40 (did not reach 62% accuracy)
respectively for the full-precision SNN. The layerwise spiking
activity is plotted in Figures 6B,D (the numbers in figure inset
represent the timesteps required to reach 62% accuracy). Since
the number of computations does not greatly increase for the SIF
model with significantly less delay and better accuracy, we choose
the SIF model for the remaining analysis.

4.4. Run-Time SNN Optimizations
4.4.1. Threshold Balancing Factor
Prior work has usually considered the maximum activation of the
ANN/SNN neuron as the neuron firing threshold for a particular
layer, as explained in section 4.3. Figure 7A plots the histogram
of the maximum ANN activations of a particular layer. The
distribution is characterized by a long tail (Figure 7B) which
results in an unnecessarily high SNN threshold, since most of
the actual SNN activations would be much lower at inference
time. This observation was consistently observed for other layers.
Hence, while prior work has shown ANN-SNN conversion to
be characterized by extremely high latency, it is due to the fact
that the model is optimized for high accuracy, which translates
to high latency. In this work, we analyze the effect of varying
the threshold balancing factor by choosing a particular percentile
from the activation histogram.

Figures 8A,C depicts the variation of accuracy vs. timesteps
for different percentiles chosen from the activation histogram
during threshold balancing. It is obvious that the network’s
latency reduces as the normalization percentile decreases
due to a less conservative threshold choice. However, the
accuracy degradation due to threshold relaxation seems to be
minimal. Furthermore, no significant change in the number
of computations are observed despite changing percentiles for
both the full-precision and binary SNN models, as shown

Frontiers in Neuroscience | www.frontiersin.org 7 June 2020 | Volume 14 | Article 535

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Connecting Binary and Spiking Neural Networks

A

B

C

D

FIGURE 6 | Analysis for neural node options—SIF vs. RIF. (A) Accuracy vs.

timesteps for full-precision model. (B) Layerwise IFR for full-precision model.

(C) Accuracy vs. timesteps for binary model. (D) Layerwise IFR for binary

model.

FIGURE 7 | Maximum ANN activations for a particular layer. (A) Histogram.

(B) Histogram (a) in log-scale.

in Figures 8B,D. The number of timesteps required to reach
62% accuracy are also noted in the figure. We chose 99.7
percentile (a subset of 3, 500 training set images were used
for measuring the statistics) for our remaining analysis since
degradation in accuracy was observed for lower values in case of
the binary model.

In order to explore additional opportunities for reduction
in number of computations for the SNN models, we observed
that the number of computations increases exponentially after
a certain limit ∼60% accuracy. This has been plotted in
Figure 9 (combination of data shown in Figures 8C,D). Hence,
computation costs for the B-SNN can be significantly reduced
with small relaxation of the accuracy requirement. This is a
major flexibility in our proposal unlike prior mixed-precision
network proposals to circumvent the accuracy degradation issue
of XNOR-Nets. The core hardware framework and operation
remains almost similar to the XNOR-Net implementation
with the flexibility to increase accuracy to full-precision limits
as desired.

Frontiers in Neuroscience | www.frontiersin.org 8 June 2020 | Volume 14 | Article 535

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Connecting Binary and Spiking Neural Networks

A

B

C

D

FIGURE 8 | Analysis for threshold balancing factor. (A) Accuracy vs. timesteps

for full-precision model. (B) Normalized #OPS with varying percentile for the

full-precision model. (C) Accuracy vs. timesteps for binary model. (D)

Normalized #OPS with varying percentile for the binary model.

FIGURE 9 | Normalized #OPS of B-SNN as a function of accuracy.

4.4.2. Early Inference
Another conclusion obtained from the exponential increase in
number of computations with accuracy beyond∼60% (Figure 9)
is that a few difficult images require longer evidence integration
for the SNN. However, it is unnecessary to run the SNN for an
extended period of time for easy image instances that could have
been classified earlier. Driven by this observation, we explored an
“Early Exit” inference method for SNNs wherein we consider the
SNN inference to be completed when the maximum membrane
potential of the neurons in the final layer is above a given
threshold3. This results in a dynamic SNN inference process
where easier instances resulting in faster evidence integration
can be classified earlier, thereby reducing the average inference
latency and, in turn, the number of unnecessary computations.

Figures 10A,B depicts the variation of final SNN accuracy
with the confidence threshold value for the maximummembrane

potential of the final B-SNN layer. This optimization is equally
applicable for the full-precision model. We considered that in the

worst case the SNN runs for 105 timesteps (time required to reach
baseline accuracy of 62%—obtained from Figure 8C). Indeed,

we observed a reduction in computation from 4.30 to 3.55

with early inference without any compromise in accuracy (62%)

for the binary model. The histogram of the required inference
timesteps is shown in Figure 11. The average value of inference

timesteps is 62.4, which is significantly lower than 105 for the
case without early exit. As a comparison point, we can achieve the

XNOR-Net accuracy (47.16%) with threshold value 0.90 as shown
in Figure 10B, and the corresponding number of normalized

computations is 1.49 as compared to that of 1.0 of XNOR. Note
that the 50% increment in computations for the XNOR-Net
accuracy is a result of the fact that our model was optimized for a
baseline accuracy of 62%. Hence, relaxing constraints explained
in the previous subsections can potentially be used for the B-SNN
to achieve XNOR-Net level accuracy at iso-computations. The

3It is worth noting here the final neuron layer does not have any intrinsic

membrane potential threshold, i.e., the membrane potential accumulates over

time. Normal inference involves determination of the neuron with maximum

membrane potential.

Frontiers in Neuroscience | www.frontiersin.org 9 June 2020 | Volume 14 | Article 535

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Connecting Binary and Spiking Neural Networks

FIGURE 10 | Analysis for early inference. (A) The accuracy reaches 62% at

around voltage of 48 and reaches 63% at around voltage of 106. (B) Panel (A)

at finer granularity. It reaches XNOR accuracy at threshold value 0.90.

FIGURE 11 | Evaluation with Early Inference. Note that the there are 803

images predicted at the 105-th timestep which is not included in the graph.

results for CIFAR-100 dataset are summarized in Table 1. The
B-SNN VGG model achieves near full-precision accuracy while
only requiring 3.55× more operations integrated over the entire
inference time window.

TABLE 1 | Results for CIFAR-100 Dataset.

Network model Accuracy (%) Normalized #OPS

Full precision ANN 64.9 32

XNOR Net 47.16 1

B-SNN 62.07 3.55

A

B

FIGURE 12 | Performance on the ImageNet dataset. (A) Accuracy vs.

timesteps for full-precision model. (B) Accuracy vs. timesteps for binary model.

4.5. ImageNet Results
The full-precision VGG-15 model is trained on ImageNet dataset
for 100 epochs with a batch size of 128, a learning rate of 1e− 2, a
weight decay of 1e− 4 and the SGD optimizer with a momentum
of 0.9. Note that the learning rate was divided by 10 at 30, 60, and
90 epochs similar to that of CIFAR-100 training. The final top-1
accuracy of the full-precision ANN was 69.05%.

Similarly, we binarized the network from the pre-trainedANN
using the hybrid methodology described previously and we also
observed a drastic increase in B-SNN accuracy (in contrast to
training the model from scratch) similar to Figure 3. The initial
parameters used for the Adam optimizer were learning rate of
5e − 4, weight decay of 5e − 4 (and 0 after 30 epochs), and
beta values (the decay rates of the exponential moving averages)
of (0.0, 0.999). Note that we observed proper setting of the

Frontiers in Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 535

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Connecting Binary and Spiking Neural Networks

TABLE 2 | Results for ImageNet dataset.

Network model Accuracy (%) Timesteps

Full precision ANN 69.05 −

XNOR Net 49.77 −

Full precision SNN

[ANN-SNN conversion (Rathi

et al., 2020)]

62.73 250

Full precision SNN

[Hybrid training (Rathi et al.,

2020)]

65.19 250

Full precision SNN

(This work)

66.56 64

B-SNN

(This work)

62.71 148

beta values to be crucial for higher accuracy of the B-SNN
training, as suggested in a recent work (Alizadeh et al., 2019).
We achieved 65.4% top-1 accuracy for the constrained BWN
model after 40 epochs of training (the binarization phase after
full-precision training).

Optimization settings derived from the previous CIFAR-100
experiments were applied to our ImageNet analysis, namely, the
pooling architecture, neural node type and relaxing the threshold
balancing (99.9% percentile was used by recording maximum
ANN activations for a subset of 80 images from the training
set). The top-1 SNN (ANN) accuracy was 66.56% (69.05%) for
the full-precision model and 62.71% (65.4%) for the binarized
model respectively. The accuracy vs. timesteps variation for the
two models are depicted in Figures 12A,B. The binary SNN
model achieves near full-precision accuracy on the ImageNet
dataset as well with 5.09 Normalized #OPS count. Note that
the latency and #OPS count can be further reduced by early
exit. We did not include the early exit optimization in order
to achieve a fair comparison with previous works. A summary
of our results on the ImageNet dataset and results from other
competing approaches are shown in Table 2. Apart from the
B-SNN proposal, our simple optimization procedures involving
standard non-spiking network based training is able to achieve
extremely low-latency deep SNNs.

5. CONCLUSIONS AND FUTURE WORK

While most of the current efforts at solving the accuracy
degradation issue of BNNs have been focused on mixed-
precision networks, we explore an alternative time-domain
encoding procedure by exploring synergies with SNNs. ANN-
SNN conversion provides a mathematical formulation for
expressing multi-bit precision of ANN activations as binary
values over time. Our binary SNN models achieve near
full-precision accuracies on large-scale image recognition
datasets, while utilizing similar hardware backbone of BNN-
catered “In-Memory” computing platforms. Further, we explore
several design-time and run-time optimizations and perform
extensive empirical analysis to demonstrate high-accuracy and
low-latency SNNs through ANN-SNN conversion techniques.
Future work will explore algorithms to reduce the accuracy
gap between full-precision and binary SNNs even further
along with substantiating the generalizability of the proposal
to advanced network architectures like residual connections
(that may require additional design considerations Sengupta
et al., 2019). Further, hardware benefits of the B-SNN
proposal against mixed/reduced-precision implementations will
be evaluated.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article, further inquiries can be directed to the
corresponding author/s.

AUTHOR CONTRIBUTIONS

AS developed the main concepts. SL performed all the
simulations. All authors assisted in the writing of the paper and
developing the concepts.

FUNDING

This work was supported in part by the National
Science Foundation.

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla,

P., et al. (2015). Truenorth: design and tool flow of a 65 mw 1

million neuron programmable neurosynaptic chip. IEEE Trans. Comput.

Aided Design Integr. Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.

2474396

Alizadeh, M., Fernández-Marqués, J., Lane, N. D., and Gal, Y. (2019). “An

empirical study of binary neural networks’ optimisation,” in International

Conference on Learning Representations (New Orleans). Available online at:

https://openreview.net/forum?id=rJfUCoR5KX

Alvarez, J. M., and Salzmann, M. (2017). “Compression-aware training of

deep networks,” in Advances in Neural Information Processing Systems,

eds I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.

Vishwanathan, and R. Garnett (Long Beach, CA: Curran Associates, Inc.),

856–867.

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al. (2017).

“A low power, fully event-based gesture recognition system,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (Honolulu,

HI), 7243–7252. doi: 10.1109/CVPR.2017.781

Ankit, A., Sengupta, A., Panda, P., and Roy, K. (2017). “Resparc: a reconfigurable

and energy-efficient architecture with memristive crossbars for deep spiking

neural networks,” in Proceedings of the 54th Annual Design Automation

Conference (Austin, TX), 1–6. doi: 10.1145/3061639.3062311

Biswas, A., and Chandrakasan, A. P. (2018). “Conv-RAM: an energy-

efficient SRAM with embedded convolution computation for low-power

CNN-based machine learning applications,” in 2018 IEEE International

Solid-State Circuits Conference-(ISSCC) (San Francisco, CA: IEEE), 488–490.

doi: 10.1109/ISSCC.2018.8310397

Cass, S. (2019). Taking AI to the edge: Google’s TPU now comes in a

maker-friendly package. IEEE Spectrum 56, 16–17. doi: 10.1109/MSPEC.2019.

8701189

Frontiers in Neuroscience | www.frontiersin.org 11 June 2020 | Volume 14 | Article 535

https://doi.org/10.1109/TCAD.2015.2474396
https://openreview.net/forum?id=rJfUCoR5KX
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1145/3061639.3062311
https://doi.org/10.1109/ISSCC.2018.8310397
https://doi.org/10.1109/MSPEC.2019.8701189
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Connecting Binary and Spiking Neural Networks

Chakraborty, I., Roy, D., Garg, I., Ankit, A., and Roy, K. (2019). PCA-driven

hybrid network design for enabling intelligence at the edge. arXiv [Preprint],

arXiv:1906.01493. doi: 10.1038/s42256-019-0134-0

Choi, J., Wang, Z., Venkataramani, S., P. Chuang, I.-J., Srinivasan, V., and

Gopalakrishnan, K. (2018). Pact: parameterized clipping activation for

quantized neural networks. arXiv [Preprint], arXiv:1805.06085.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).

Binarized neural networks: training deep neural networks with weights and

activations constrained to+1 or−1. arXiv [Preprint], arXiv:1602.02830.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet:

a large-scale hierarchical image database,” in 2009 IEEE Conference on

Computer Vision and Pattern Recognition (Miami Beach, FL: IEEE), 248–255.

doi: 10.1109/CVPR.2009.5206848

Deng, L., Jiao, P., Pei, J., Wu, Z., and Li, G. (2018). Gxnor-net: training deep

neural networks with ternary weights and activations without full-precision

memory under a unified discretization framework. Neural Netw. 100, 49–58.

doi: 10.1016/j.neunet.2018.01.010

Deng, L., Wu, Y., Hu, X., Liang, L., Ding, Y., Li, G., et al. (2020). Rethinking

the performance comparison between SNNs and ANNs. Neural Netw. 121,

294–307. doi: 10.1016/j.neunet.2019.09.005

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney, IL: IEEE), 1–8. doi: 10.1109/IJCNN.2015.7280696

Han, B., Ankit, A., Sengupta, A., and Roy, K. (2017). Cross-layer design

exploration for energy-quality tradeoffs in spiking and non-spiking deep

artificial neural networks. IEEE Trans. Multi Scale Comput. Syst. 4, 613–623.

doi: 10.1109/TMSCS.2017.2737625

Han, S., Pool, J., Tran, J., and Dally, W. (2015). “Learning both weights and

connections for efficient neural network,” in Advances in Neural Information

Processing Systems, eds C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and

R. Garnett (Montreal, CA: Curran Associates, Inc.), 1135–1143.

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann,

H. T., et al. (2018). Bindsnet: a machine learning-oriented spiking neural

networks library in Python. Front. Neuroinform. 12:89. doi: 10.3389/fninf.2018.

00089

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y.

(2017). Quantized neural networks: training neural networks with

low precision weights and activations. J. Mach. Learn. Res. 18,

6869–6898. doi: 10.5555/3122009.3242044

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer,

K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and

< 0.5 MB model size. arXiv [Preprint], arXiv:1602.07360.

Indiveri, G., Chicca, E., and Douglas, R. (2006). A VLSI array of low-

power spiking neurons and bistable synapses with spike-timing dependent

plasticity. IEEE Trans. Neural Netw. 17, 211–221. doi: 10.1109/TNN.2005.

860850

Krizhevsky, A., Nair, V., and Hinton, G. (2009). Cifar-100. Canadian Institute

for Advanced Research. Available online at: https://www.cs.toronto.edu/~kriz/

cifar.html

Lee, J., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking neural networks

using backpropagation. Front. Neurosci. 10:508. doi: 10.3389/fnins.2016.00508

Li, F., Zhang, B., and Liu, B. (2016). Ternary weight networks. arXiv [Preprint],

arXiv:1605.04711.

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). Cifar10-dvs: an event-stream dataset

for object classification. Front. Neurosci. 11:309. doi: 10.3389/fnins.2017.00309

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities

and challenges. Front. Neurosci. 12:774. doi: 10.3389/fnins.2018.00774

Prabhu, A., Batchu, V., Gajawada, R., Munagala, S. A., and Namboodiri, A. (2018).

“Hybrid binary networks: optimizing for accuracy, efficiency and memory,”

in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)

(Lake Tahoe, NV/CA: IEEE), 821–829. doi: 10.1109/WACV.2018.00095

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). “Xnor-

net: imagenet classification using binary convolutional neural networks,” in

European Conference on Computer Vision (Amsterdam: Springer), 525–542.

doi: 10.1007/978-3-319-46493-0_32

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). “Enabling deep

spiking neural networks with hybrid conversion and spike timing dependent

backpropagation,” in International Conference on Learning Representations

(Virtual Conference).

Rückauer, B., Känzig, N., Liu, S.-C., Delbruck, T., and Sandamirskaya, Y. (2019).

Closing the accuracy gap in an event-based visual recognition task. arXiv

[Preprint], arXiv:1906.08859.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks

for image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.

00682

Saunders, D. J., Sigrist, C., Chaney, K., Kozma, R., and Siegelmann, H. T.

(2019). Minibatch processing in spiking neural networks. arXiv [Preprint],

arXiv:1909.02549.

Sengupta, A., Shim, Y., and Roy, K. (2016). Proposal for an all-spin artificial

neural network: Emulating neural and synaptic functionalities through domain

wall motion in ferromagnets. IEEE Trans. Biomed. Circ. Syst. 10, 1152–1160.

doi: 10.1109/TBCAS.2016.2525823

Sengupta, A., Srinivasan, G., Roy, D., and Roy, K. (2018). “Stochastic

inference and learning enabled by magnetic tunnel junctions,” in 2018 IEEE

International Electron Devices Meeting (IEDM) (San Francisco, CA: IEEE),

15–6. doi: 10.1109/IEDM.2018.8614616

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: VGG and residual architectures. Front. Neurosci.

13:95. doi: 10.3389/fnins.2019.00095

Srinivasan, G., and Roy, K. (2019). Restocnet: Residual stochastic binary

convolutional spiking neural network for memory-efficient neuromorphic

computing. Front. Neurosci. 13:189. doi: 10.3389/fnins.2019.00189

Sun, X., Yin, S., Peng, X., Liu, R., Seo, J.-S., and Yu, S. (2018). “XNOR-

RRAM: a scalable and parallel resistive synaptic architecture for binary

neural networks,” in 2018 Design, Automation & Test in Europe Conference

& Exhibition (DATE) (Dresden: International Congress Center Dresden),

1423–1428. doi: 10.23919/DATE.2018.8342235

Suri, M., Querlioz, D., Bichler, O., Palma, G., Vianello, E., Vuillaume, D., et al.

(2013). Bio-inspired stochastic computing using binary CBRAM synapses.

IEEE Trans. Electron Devices 60, 2402–2409. doi: 10.1109/TED.2013.22

63000

Tang, W., Hua, G., and Wang, L. (2017). “How to train a compact binary neural

network with high accuracy?” in Thirty-First AAAI Conference on Artificial

Intelligence (San Francisco, CA).

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S. (2019). “Haq: hardware-aware

automated quantization with mixed precision,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (Long Beach, CA),

8612–8620. doi: 10.1109/CVPR.2019.00881

Wijesinghe, P., Ankit, A., Sengupta, A., and Roy, K. (2018). An all-memristor

deep spiking neural computing system: a step toward realizing the low-

power stochastic brain. IEEE Trans. Emerg. Top. Comput. Intell. 2, 345–358.

doi: 10.1109/TETCI.2018.2829924

Wu, B., Wang, Y., Zhang, P., Tian, Y., Vajda, P., and Keutzer, K. (2018). Mixed

precision quantization of convnets via differentiable neural architecture search.

arXiv [Preprint], arXiv:1812.00090.

Xue, C.-X., Chen, W.-H., Liu, J.-S., Li, J.-F., Lin, W.-Y., Lin, W.-E.,

et al. (2019). “24.1 A 1Mb Multibit ReRAM computing-in-memory macro

with 14.6 ns parallel MAC computing time for CNN based AI edge

processors,” in 2019 IEEE International Solid-State Circuits Conference-

(ISSCC) (San Francisco, CA: IEEE), 388–390. doi: 10.1109/ISSCC.2019.86

62395

Yin, S., Sun, X., Yu, S., and Seo, J.-S. (2019). High-throughput in-memory

computing for binary deep neural networks with monolithically integrated

rRAM and 90nm CMOS. arXiv [Preprint], arXiv:1909.07514.

Zhang, D., Yang, J., Ye, D., and Hua, G. (2018). “Lq-nets: learned quantization

for highly accurate and compact deep neural networks,” in Proceedings

of the European Conference on Computer Vision (ECCV), 365–382.

doi: 10.1007/978-3-030-01237-3_23

Frontiers in Neuroscience | www.frontiersin.org 12 June 2020 | Volume 14 | Article 535

https://doi.org/10.1038/s42256-019-0134-0
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1109/TMSCS.2017.2737625
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.5555/3122009.3242044
https://doi.org/10.1109/TNN.2005.860850
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.3389/fnins.201600508
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1109/WACV.2018.00095
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/TBCAS.2016.2525823
https://doi.org/10.1109/IEDM.2018.8614616
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2019.00189
https://doi.org/10.23919/DATE.2018.8342235
https://doi.org/10.1109/TED.2013.2263000
https://doi.org/10.1109/CVPR.2019.00881
https://doi.org/10.1109/TETCI.2018.2829924
https://doi.org/10.1109/ISSCC.2019.8662395
https://doi.org/10.1007/978-3-030-01237-3_23
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Connecting Binary and Spiking Neural Networks

Zhang, J., Wang, Z., and Verma, N. (2017). In-memory computation

of a machine-learning classifier in a standard 6T SRAM array.

IEEE J. Solid State Circ. 52, 915–924. doi: 10.1109/JSSC.2016.

2642198

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y. (2016). Dorefa-

net: training low bitwidth convolutional neural networks with low bitwidth

gradients. arXiv [Preprint], arXiv:1606.06160.

Zhou, S.-C., Wang, Y.-Z., Wen, H., He, Q.-Y., and Zou, Y.-H. (2017).

Balanced quantization: an effective and efficient approach to quantized neural

networks. J. Comput. Sci. Technol. 32, 667–682. doi: 10.1007/s11390-017-

1750-y

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Lu and Sengupta. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 13 June 2020 | Volume 14 | Article 535

https://doi.org/10.1109/JSSC.2016.2642198
https://doi.org/10.1007/s11390-017-1750-y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Exploring the Connection Between Binary and Spiking Neural Networks
	1. Introduction
	2. Related Work and Main Contributions
	3. B-SNN Proposal
	3.1. Binary Networks
	3.2. Spiking Networks
	3.3. Connecting Binary and Spiking Networks

	4. Experiments and Results
	4.1. Datasets and Implementation
	4.2. Training B-SNNs
	4.3. Design-Time SNN Optimizations
	4.3.1. Architectural Options
	4.3.2. Neural Node Options

	4.4. Run-Time SNN Optimizations
	4.4.1. Threshold Balancing Factor
	4.4.2. Early Inference

	4.5. ImageNet Results

	5. Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	References

