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Although many scholars deem non-invasive measures of neurophysiology to have
promise in assessing learning, these measures are currently not widely applied, neither
in educational settings nor in training. How can non-invasive neurophysiology provide
insight into learning and how should research on this topic move forward to ensure
valid applications? The current article addresses these questions by discussing the
mechanisms underlying neurophysiological changes during learning followed by a
SWOT (strengths, weaknesses, opportunities, and threats) analysis of non-invasive
neurophysiology in learning and training. This type of analysis can provide a structured
examination of factors relevant to the current state and future of a field. The findings of
the SWOT analysis indicate that the field of neurophysiology in learning and training
is developing rapidly. By leveraging the opportunities of neurophysiology in learning
and training (while bearing in mind weaknesses, threats, and strengths) the field can
move forward in promising directions. Suggestions for opportunities for future work are
provided to ensure valid and effective application of non-invasive neurophysiology in a
wide range of learning and training settings.

Keywords: learning, training, neurophysiology, brain activity, heart rate, eye tracking, skin conductance,
respiration

INTRODUCTION

While behavioral methods, such as pre- and post-test assessments, are most commonly used
to assess learning, non-invasive neurophysiological methods provide promising complementary
options (Leff et al., 2011; Lai et al., 2013; Krigolson et al., 2015; Tinga et al., 2019a). Non-invasive
neurophysiology includes measures that provide insight into the nervous system through relatively
non-invasive sensors placed on the body or in the environment. Examples of these measures are
heart rate, electrodermal activity (EDA) and electroencephalography (EEG).

Although many scholars deem these measures to be promising in assessing learning, they are
currently not widely applied in educational settings and in training. This article aims at providing
insights that help the field move toward valid and effective application of neurophysiology in a wide
range of learning and training settings. In the current article learning is considered as processing of
information from experiences in order to update system properties (Barron et al., 2015). Through
experience the ability to execute tasks or operations or processing of information improves and
becomes faster, less effortful and more automatic (Schneider and Chein, 2003; Borghini et al., 2016).
A large body of cognitive and neurocognitive studies demonstrates that learning manifests itself
in different ways, such as the acquisition of new information, the development of perception,
reasoning, psychomotor skills, and problem solving skills (Lai et al., 2013). When referring
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to learning in the current article we specifically refer to
psychomotor and cognitive learning, but generalize to other types
of learning. Affective learning, such as fear conditioning and fear
extinction, however, is not included as this type of learning falls
outside of the scope of the current article, as studies on this topic
primarily reflect the affective response to stimuli. To gain insight
into how we can move in the direction of valid and effective
application of neurophysiology in a wide range of learning and
training settings, it is first of all important to know the underlying
mechanisms of how non-invasive measures of neurophysiology
are able to inform on learning. To this aim we will first discuss
the most frequently applied non-invasive measures and into what
aspects of the nervous system these measures provide insight.
Subsequently, we will discuss how activity in the nervous system,
in turn, can provide insight into learning processes.

The nervous system consists of the autonomic and central
nervous system. The autonomic nervous system has two
branches that operate at the same time, but in an antagonistic
way: the sympathetic nervous system and the parasympathetic
nervous system, in which the sympathetic branch activates a
neurophysiological response, while the parasympathetic branch
inhibits one (Berntson et al., 1991), with parasympathetic nerves
exerting their effects faster than sympathetic ones (Nunan et al.,
2010). The nervous system regulates a wide variety of functions
related to processes such as homeostasis, digestion and attention
(Berntson and Cacioppo, 2000; Mauss and Robinson, 2009).

Non-invasive methods providing insight into the autonomic
nervous system include measures of peripheral physiology
such as heart rate (variability), respiration, EDA and
electromyography (EMG). Heart rate and heart rate variability
(i.e., the variation in the intervals between consecutive
heartbeats) can be measured either via electrocardiography
(ECG) or photoplethysmography (PPG). While ECG is more
conventional, PPG has the benefit of being relatively less invasive.
With ECG multiple sensors are placed on the body to measure the
heart’s electrical activity, while with PPG a single optical sensor
is placed on the finger or earlobe in order to measure peripheral
changes in blood flow which are affected by activity of the heart.
Although ECG is considered to be more precise than PPG,
especially in measuring heart rate variability, the two measures
are highly correlated under ideal conditions (Lu et al., 2009).
Respiration can be measured through a respiration belt around
the upper body measuring the body’s expansion and contraction.
EDA refers to variations in the electrical properties of the skin
in response to sweat secretion. A non-invasive measure of the
change in conductance of the skin can be acquired by applying
a low constant voltage across two electrodes placed on the skin
(Fowles et al., 1981). EMG provides insight into muscle activity
as this method measures electrical activity that is generated
by muscle fibers. While the heart and the lungs are connected
to the sympathetic as well as to the parasympathetic nerves,
the skin and its sweat glands and skeletal muscles are solely
innervated by the sympathetic nerves (Roatta and Passatore,
2008; Setz et al., 2010).

The central nervous system refers to the part of the nervous
system consisting of the brain and the spinal cord. Brain activity
can be measured non-invasively through measures such as EEG

and functional near-infrared spectroscopy (fNIRS). fNIRS is a
method in which cortical hemodynamic activity is measured
using near-infrared light and is based on the assumption that
neural activation and the vascular response are coupled (León-
Carrión and León-Domínguez, 2012). EEG records cortical
electrical activity non-invasively through electrodes on the
scalp (Antonenko et al., 2010). EEG is applied more often
than fNIRS, as fNIRS is still a relatively new measurement
technique (Kopton and Kenning, 2014). Compared to EEG,
fNIRS has a better spatial resolution but a reduced temporal
resolution (Crosson et al., 2010; Zama and Shimada, 2015).
Other well-established techniques of measuring brain activity
include functional magnetic resonance imaging (fMRI) and
magnetoencephalography (MEG). However, these measures tend
to be more invasive (Tinga et al., 2019a) and therefore fall outside
the scope of the current review.

Eye-related measures are another category of
neurophysiological measures. The eye is affected both by
the central and autonomic nervous system; the retina is an
integral part of the central nervous system, while the muscles
that control eye-movements, eyelid elevation and pupil dilation
are innervated by both branches of the autonomic nervous
system (McDougal and Gamlin, 2015; Eckstein et al., 2017;
Larsen and Waters, 2018). Eye-related measures can be collected
non-invasively through an eye-tracker either placed on a table
in front of or mounted on the head of the trainee. Alternatively,
sensors can be placed on the skin close to the eyes to measure
the electrical activity that is paired to the eye’s position and
movements, a technique called electrooculography (EOG).
Eye-related measures include (1) pupil dilation; (2) eye gaze; (3)
blink rate; and (4) blink duration (McDougal and Gamlin, 2015;
Eckstein et al., 2017). Why would the activity in the nervous
system measured through neurophysiology be related to learning
processes? Measures of neurophysiology respond in a predictable
manner to cognitive demand/mental workload or mental effort
(Gevins and Smith, 2003; Antonenko et al., 2010; Setz et al.,
2010; Ayaz et al., 2012; Brouwer et al., 2012; Borghini et al.,
2014; Hogervorst et al., 2014; Reiner and Gelfeld, 2014; Gable
et al., 2015; Charles and Nixon, 2019). As mental effort increases,
sympathetic activation increases and parasympathetic inhibition
decreases (Berntson et al., 1991), paralleled by changes in the
central nervous system such as in oscillations in the EEG signal
with alpha oscillations generally increasing and theta oscillations
generally decreasing with decreasing demands (Klimesch, 1999;
Klimesch et al., 2005; Antonenko et al., 2010; Brouwer et al.,
2012) and in activation patterns in the fNIRS signal with activity
in the (pre)frontal cortex generally increasing (Ayaz et al., 2012;
Hiyamizu et al., 2014).

According to several influential cognitive theoretical
frameworks learning can be thought of as a change in how a
to-be-learned task is processed and therefore in how cognitively
demanding a task is. The dual processing theory constitutes
one of these frameworks. From the dual processing perspective,
learning can be thought of as a transition from controlled to
automatic processing (Schneider and Chein, 2003). Controlled
processing is slow, effortful and attentionally demanding and
is comparable to a high mental effort. Automatic processing,
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in contrast, is fast and occurs in the absence of control and
attention and is comparable to low mental effort. Evidence for
the transition from slow controlled processes to faster automatic
processes comes from behavioral findings demonstrating that the
beginning of the learning process is characterized by slow and
often inaccurate responses (Schneider and Shiffrin, 1977) and
that when learning advances the time needed for task execution
decreases (Ritter and Schooler, 2001).

Similarly, from the perspective of cognitive load theory
learning can be seen as the process of schema acquisition and
schema automation (Schnotz and Kurschner, 2007), whereby
items that were first processed separately become integrated
within one schema and regarded as a single item. In this way,
fewer items need to be held in working memory, reducing
mental effort. Processing of the acquired schema can in
turn become automatic during further learning. This schema
automation reduces working memory demands or demands on
cognition even more.

Mental effort additionally increases with increased task
difficulty (Backs and Seljos, 1994; Hockey, 1997; Brouwer et al.,
2014) and task difficulty is thought to modulate learning-related
changes in neurophysiology (Wang et al., 2010). In general,
execution of a task becomes less difficult during learning,
eliciting changes in mental effort and therefore neurophysiology
(Fairclough et al., 2005). Moreover, according to motivational
intensity theory mental effort is proportional to the level of
task demand provided that success is possible and successful
performance is worthwhile (Brehm and Self, 1989). This has
been demonstrated on several neurophysiological measurements
as well (Richter et al., 2008, 2016; Fairclough and Ewing, 2017),
implying that success needs to be possible in order for learning to
occur and for mental effort and neurophysiology to change in a
predictable way during learning.

The topic of learning consists of various aspects of
development in cognition. It is important to take into
account that different aspects of learning progress differently
and mostly do not affect cognitive development in a linear
fashion (Schneider and Chein, 2003; Luft and Buitrago, 2005;
Murre, 2014; Stoianov et al., 2016). Even though cognitive
development does not necessarily progress in a linear fashion,
it is clear that important cognitive changes take place during
learning, transitioning from more controlled and demanding
processing to less demanding automation, which can be
detected by neurophysiological measures. Experimental evidence
comes from studies demonstrating changes in neurophysiology
suggesting a decrease in mental effort over time during learning
(for an overview of 113 experiments from 2006 to 2016 and a first
model based on the findings from these experiments see Tinga
et al., 2019a). Generally, in such experimental studies, a learning
task is presented in which improvements over time (e.g., trials or
blocks) on behavioral outcomes occur and the effect over time on
simultaneously recorded neurophysiological measures is assessed
and related to the behavioral learning process. For example,
in a recent study including two experiments (Tinga et al.,
2020) participants were presented with a visuomotor sequence
learning task while behavioral measures and measures of EEG,
skin conductance, heart rate (variability) and respiration were

collected. Results indicated that, in both of the two experiments,
skin conductance level and EEG oscillations (in the alpha and
gamma band) changed during general task learning indicating
less mental effort over time and were related to behavioral
performance. These findings suggest neurophysiology is able to
provide robust insights in learning. Moreover, several studies
have compared learning and non-learning task conditions and
report a clear difference on neurophysiology (Krigolson et al.,
2009; Alain et al., 2010; Takeuchi et al., 2011; Moisello et al.,
2013; Tan et al., 2014), supporting that there is potential in
these measurements as they are able to dissociate learning from
non-learning.

Different measures of neurophysiology all provide insight
into activity in a part of the nervous system, yet there are
important differences in specific challenges associated with each
measurement technique. For example, measurements of heart
rate variability are sensitive to whether the trainee is sitting,
standing or lying down (Acharya et al., 2005). As another
example, measures of pupil size are affected by the luminance
of the surroundings (Höfle et al., 2008). Even though important
differences between the different neurophysiological measures
exist, we will consider all measures together in this review. These
different measures of neurophysiology are rarely considered
together, while it has been pointed out that it is important to
discover what specific aspects of the learning process are reflected
in specific neurophysiological changes (Tinga et al., 2019a).
Moreover, different measures of neurophysiology can potentially
be combined to provide better insight into learning than a single
measure (cf. Wilson and Russell, 2003, 2007). However, where
needed, important differences between different measures of
neurophysiology will be discussed.

Even though neurophysiological measures have potential to
provide insight into learning, the question remains how research
on this topic should move forward to ensure valid applications.
The nature of this current overview does not allow to go into the
details of methodological issues inherent to the studies reviewed,
but will instead assume the importance of these peer-reviewed
articles and focus on how to best move the field forward.

A SWOT ANALYSIS FOR THE FIELD OF
NON-INVASIVE NEUROPHYSIOLOGY IN
LEARNING AND TRAINING

To gain a better understanding of how the field of non-invasive
neurophysiology can best move forward, it is important to
comprehensively assess the current state of the field. To this
aim, we will identify strengths, weaknesses, opportunities, and
threats (SWOT) for the field of non-invasive neurophysiology
in learning and training. Although the SWOT framework is
most commonly employed in business for analyzing factors that
influence a company’s position in the marketplace with a focus
on the future, it can also be useful for other domains such as in a
scientific field (Rizzo and Kim, 2005). Before we discuss each of
the strengths, weaknesses, opportunities and threats, we present
a summary of the analysis as a guideline (Table 1).
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Strengths in Applying Neurophysiological
Measures in Learning and Training
Formative and Objective Assessment Supporting
Predicting the Outcome of Learning
Learning can be assessed in a summative or formative way.
Summative assessment focuses primarily on assessing the
outcome of learning while formative assessment aims to gain
insight into learning processes (Stobart, 2008). While summative
assessment informs on whether learning is sufficient, formative
assessment additionally allows for supporting learning based
on the examination of the learning process itself. Learning is

TABLE 1 | Summary of the SWOT analysis for the field of non-invasive
neurophysiology in learning and training, with each of the items discussed in the
text.

Strengths Weaknesses

• Formative assessment providing
insight into the process of learning

• Supports predicting the outcome of
learning

• Objective assessment
• Supporting learning through

instruction or feedback
• Tailoring learning task to the

individual in real-time
• Multi-channel data collected at a

high sample rate
• Deeper insights into learning

through rich data
• Flexible and precise application and

measurement

• Neurophysiology reflects a wide
variety of functions supported by the
nervous system

• Neurophysiological changes during
learning are sensitive to individual
differences and task-related aspects

• Signal noise
• Limited freedom of movement of

trainee (wired/uncomfortable
equipment)

• Technical challenges (synchronization
and analysis of large amounts of data
from multiple data streams)

• Personnel training, device
maintenance, preparations, and
procedures needed for high quality
data

• Hardware and software expenses

Opportunities Threats

• The potential of neurophysiology in
learning has been pointed out by
multiple scholars

• The research field is highly
interdisciplinary, bringing knowledge
together from experts from different
fields

• General changes in neurophysiology
do not require precisely time-locking
signals to repeated exposure of
specific events, allowing for
application in a wider range of
contexts

• Solutions for dealing (automatically)
with noise

• Real-time data analysis and
visualization

• Development of adequate wireless
sensors (e.g., wearables) that take
less set-up time and are more
comfortable to wear

• Reduction of costs
• Neurophysiological sensors

embedded in learning
systems/widely used
devices/promising new technologies

• Mostly applied in controlled lab
environments using carefully
structured tasks with simple stimuli

• Focus has been mainly on specific
learning topics; unclear how
generalizable current findings are
across different learning tasks

• Focus has been mainly on specific
neurophysiological measures; unclear
how generalizable current findings are
across a wide range of measures

• Doubts about the validity and
applicability of neurophysiological
measures in learning have been
raised

• Ethical challenges such as data
privacy

• Trainee can feel uncomfortable being
measured through sensors

• Non-experts tend to trust conclusions
from neurophysiological data even if
they are unwarranted

commonly evaluated using summative measures of behavioral
performance by for example using a post hoc written examination
(Weinstein, 2001) focused on the outcome of learning while
neglecting the learning process itself. Having insight into the
learning process could even support predicting the outcome of
this process even before someone has finished learning (Cowley
et al., 2013; Vecchio et al., 2019).

Additionally, assessment needs to be objective, valid, and
reliable (Brenner et al., 2015). Post hoc behavioral measures
might lack objectivity and validity as they might be affected by
the process of measurement itself with participants changing
their behavior on purpose or without being conscious about it
when they are able to detect that specific behaviors are being
measured (Page et al., 1966). Non-invasive neurophysiological
measures can be an interesting substitution or addition to
behavioral outcomes of learning by being a formative assessment
tool providing insight into the learning process online in
an objective way.

Supporting Learning Through Instruction or
Feedback and Tailoring Task to the Individual
Providing feedback during learning can greatly benefit
learning (Hattie and Timperley, 2007; Sigrist et al., 2013). As
neurophysiology is a formative measure, it can be employed for
real-time support of learning. When measures indicate that the
trainee is having difficulty with learning, the trainer can provide
additional instruction and feedback. Potentially, automated
feedback as a response to incoming neurophysiological data and
additional task data could even be implemented in the learning
task itself. The continuous stream of objective data could also
be used for personalization of the learning environment to
the needs of the individual in order to ensure that learning is
neither too easy nor too difficult. For example, the learning task
could be made more challenging when the trainee is learning
sufficiently, but when learning is insufficient more challenging
material could be presented at a later point in time or the task
could be made simpler. Walter et al. (2017) studied this principle
using EEG data during arithmetic learning in students. They
adapted the difficulty of the material to the learner’s workload
and concluded that such an adaptive learning environment is
feasible. Additionally, systems are being developed in which
eye tracking data is employed in order to track learning and
support learning through feedback and adaptation in e-learning
environments (Barrios et al., 2004; Song et al., 2015).

Multi-Channel Data Collected at a High Sample Rate
Providing Rich Data
Non-invasive neurophysiology allows for measuring through
multiple channels within one modality as well as across a range
of modalities. Channels can be combined in order to reach
conclusions of enhanced reliability as it has been demonstrated
by Wilson and Russell (2003, 2007) that mental effort could be
classified using a combination of neurophysiological measures
(however, see Hogervorst et al., 2014; Tinga et al., 2020 who did
not find that combining different neurophysiological measures
improved assessment of mental effort and learning specifically).
Besides the potential of enhancing reliability, if one channel fails
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to record sufficient data there are other channels to fall back on.
Additionally, data can be collected at a high sample rate during
the learning experience. For example, the sample rate typically
ranges from 250 to 2000 Hz for EEG (Reis et al., 2014), from
25 to 2000 Hz for eye tracking (Reis et al., 2014), and from 500
to 1000 Hz for heart rate (Kwon et al., 2018). Although a higher
sample rate does not always provide extra information (Reis et al.,
2014; Kwon et al., 2018), a relatively higher sample rate allows
for a precise description of processes over time. Data provided by
frequently sampled multi-channel neurophysiological methods is
therefore much richer than a single post hoc behavioral measure
such as an exam score.

Flexible and Precise Application and Measurement
Another benefit of neurophysiological methods is that there is
flexibility in where each sensor will be placed with multiple ways
in which one modality can be measured while still recording with
high precision. When measuring brain activity through EEG or
fNIRS for example, one can decide to place sensors only at specific
locations on the scalp or on locations distributed over the scalp.
EEG sensors have an outstanding temporal resolution providing
insights in the temporal dynamics of neuronal activity below
100 ms. Additionally, EEG sensors allow for source localization
with adequate precision, especially from 64 electrodes, with
a higher number of electrodes not being necessary (Baillet
et al., 2001; Michel et al., 2004; Michel and Murray, 2012). For
applications other than source localization, it is not required to
include a large number of electrodes for measuring EEG, with
studies reporting successful mental effort assessment through a
single EEG sensor (Mak et al., 2013; Hogervorst et al., 2014).
Regarding measurements such as heart rate and EDA, different
configurations of electrode placement are possible (Francis,
2016), providing flexibility across a range of tasks. For example,
heart rate, while traditionally measured via sensors on the chest,
can alternatively be measured on the ankle/foot (Díaz and
Pallas-Areny, 2010; Jarchi and Casson, 2016). As EDA works by
measuring the change in conductance of the skin (Fowles et al.,
1981), several different placement locations are possible. Cameras
collecting eye tracking measures can be integrated into glasses
worn by the trainee or can be positioned at a distance from the
trainee (Meißner et al., 2019), as long as the cameras can reliably
detect the eyes. Alternatively, sensors can be placed on the skin
close to the eyes (EOG). Thus, there is a lot of flexibility in the
type of sensors and the location of placements of the sensors,
with measurements being able to be highly precise when they are
suited to the goal of the measurements.

Weaknesses in Applying
Neurophysiological Measures in
Learning and Training
Neurophysiology Is Reflective of a Wide Variety of
Functions Supported by the Nervous System
Besides the important strengths associated with applying non-
invasive measures of neurophysiology in learning and training,
there are also important weaknesses. One weakness is inherent
to the general-purpose nature of the nervous system. Its activity

is not reflective of one process, but rather of a wide variety
of functions related to homeostasis, digestion, attention, and
so forth (Berntson and Cacioppo, 2000; Mauss and Robinson,
2009), which is an important point to keep in mind when
interpreting measures reflective of nervous system activity.
Although learning affects neurophysiology and these effects have
been detected across several studies (Krigolson et al., 2009; Alain
et al., 2010; Takeuchi et al., 2011; Moisello et al., 2013; Tan
et al., 2014), neurophysiology is additionally sensitive to many
learning-irrelevant processes and events. For example, pupil size
is determined to a great extent by luminance of the surroundings
making it important to control for luminance when interpreting
pupil size data (Höfle et al., 2008). Effects of ambient light
have also been reported for other neurophysiological measures,
such as heart rate, with effects depending on the time of day
(Ruger et al., 2006). Additionally, effects of emotion and stress
(Mauss and Robinson, 2009) and mental fatigue (Gergelyfi
et al., 2015) on measures of neurophysiology have been reported
frequently. As learning is a process involving prolonged cognitive
activity, mental fatigue can be induced in the trainee. Learning
and mental fatigue are thought to both progress over time
and therefore disentangling the two is important in order to
determine which changes in neurophysiology are truly reflective
of learning. Gergelyfi et al. (2015) experimentally demonstrated
(as the first to do so according to the authors) that pupil
size, skin conductance, heart rate, and EEG were unaffected by
mental fatigue while blink rate and heart rate variability were
affected by mental fatigue. These findings suggest that different
neurophysiological measures are affected by mental fatigue in
different ways, although more research is needed in order to be
able to deal with effects of mental fatigue sufficiently.

Neurophysiological Changes During Learning Are
Sensitive to Individual Differences and Task-Related
Aspects
Changes in neurophysiological outcome measures during
learning are also affected by individual differences and aspects
of the learning task (Tinga et al., 2019a). For example, several
studies have demonstrated changes in brain activity as assessed
through EEG during learning to be different between young
and older adults (Alain and Snyder, 2008; Eppinger et al.,
2008; Pietschmann et al., 2008, 2011; Eppinger and Kray, 2011).
Effects of age on learning-related changes in neurophysiology
have not yet been studied for other outcome measures than
measures of brain activity. It therefore is unclear whether age also
affects measures of peripheral physiology. Neurophysiological
changes during learning are also reported to be affected by the
sensory system in which learning takes place, the number of
learning days, and whether feedback on performance is provided
(Tinga et al., 2019a). However, when controlling for individual
differences and for task-related aspects, effect sizes for measuring
learning through neurophysiological outcome measures become
as large as effect sizes for measuring learning through behavioral
outcome measures. This means that even though the sensitivity
of neurophysiology might make assessment somewhat more
complicated, neurophysiology can provide just as powerful
insights in learning as behavior. Potentially, the sensitivity of
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neurophysiological outcome measures to individual differences
and task-related aspects could even provide for valuable insights
into learning processes in addition to insights obtained through
behavioral measurements.

Signal Noise and Limitation of Freedom of Movement
of the Trainee
Non-invasive neurophysiological measures can be noisy,
especially outside of the controlled environment of the lab.
Most techniques provide the most valid outcomes under ideal
conditions. Commonly encountered noise sources are electrode
motion and muscle contraction artifacts, usually caused by
movements of the trainee (Vazquez et al., 2012; Poungponsri and
Yu, 2013). The sensitivity to motion and muscle activity can be
problematic for techniques using electrodes placed on the body,
especially when measuring signals of lower amplitudes, such as
EEG. When collecting eye-related measures using an eye tracker,
muscle and motion artifacts are non-existent as no electrodes are
placed on the body of the trainee, while other sources of noise
can arise such as movements of the eye tracking camera with
respect to the eye and changes in corneal reflection (Li et al.,
2008). To deal with artifacts, in research on neurophysiology in
learning the trainee is generally presented with a seated task and
instructed to remain seated as still as possible. This brings us to
another weakness, namely that of the limitation of freedom of
movement of the trainee, which can, besides by being induced
by the design of the task, be induced by neurophysiological
measuring equipment worn by the trainee. Most such equipment
is wired, and, depending on the type of measurement collected,
can be uncomfortable to wear (Liao et al., 2012), affecting the
trainee’s mobility.

Technical Challenges and Personnel Training
Technical challenges also arise when applying neurophysiology in
learning and training, as collection, synchronization, and analysis
of large amounts of data from multi-channel data streams
are required (Dahlstrom-Hakki et al., 2019). Technological
advancements are making these requirements increasingly easier,
yet overcoming these technical challenges as much as possible
is time-consuming as things such as time desynchronization
between multiple devices and delays between the device
and scripts occur frequently (Dahlstrom-Hakki et al., 2019).
Sufficient attention and time should be given to personnel
training and device maintenance and extra time should also
be allocated for experimental preparations and procedures
during testing to ensure that data of high quality is collected
(Kivikangas et al., 2011).

Hardware and Software Expenses
Besides the costs associated with the time-investment in
personnel training, maintenance of devices and experimental
preparations and procedures, hardware, and software for non-
invasive neurophysiological measurements can also be expensive.
For example, costs of state-of-the-art eye tracking equipment
range between US$ 20,000 and US$ 30,000 (Ferhat and Vilariño,
2016) and EEG equipment can cost more than US$ 75,000
(Krigolson et al., 2017). Costs of sensors measuring peripheral

physiology such as heart rate, respiration and EDA can also
be high (Lucena et al., 2015), with a complete research
system including hardware and software easily reaching US$
10,000 per modality.

Opportunities for Applying
Neurophysiological Measures in
Learning and Training
Potential Is Recognized and the Field Is Highly
Interdisciplinary
Applying non-invasive measures of neurophysiology opens up
many opportunities. Multiple scholars have pointed out the
potential of neurophysiology in learning and training. For
example, Lai et al. (2013) reviewed 113 studies evaluating the
effect of learning in general on eye-related outcome measures
and indicated that they are promising in assessing learning
within various themes with various topics. Regarding research
on brain activity in learning, a review of about 90 studies on
EEG changes during motor learning (Krigolson et al., 2015)
concluded specific event-related brain potentials (ERPs) are able
to provide important insights into learning. Additionally, Leff
et al. (2011) assessed over 80 studies on brain activity measured
via fNIRS during motor tasks and pointed out that this modality
is promising for studying motor learning. Tinga et al. (2019a)
reviewed 113 experiments examining a wide range of non-
invasive neurophysiological measures during learning (including
measures of brain activity, eye-related outcome measures,
measures of heart rate, skin conductance and respiration) and
demonstrated that effect sizes were large for neurophysiological
changes during learning, although they were smaller than for
behavioral changes. Yet, the difference in effect sizes between
neurophysiology and behavior disappeared when controlling
for task-related aspects and individual differences. Again, the
authors concluded that neurophysiology is promising for the
assessment of learning. Although most work on neurophysiology
in learning is conducted in the controlled environment of the
lab, research has also demonstrated neurophysiological measures
can be successfully applied for examining learning in real-life
scenarios such as in a classroom (Ko et al., 2017; Poulsen et al.,
2017; Bevilacqua et al., 2019; Dahlstrom-Hakki et al., 2019).

The research field of neurophysiology in learning and training
is also highly interdisciplinary, which allows for combining
knowledge from experts in fields such as sensor technology,
signal processing, artificial intelligence, neurophysiology, and
engineering. Of course, it is a challenge to oversee and bring
together the research in all these areas of expertise (Brouwer
et al., 2015), but when one brings together people from
these different areas we believe that this will greatly benefit
formulating solutions.

Employing General Changes in Neurophysiology
The feasibility of applying measures of neurophysiology outside
the lab increases, when examining changes in neurophysiology
reflective of general changes in mental effort, instead of
examining specific responses to specific stimuli as is the case for
example with ERPs from EEG. Specific responses can only be
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computed when a task itself presents many similar stimuli that
can elicit an ERP that can be reliably time-locked to those stimuli,
or when a task-irrelevant probe can be repeatedly presented
during learning (Gevins and Smith, 2003). Therefore, measures
of more general changes in neurophysiology over time that do
not need to be precisely time-locked after repeated exposure
of a specific event, such as changes in frequency bands in
EEG, pupil size or heart rate, are presently better suited for
application in real-world learning and training contexts, opening
up many possibilities.

Solutions for Dealing With Noise and Real-Time Data
Analysis and Visualization
As discussed above, neurophysiological techniques generally
provide the most valid outcomes under ideal conditions.
Yet, solutions for dealing (automatically) with noise are
available and are being enhanced (Vorobyov and Cichocki,
2002; Vazquez et al., 2012; Poungponsri and Yu, 2013),
increasing validity and applicability. The rapid developments in
machine learning contribute to the processing (e.g., enhancing
signal to noise ratio) and analysis (e.g., exploiting multiple
modalities) of neurophysiological measures (Müller et al., 2008;
Lemm et al., 2011).

Moreover, there are several ways in which neurophysiological
data can be analyzed, with some applied studies having proposed
a simple form of analysis. For example, in analyzing eye tracking
data one can look at the percentage of visual attention allocation
across regions of interest in the visual field, which is easier
to perform even with eye-trackers with a lower sample rate
and facilitates interpretation (Dahlstrom-Hakki et al., 2019).
Yet, simplifying analyses can come at the cost of having less
deep insight into collected data than more advanced analysis
techniques. Advanced analyses are however becoming more
accessible through the increased availability of powerful software
tools. Examples of relatively frequently used open source software
tools for aiding in analyzing brain activity signals are FieldTrip
(Oostenveld et al., 2011), Brainstorm (Tadel et al., 2011), and
MNE (Gramfort et al., 2013).

Neurophysiological signals can also be analyzed and visualized
in real-time. For example, it is possible to analyze EEG data
online taking into account individual variations (Guger et al.,
2000) and to visualize the data using open-source software
(Mullen et al., 2013). Another example is real-time analysis and
monitoring of neurophysiology via a cloud system which has
shown to be accurate and effective for ECG (Xia et al., 2013).
These advancements aid the ease and speed at which data can be
assessed and support providing the trainee with effective feedback
and tailoring the learning experience to the individual.

Development of Wireless Sensors and Reduction of
Costs
Advancements to enhance the trainee’s comfort and ease of
movement are also being made with wireless and more compact
sensors already being made available. For example, wearable
wristbands such as the Empatica E4 and the Everion (Biovotion)
are able to measure multiple peripheral neurophysiological
outcomes and systems such as B-ALERT (Advanced Brain

Monitoring) and g.Nautilus (g.tec) provide wireless EEG
measures. These newer devices require considerably less set-up
time and are less sensitive to motion artifacts. Sensors are even
becoming fully portable with the possibility for data collection
to occur via a smartphone or tablet, even for measures of brain
activity (Stopczynski et al., 2014; Poulsen et al., 2017). All these
devices promise to provide medical grade data and several studies
have provided evidence of their successful application (Amaral
et al., 2017; Corino et al., 2017; Barrios et al., 2018; Beeler et al.,
2018; Tinga et al., 2019b).

In general, wearables and more applied systems are
substantially cheaper, easily being 5–20 times less costly to
purchase. Together with the reduction of set-up time and
advanced solutions for dealing with noise and enhancing
data analysis, the total costs involved for being able to apply
neurophysiology in learning and training are greatly reduced.

However, the performance of these systems is in many
instances still not on par with more traditional lab-based systems
due to limitations such as a lower number of channels, less precise
application and lower sample rate (Hairston et al., 2014; Melnik
et al., 2017). Yet, we expect technological advancements in the
upcoming years to substantially reduce the difference in data
quality between lab-based systems and wearables, making these
wearables increasingly interesting to apply.

Embedding Sensors in Learning Systems and Widely
Used Devices
Another interesting direction for future developments is to
embed equipment measuring neurophysiology in learning
systems. Such systems could then potentially be applied to
diagnose learning states and provide instantaneous help or
adapt the material based on the recorded neurophysiological
data (Lai et al., 2013). One category of systems that has high
potential in education and training is virtual reality (de Back
et al., submitted) and existing virtual reality headsets and to-be
developed headsets with integrated eye tracking and brain activity
sensors can contribute to this potential (Jantz et al., 2017). As
an example, Sood and Singh (2018) proposed a framework on
combining virtual reality and EEG in an educational game for
robust and resilient learning with an enhanced quality of the
learning experience.

Additionally, integrating sensors in smartphones, laptops,
and tablets might also be an interesting endeavor, with for
example advancements being made in using cameras of such
devices for collecting eye-related measures (Lin et al., 2013;
Lim et al., 2015; Krafka et al., 2016; Meißner et al., 2019) and
measures of heart rate and heart rate variability (Heathers, 2013;
Lucena et al., 2015).

Threats for Applying Neurophysiological
Measures in Learning and Training
Measures Are Mostly Applied in Lab Settings Using
Controlled Tasks
Although applying neurophysiology in learning and training
brings along interesting possibilities, there are important threats
involved that also need to be considered. To start with, studies
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examining neurophysiology in learning are mostly fundamental,
being conducted in the controlled environment of the lab using
carefully selected tasks with simple stimuli (Dahlstrom-Hakki
et al., 2019; Tinga et al., 2019a). This fundamental work is
obviously important to understand in what way and under what
circumstances neurophysiology provides insight into learning.
Yet, if we want to be able to assess and enhance learning in the
real-world, outside of the lab, we would benefit from combining
this fundamental knowledge with more applied knowledge.

Focus on Specific Learning Topics and Specific
Neurophysiological Measures
The majority of studies on non-invasive neurophysiology in
learning have focused on brain activity and eye-related outcome
measures, while relatively few studies examined other outcome
measures such as skin conductance, heart rate, EMG, and
respiration (Leff et al., 2011; Lai et al., 2013; Krigolson et al., 2015;
Tinga et al., 2019a), making it unclear how well current findings
generalize to these other outcome measures. Additionally, most
work has focused on perceptual learning and the acquisition
of new information or conceptual knowledge (Lai et al., 2013;
Tinga et al., 2019a). Some learning topics should be explored
in more detail in order to ensure generalizability across a wide
range of tasks (Krigolson et al., 2015). Therefore, more research is
needed examining a wider range of neurophysiological measures
on a range of tasks.

Validity and Applicability of Neurophysiology in
Learning and Training
Although many scholars have deemed neurophysiology as having
high potential in assessing learning and training, some important
concerns about validity and applicability have been raised by
another group of scholars. Brouwer et al. (2014) pointed out
changes in neurophysiology over time during learning might not
be specifically related to the learning process itself, but rather
reflect unspecific changes. Brouwer et al. (2014) demonstrated
that multiple neurophysiological measures (i.e., EEG, ECG, EDA,
respiration, and eye-related measures) were sensitive to difficulty
level but that there was no interaction between difficulty level and
time on task during learning. Similarly, Cowley (2015) argued
neurophysiology is able to measure simple cognitive states, but
is limited in measuring higher-order cognition. Ansari et al.
(2011) even argue that it is shortsighted and unrealistic to
expect that results from research in cognitive neuroscience will
have a direct and immediate impact in education. Dahlstrom-
Hakki et al. (2019) also indicated that we are still far from
being able to use neurophysiology to directly measure learning
or knowledge, with these tools at best allowing us to make
inferences about a complex process such as learning by studying
it during carefully structured tasks. Concerns like these raise
the question how valid and applicable these measures are in
assessing learning, especially outside the environment of the lab.
Indeed, most of the literature measuring neurophysiology during
task performance focuses on measuring and predicting simple
cognitive states such as arousal or attention, without examining
learning (Charles and Nixon, 2019).

Ethical Challenges and Feeling Uncomfortable Being
Measured Through Sensors
The collection of a large quantity of psychological data
originating from the body of a trainee obviously brings along
ethical challenges. Such a large dataset on bodily signals might
contain sensitive information in addition to effects of learning.
For example, neurological, respiratory, and cardiac disorders
are known to influence neurophysiological measures (Willems
et al., 1991; Daly and Wolpaw, 2008). Even someone’s physical
and psychological health affects neurophysiology (Lovallo, 2011;
Iorfino et al., 2016). One needs to ensure that this data will not be
used for unethical purposes.

Additionally, trainees might feel uncomfortable being
measured through sensors, with the sensors potentially inducing
fear. For instance, Neven (2015) discussed the effects of a home
monitoring system for the elderly consisting of cameras and
sensors. Neven (2015) described that one woman developed
“sensor phobia”, an intense fear of sensors. Albeit an extreme
example, the fear of sensors alongside the ethical issues pose a
threat to applying neurophysiological measures, including those
for learning and training.

Non-experts Perception of Warrantability of
Neurophysiology
A final threat is one related to the perception of the
layman audience. Non-experts tend to regard neurophysiology
to convey an objective truth, even if conclusions based on
neurophysiology are unfounded. For example, Weisberg et al.
(2008) found that a group of non-experts judged explanations
of phenomena containing brain-based information as more
satisfying than explanations without this information, even
when that information was logically irrelevant. Especially
bad explanations were rated more satisfying when irrelevant
neurophysiological information was added. When it comes to
neurophysiology in learning and training specifically, educational
concepts based on neurophysiology can be popular even
when claims are not backed by scientific evidence (Howard-
Jones, 2009). These results indicate that one needs to be
careful that non-experts are not misled by explanations using
neurophysiological information. Researchers and practitioners
should therefore ensure they are clear about what can presently
be concluded from their results and what might become possible
in the future (Brouwer et al., 2015).

CONCLUSION

Considering the various aspects of the SWOT analysis, it is
apparent that the field of neurophysiology in learning and
training is developing rapidly with many opportunities existing
and emerging. In these developments, weaknesses should be
taken into account, such as the fact that neurophysiology
responds to a wide variety of functions supported by the nervous
system, and technical challenges related to synchronization and
analysis of large amount of data. We should also be aware of the
threats that are involved, which includes the fact that research has
mainly been conducted in controlled lab environments focusing
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on specific learning topics and specific neurophysiological
measures, as well as ethical challenges and trainees possibly
feeling uncomfortable being measured through sensors. Yet,
neurophysiology in learning and training has powerful and
valuable strengths, such as allowing for formative and objective
assessment, tailoring the task to the individual, and gaining
deeper insights through multi-channel data. Additionally, there
are several opportunities for the field of neurophysiology in
learning and training.

To start with, as the associated costs to record
neurophysiological measures continue to go down and
equipment becomes less intrusive for the trainee and can
be set-up more quickly and easily, applying non-invasive
neurophysiology in learning and training will become
increasingly feasible. We expect technological advancements
in the upcoming years to substantially reduce the difference
in data quality between lab-based systems and wearables. The
advancements will allow for focusing on examining effects in
more detail outside of the lab to make sure that current results
established in the lab replicate in more applied and less controlled
environments. Moreover, it will become more feasible to assess
a wider range of measures to add to the literature which is
currently mostly focused on measures of brain activity and
eye-related outcomes.

The important challenge to distinguish learning-specific
effects from other effects will become easier to deal with when
research has identified under which conditions effects will hold
for which neurophysiological measures, in combination with
advancements in data quality and dealing with noise. Especially
when taking advantage of the highly interdisciplinary nature of
the research field, experts can work together in advancing toward
solutions to dealing with challenges like these.

As in any other field, ethical issues such as proper
data handling should be considered carefully. These issues
will especially be apparent as application of non-invasive
neurophysiology in learning increasingly takes place outside the
lab. One possible direction could be to take advantage of real-
time data analysis and visualization of more general changes in
neurophysiology, which does not necessarily involve saving a

full dataset with specific, and possibly sensitive, responses. This
online assessment of neurophysiological effects could already
provide trainers, and even trainees, with important information
on the learning process and can be used to tailor the learning
task in real-time.

Also, one should ensure findings in the field are
communicated clearly and acknowledge limitations in order to
warrant that findings are not misinterpreted. Here one could
also take advantage of the highly interdisciplinary nature of the
research field, which allows for addressing a wide range of aspects
to guarantee a comprehensive view of new findings.

Developments in including neurophysiological sensors
in learning systems and new technologies such as virtual
reality systems will open up many interesting possibilities
for application. For example, promising immersive learning
experiences can be more effectively adapted to the individual
when making use of online (automatic) formative assessment
through neurophysiology.

Opportunities of neurophysiology in learning and training can
be seized most effectively by having insight into the weaknesses
and threats of their application as well as their unique strengths.
In this way, the field of non-invasive neurophysiology in learning
and training can move forward in promising directions getting
closer toward valid application of neurophysiology in a wide
range of learning and training settings.
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