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A novel analytical framework combined fuzzy learning and complex network approaches

is proposed for the identification of Alzheimer’s disease (AD) with multichannel

scalp-recorded electroencephalograph (EEG) signals. Weighted visibility graph (WVG)

algorithm is first applied to transform each channel EEG into network and its topological

parameters were further extracted. Statistical analysis indicates that AD and normal

subjects show significant difference in the structure of WVG network and thus can

be used to identify Alzheimer’s disease. Taking network parameters as input features,

a Takagi-Sugeno-Kang (TSK) fuzzy model is established to identify AD’s EEG signal.

Three feature sets—single parameter from multi-networks, multi-parameters from single

network, and multi-parameters from multi-networks—are considered as input vectors.

The number and order of input features in each set is optimized with various feature

selection methods. Classification results demonstrate the ability of network-based TSK

fuzzy classifiers and the feasibility of three input feature sets. The highest accuracy that

can be achieved is 95.28% for single parameter from four networks, 93.41% for three

parameters from single network. In particular, multi-parameters from the multi-networks

set obtained the best result. The highest accuracy, 97.12%, is achieved with five features

selected from four networks. The combination of network and fuzzy learning can highly

improve the efficiency of AD’s EEG identification.

Keywords: Alzheimer’s disease, EEG, TSK fuzzy model, weighted visibility graph, feature select, multiple network

INTRODUCTION

Currently, Alzheimer’s disease (AD) is becoming a common and serious disease due to organic
neurodegenerative and progressive lesions in the brain. The patients always show some typical
clinical presentations, particularly in the aspect of cognitive dysfunction such as deficient
episodic memory and disabled remembering (Smailovic et al., 2018). The clinical diagnosis
of AD currently adopts scale assessment, such as Mini-mental State Examination (MMSE),
Montreal Cognitive Assessment (MoCA), activities of daily living (ADL), and physiological
detection of cerebrospinal fluid. Patients with severe AD can be observed to have changes
in brain structure, such as encephalatrophy, through brain functional imaging. Yang et al.
applied magnetic resonance imaging (MRI) to detect the cerebral changes of blood flow
and oxygenation in AD and mild cognitive impairment (MCI) subjects, and showed its
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powerful ability to distinguish from normal controls (Yang et al.,
2010). Hiroshi’s study has demonstrated progression of atrophy
mapping upstream to Braak’s stages of neurofibrillary tangle
deposition in AD. The main cause of organic brain lesions in
AD is considered to be the loss of neurons and synapses (Brenner
et al., 1988). It has been suggested that the loss of both synapses
and neural pathways leads to a decrease in brain functional
connectivity and influences electrical signals of the brain, so it
is feasible to diagnose neurotic disease by electroencephalogram
(EEG). EEG, which can measure the brain’s voltage fluctuations
with high temporal resolution, contains plenty of physiological
information, and there is growing evidence that EEG may
contribute to early recognition of AD patients.

The conventional EEG visual inspection is one of methods
widely used in neurological assessment. Numerous previous
studies have reported the disappearance of alpha EEG activities,
particularly in posterior brain regions, through unaided viewing
(Matsuda, 2013; Wang et al., 2015; Horvath et al., 2018). It has
also been reported that visual EEG scores of ADs show a strong
correlation with dementia severity (Kowalski et al., 2001). In
the study of de Waal et al. (de Waal et al., 2011), AD patients
with early onset are more likely to show severe diffuse slowing
characteristic than those with later onset, which is consistent
with the clinical manifestations of AD. In addition, studies
have quantified the complexity of electrophysiological activities
and reported declined complexity of EEG in AD patients (Cao
et al., 2016). The change on the AD brain is also reflected in
the perturbations of EEG synchronization. As EEG signals are
irregular and non-stationary complex signals, traditional visual
inspection is not sufficient for AD EEG identification (Buzsaki
and Draguhn, 2004; de Waal et al., 2011; Cao et al., 2016). To
address this issue, complex network theory is introduced into
AD diagnosis, which aims to describe human brain from a global
perspective (Palop et al., 2006; Nimmrich et al., 2015; Cao et al.,
2016; Gao et al., 2019).

Over the past few years, more and more researchers have
begun to adopt the attractive idea of using complex network
methods to characterize the dynamic features of complex
systems (Zou et al., 2019). This novel approach is the thorough
combination of two frontier research fields, analysis methods of
non-linear time series (Hively et al., 2000; Costa et al., 2002, 2005)
and complex networks theory (Brown et al., 2004; Boccaletti
et al., 2006). Zhang et al. have constructed complex networks
with strength of temporal correlation between time series and
reported that the behavior information (chaotic or fractal) of time
series directly correlate with the topological structures (Zhang
and Small, 2006). As an effective tool to get insight into the brain
function, the brain network analysis has been widely applied in
AD research. The healthy brain was found to work with network
properties such as small-worldness, hubness, and rich-clubs,
while the AD brain operated with less optimal network topologies
(Meunier et al., 2010; Blinowska and Kaminski, 2013;Martijn and
van den Heuvel, 2013; Wang et al., 2014, 2016; Deng et al., 2015).
Loss of small-world features (toward random network topology)
can be observed in functional network constructed from EEG
and functional magnetic resonance imaging data (Stam et al.,
2007; He and Evans, 2010; Tahaei et al., 2012; Reid and Evans,
2013). Numerous EEG studies have consistently demonstrated

decreased functional connections in the higher frequency bands
of AD patients compared to controls (Tijms et al., 2013; van
Straaten et al., 2014).

Compared to other approaches of constructing complex
networks through time sequence, visibility graph (VG)
algorithms can better integrate the basic features of time
series. Lacasa et al. and Liu et al. converted time series into
graphs and extracted the topological features using graph theory
methods (Lacasa et al., 2008; Liu et al., 2010). They pointed
out that the irregularity of time sequence can be characterized
by the network topology. For instance, the periodic sequence
can be transformed into regular lattice, while the chaotic series
corresponds to random graphs. Subsequent researches began
to introduce VG method into the EEG study of neurological
diseases, and found features extracted from VG networks can be
effectively used as mathematical markers in neurodegenerative
diagnosis. VG algorithm was first applied in related research in
AD by Ahmadlou et al. They reported that complexity of EEGs
computed by VGs can be used in the distinguishing between AD
and control EEGs (Ahmadlou et al., 2010).

The VG can only express the existence of edges between
different time nodes, but not the strength of the edges. Therefore,
Supriya et al. have proposed to combine the weighted edge
with the horizontal visibility graph, which are not applicable to
all complex network graphs (Supriya et al., 2016). Addressing
the limitations of above approaches, Zhu et al. have improved
the weighted visibility graph (WVG) algorithm by specifying
radian function as the criterion for calculating edge weights in
all kinds of complex network, and obtained promising results
in the detection of epilepsy (Zhu et al., 2014). Also, studies
have shown that the visualization method can preserve the
characteristics like reduction of complexity (Polikar et al., 2007;
Czigler et al., 2008) and slowing of rhythm (Dauwels et al., 2011;
Cao et al., 2015; McBride et al., 2015) in patients with AD. WVG
networks retain more structural information of the time series,
which is more conducive for AD identification, compared to
connectivity networks. Therefore, we apply the WVG method
on the feature extraction of Alzheimer’s disease. A variety of
different parameters are extracted from the visibility graph, and
used to further investigate which parameter can be used for
diagnosing AD.

After quantitative analysis of complex WVG networks, the
valuable information about the time series has been extracted.
Themachine learning generally approaches the extracted features
for training the model and then applies them in signal detection.
Traditional machine learning methods, including decision tree,
random forests, k-nearest neighbor (KNN), Naive Bayes (NB),
logistic regression, and so on (Siegelmann and Holzman,
2010; Hramov et al., 2019), have been widely used in the
detection of neurological diseases. However, for systems with
highly non-linear characteristics, models that built based on
these methods do not characterize real models and be utilized
in classification well. With this consideration, a rule-based
fuzzy model is proposed and has been widely used in many
fields like computer vision, natural language processing, and
enhanced learning, achieving remarkable results (Gu et al.,
2017). Takagi-Sugeno-Kang (TSK) method is proposed to build
a model established by using fuzzy mathematics language
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to describe some characteristics and internal relations of
fuzzy phenomena. Compared with traditional classifiers that
lack transparency, TSK can be used in multiple features
classification and shows a superior model interpretability, which
is defined as the ability to better understand the decision
strategies of response functions in a human-interpretable
manner in order to interpret internal relationships (Deng
et al., 2018). In current applications of machine learning, such
interpretability has received wide attention and is considered to
be crucial.

In this paper, multiple networks are constructed based
on multi-channel EEG, with each EEG channel able to be
transformed into one-layer network. Then a number of
different network features are extracted from them, which is
too much for input feature vectors. In order to explore this
problem, some feature selection approaches will be utilized
to choose features, and the influence of different screening
methods on the final classification results will also be tried.
The parameters will be divided into three groups—single
parameter from multi-network, multi-parameter from single
network, and multi-parameter from multi-network—to
observe the difference between the classification results of
fuzzy models trained with different types of features. The
structure of rest paper is as follows: section Methods and
materials is devoted to describing the experimental design,
including data collection and subject condition. Meanwhile,
the principle of mathematical graph methods and Takagi-
Sugeno-Kang (TSK) model adopted in paper are also explained
in this part. In section Experimental Results, we performed
a statistical analysis of the results and implemented AD
recognition based on the proposed framework. Section
Conclusion and Discussion includes a discussion of the
application and advantages of the proposed model, as well as
future work.

MATERIALS AND METHODS

Subjects and EEG Recordings
EEG recordings are collected from AD subjects and control
subjects, respectively. The AD group included 30 confirmed AD
patients who are diagnosed with mini-mental state examination
(MMSE) scores are between 12 and 15. The diagnosis results meet
the National Institute on Aging-Alzheimer’s Association criteria.
All of them have not used antipsychotic drugs, antidepressants,
dopamine blockers, or excessive amounts of alcohol, and don’t
have other neurological or psychiatric disorders or any other
serious illness. The AD group includes 18 females and 12 males,
whose ages range from 74 to 78. The control group consisted
of 30 healthy subjects of matched ages, ranging from 70 to 76
years old, and includes 10 females and 20 males. The MMSE
scores of them are between 28 and 30. In order to avoid the
impact on EEG activity, all subjects will be prohibited from
using neuroactive drugs before the experiment. The data adopted
in this paper is from our previous study (Wang et al., 2016),
which is approved by the Ethics Committee of TangshanGongren
Hospital and was conducted in accordance with the Declaration

of Helsinki. In addition, all the subjects in this experiment gave
informed consent.

A 16-channel EEG monitoring system (Solar2000B) is
adopted. The EEG channels have 10 M� input impedance with
bandwidth as 0.08–300Hz. In order to obtain low-frequency
signals that meet the analysis requirements, the low-pass filtering
range is set to 0.08–50Hz. Studies have demonstrated that the
EEG amplitude across different bands tends to stabilize when the
scalp-electrode impedance is <10 k�, so electrode impedance
in our experiments is set to 3 k�. The international 10–20
system, which consists of 16 electrodes, is adopted as electrode
distribution in the scalp (surface) EEG recordings, and the linked
earlobe A1 and A2 are used as reference. EEGs are recorded by
Symtop amplifier (model: UEA–B; frequency: 1,024Hz; electrode
impedance: 3 k).

During the experiment, the subjects stayed in a semi-
dark quiet room and were told to keep awake with eyes
closed. The EEG recording process was kept to at least
30min for each subject. In order to eliminate the impact
of nervousness, anxiety, and head movement, a 10-min EEG
is selected from each recorded EEG epoch. Sharp transient
artifacts caused by eye movement and muscle artifacts, as
well as segments with voltage exceeding 150uV, are also
removed. Next, fifteen epochs without artifacts with an 8-s
long duration for each (15 ∗ 8 s = 120 s) were chosen for
each subject’s EEG, which are suitable for weighted visibility
graph construction.

WVG Methods
The EEG signal is the electrical signal of the brain neurons
measured on the surface of the cerebral cortex or scalp. It has
obvious non-stationary, non-linear, and dynamic characteristics.
The VG method provides a way to research the underlying
dynamics of EEG data (Lacasa et al., 2008; Deng et al.,
2018). Since the VG can inherit the dynamic nature of
creating time series data, this technique has the characteristics
of describing time series from the perspective of graph
theory. The VG algorithm was originally applied in the
field of robot motion planning, architectural design, and
topographic descriptions of geographical space (Lozano-Pérez
and Wesley, 1979; Turner et al., 2001; Lacasa et al., 2009;
Jiang et al., 2017; Zou et al., 2019). This algorithm combined
the mutual visible relationship of the point and obstacles
in the two-dimensional landscape with the computational
geometry framework. The literature study reveals that WVG
can also be used in EEG data analysis to convert non-
stationary, one-dimensional time series into two-dimensional
viewable views for analysis. Different channels of EEG signals
can reflect the electrophysiological information from different
regions of the brain, so each single channel can obtain
single complex network and multi-layer networks can be
obtained through multi-channel EEG. The schematic diagram
of constructing brain network by WVG method is shown in
Figure 1.

In the construction of a WVG from a univariate EEG data
{xi}

N
i= 1 with xi = x (ti), individual observations are considered as

vertices. Thus, the weighted adjacency matrixW can be obtained
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FIGURE 1 | The framework of our method for classifying the AD patients in EEG signals. First multichannel EEG signals of two types of subjects are acquired and a

preliminary analysis was performed. Second, we construct the WVG network based on each EEG channel. Third, the features are extracted and further ranked based

on feature select method. Finally, we combine the network theory with a fuzzy rule-based system to identify AD pattern with the selected network topological

properties.

with size of N × N. Nodes of WVG network are defined by time
points {ti} , i = 1, 2, ......N and each edge in this network is defined
by the connection between two time points (Zou et al., 2019).
Two nodes are defined as connected if the criterion

x (ti) − x (tk)

tk − ti
>

x (ti) − x
(

tj
)

tk − ti
(1)

is fulfilled for all time points tk with ti < tk < tj. Then
the absolute value of edge weight between two nodes are
determined as

wi,j = arctan
x (ti) − x

(

tj
)

ti − tj
, i < j (2)

Feature Extraction and Select
The topology of the network is quantified based on the
multiple complex networks obtained with WVG method.
In order to statistically analyze the characteristics of AD
networks and control networks, we calculate the clustering
coefficient, average weighted degree, graph index complexity,
network entropy, degree distribution index, modularity,
local efficiency, and average path length as eight different
topological characteristics.

Clustering Coefficient
The clustering coefficient is a measure to quantify how tightly
connected the neighbor is around a node (Rubinov and Sporns,
2010). For a network G with N nodes, the connectivity between
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nodes i and j is ai,j (ai,j=1 if the connection exists or ai,j=0 if not),
the weight of connection are wi,j (wi,j ∈ [0, 1]). For a weighted
network, the local clustering coefficient of node i is defined as:

C (i) =
1

si (Ki − 1)

∑

j, h∈G

(

wi,j + wi,h

)

2
ai,j ai,h aj,h (3)

where si, the strength of the node i, is defined as:

si=
∑

j∈Gi

wi,j (4)

AndGi represents the nodes set of node i neighborhoods. Further
define the clustering coefficient of the whole network as:

C =
1

N

∑

i∈Gi

C (i) (5)

Average Weighted Degree
Average Weighted Degree is an important parameter for
distinguishing networks with different topologies. The average
weighted degree of the network can be obtained through
averaging weights of the incident links on all the nodes in the
network (Supriya et al., 2016):

wd=
1

N

∑

i∈Gi

si (6)

where si is described above in function (4).

Graph Index Complexity
Kim et al. have introduced graph index complexity as a new
feature into the diagnosis of patients with AD by quantifying
the complexity of the image graph (Kim and Wilhelm, 2008;
Wang et al., 2016). With the largest eigenvalue of the adjacency
matrix of a graph with n nodes presented as λmax (Blinowska
and Kaminski, 2013). The graph index complexity is defined
as follows:

cλmax = 4c (1− c) (7)

where

c =
λmax − 2 cos (π/ (n+ 1))

n− 1− 2 cos (π/ (n+ 1))
(8)

Degree Distribution Index
The degree distribution Pdeg

(

k
)

is often used to classify complex
networks, which can be formed by counting how many nodes
have each degree. In this paper, a probability distribution object
is obtained by fitting the Poisson distribution to the degree
distribution vector. The degree distribution Pdeg

(

k
)

is defined as

Pdeg
(

k
)

=
λk

k!
e−λ (9)

The degree distribution index is defined as the λ values of the
fitting distribution (Stephen and Toubia, 2009).

Network Entropy
The network entropy can be computed straightforwardly based
on the degree distribution as

S = −
∑

k
Pdeg

(

k
)

log Pdeg
(

k
)

(10)

Modularity
Modularity is a quality feature that can measure the quality of
the clusters (communities), which are obtained by dividing the
network partition (Supriya et al., 2016). The modularity Q of this
weighted network is defined as:

Q =
1

2m

∑

i,j

(

ai,j −
kikj

2m

)

δ (Ci,Ci) (11)

where m = 1
2

∑

i,j∈G
wi,j is the sum weights of all links in the

network, ki =
∑

j∈G
wi,j is the sum weight of the links attached to

node i, Ci represents the community which vertex i is assigned
to, the function δ

(

Ci,Cj

)

is 1 if nodes i and j belong to the
same community and 0 otherwise. In this paper, we used the
Louvain method (Blondel et al., 2008) to distribute nodes into
different communities. This method is divided into two steps. In
the first step, each node is added into the neighbor communities
to determine the one which can maximize the modularity gain
1Q. In second step, a new network is reconstructed whose node
is defined as the small community found in the first step, and
whose weights of new links are given by the sum weight of the
links between nodes in the corresponding two old communities.
Those two steps will be repeated iteratively until the maximum
of modularity is accomplished and there is no more movement
of nodes. The modularity gain 1Q is defined as (Zhaohong et al.,
2013):

1Q =

[

6in + ki,in

2m
−

(

6tot + ki

2m

)2
]

−

[

6in

2m
−

(

6tot

2m

)2

−

(

ki

2m

)2
]

(12)

where 6in represents the sum of all the links weights inside
community C, 6tot is the sum of the weights of the links attached
to nodes in C, ki is the sum of the weights of the links attached to
node i, ki,in is the sum of the weights of the links from i to nodes
in C, andm is the sum weights of all links in the network.

Local Efficiency
Local efficiency, as a node-specific measure, is defined to
measure the density of the subnetwork composed of the
neighborhood of the node i. Local efficiency of ith node is given as

Eloc (i) =
1

NGi

(

NGi − 1
)

∑

i,j∈G,i6=j

li,j (13)
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FIGURE 2 | An example of converting EEG signal from an AD subject and a control subject into a WVG. EEG signals of FP1 channel from AD (A) subject and control

(B) subject with 5s length. The adjacency matrixes of the converted WVGs respectively for AD (C) subject and control (D) subject. Schematic diagram of complex

networks corresponding to WVGs of AD (E) subject and control (F) subject.

Where li,j is the shortest distance between i and j, and
NGi is the number of the neighborhood of node i. Local
network efficiency is the average of the local efficiency of
all nodes

Eloc=
1

N

∑

i

Eloc (i) (14)

Average Path Length
Average path length is a vital index to measure information
transmission ability of networks. It can be used to evaluate
the connectivity of the global functional network, including
local and remote connection. The average path L is defined as:

L =
1

N (N − 1)

∑

i,j,i 6= j

li,j (15)

TSK Fuzzy Model
Given an original input dataset X ={x1, x2, ..., xn} ∈ Rd

and the corresponding class label Y =
{

y1, y2, ..., yn
}

(yi,j = 1 when the ith sample belongs to jth class;
otherwise, yi,j = 0), the kth fuzzy inference rules are often
defined as

Rk : IF x1 is Ak
1 ∧ x2 is Ak

2 ∧ . . . ∧ xd is Ak
d, THEN

fk (x) = βk
0 + βk

1x1 + ...+ βk
dxd, k = 1, ..., K

Where x = [x1, x2, ..., xd]
T is input vector of each

rule, K is the number of fuzzy rules, Ak
i are Gaussian

antecedent fuzzy sets subscribed by the input variable
xi of Rule k, ∧ is a fuzzy conjunction operator, fk (x)

is a linear function about the inputs, and βk
i are

linear parameters.
With each rule is premised on the sample vector x, the output

of a TSK fuzzy system is expressed as
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FIGURE 3 | Network parameters (averaged across subjects) of both AD networks and control networks. Error bars represent standard error across subjects. The

degree of significant difference is calculated by Analysis of Variance (ANOVA) across all subjects. **A significant correlation (pc ≤ 0.01 corrected for multiple

comparisons across tiles). *A trend (pc ≤ 0.05).

ỹ =

K
∑

k= 1

µk (x) fk (x)
∑K

k′ = 1 µk′ (x)
=

K
∑

k=1

µ̃k (x) fk (x) (16)

where

µk (x) =

d
∏

i= 1

µAk
i
(xi) (17)

is the fuzzy membership function and

µ̃k (x) =
µk (x)

∑K
k′ = 1 µk′ (x)

(18)

is the normalized fuzzy membership function of the antecedent
parameters of the kth fuzzy rule. While µAk

i
(xi) is Gaussian

membership function for fuzzy set Ak
i that can be expressed as

µAk
i
(xi) = exp






−

(

xi − cki

)2

δki






(19)

where cki is kth cluster center parameters, which can be calculated
with the classical fuzzy c-means (FCM) clustering algorithm
(Bezdek et al., 1984):

cki =

N
∑

j= 1
ujkxji

N
∑

j= 1
ujk

(20)

and the width parameter δki can be estimated by (Zhaohong et al.,
2013):

δki =

h ·
N
∑

j= 1
ujk

(

xji − cki

)2

N
∑

j= 1
ujk

(21)

where the element ujk ∈ [0, 1] denotes the fuzzy membership
of nth input sample xn to the kth cluster (k = 1, 2, ...,K), h is a
constant called the scale parameter.

For an input sample xn, let

xn,e =
(

1, xn
T
)T

(22)

x̃kn = µ̃k (xn) xe (23)

ρ (xn) =
(

(

x̃1n
)T
,
(

x̃2n
)T
, ...,

(

x̃Kn
)T
)T

∈ RK(d+1) (24)
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TABLE 1 | Classification results with each single parameter from single network

layer is taken as input feature.

x1 x2 x3 x4 x5 x6 x7 x8

y1 0.6218 0.5546 0.5618 0.6543 0.5654 0.5457 0.5721 0.5904

y2 0.5925 0.6550 0.5086 0.6368 0.5275 0.5364 0.5721 0.6893

y3 0.6225 0.5482 0.5454 0.6454 0.6214 0.5596 0.5996 0.5243

y4 0.6718 0.4779 0.5514 0.5632 0.6464 0.5229 0.5800 0.6146

y5 0.5754 0.5918 0.5507 0.6343 0.5443 0.5382 0.5868 0.5982

y6 0.6600 0.5718 0.5582 0.5486 0.5536 0.5625 0.5675 0.6386

y7 0.5721 0.5793 0.5086 0.7893 0.6211 0.5779 0.5964 0.5293

y8 0.5461 0.5550 0.6279 0.5957 0.6207 0.5679 0.5818 0.5679

y9 0.7925 0.6671 0.6446 0.54 0.5454 0.7446 0.7182 0.5768

y10 0.5271 0.3804 0.5811 0.6625 0.5504 0.5693 0.5225 0.5479

y11 0.5157 0.425 0.5304 0.5107 0.5257 0.5275 0.5179 0.5075

y12 0.6996 0.6832 0.6193 0.7432 0.6789 0.7904 0.745 0.7386

y13 0.7996 0.6411 0.5664 0.5586 0.6325 0.7218 0.69 0.5343

y14 0.5279 0.515 0.5082 0.5218 0.5314 0.5464 0.5379 0.5107

y15 0.5625 0.4011 0.5071 0.5529 0.365 0.6868 0.3814 0.3789

y16 0.7489 0.5479 0.5082 0.5486 0.54 0.6979 0.6175 0.4589

βk =
(

βk
0 ,β

k
1 , ...,β

k
d

)T
(25)

βg =
(

(

β1
)T
,
(

β2
)T
, ...,

(

βK
)T
)T

(26)

then the output value ỹn of a TSK fuzzy classifier for sample xn
can be expressed as

ỹn = βg
Tρ (xn) (27)

Learning Algorithm
Given a training dataset DS =
{

xi, yi|xi ∈ Rd, yi ∈ RC, i = 1, ...,NS

}

, where C is the number of

classes, the consequent parameter βg can be learned by using
generalized hidden-mapping ridge regression (GHRR) (Deng
et al., 2014; Tian et al., 2019). The objective function is:

min
βg

J
(

βg

)

=
1

2

C
∑

j= 1

NS
∑

i= 1

∥

∥

∥
βg,j

Txg,i − yi,j

∥

∥

∥

2

+
λ

2

C
∑

j= 1

βg,j
Tβg,j

(28)

where is the consequent parameter vector of the jth class is
represented by βg,j, λ is a regularization parameter controls the
complexity of the classifier, and the tolerance of error λ can
be set manually or determined by cross-validation. The optimal
consequent parameters, βg,j, can be computed by setting the
derivatives of J with regard to each βg,j is 0 and the solution
is (Yu et al., 2020):

TABLE 2 | Classification results with the set of single parameter from multiple

networks is taken as input feature vector.

Method Best input Accuracy Sensitivity Specificity

vector length

CFS 4 0.9211 0.9375 0.9091

DGUFS 3 0.7971 0.8974 0.6667

Fisher 4 0.9528 0.9491 0.9583

FSV 6 0.9430 0.9406 0.9449

LLCFS 9 0.9431 0.9223 0.9600

mRMR 6 0.8706 0.7971 0.9091

βg,j =

(

λ1I(d+1)∗K×(d+ 1)∗K +

NS
∑

i= 1

xg,ixg,i
T

)−1 NS
∑

i= 1

xg,iyi,j

(29)

EXPERIMENTAL RESULTS

The EEG of AD patients implies a large amount of information
that cannot be visually expressed from the waveform. Research
shows that the visualization algorithm can express the hidden
information in the form of images. In order to verify whether the
AD brain’s electrical features can be represented byWVG, we first
select the same channel EEG from an AD patient and a control
subject. Two episodes with a length of 500 data points (as shown
in Figures 2A,B) are further intercepted, and converted toWVG.
The result is shown in Figures 2C,D. Studies have reported that
it’s easy to detect a diffuse slowing in the EEG of AD patients
with the naked eye (Micanovic and Pal, 2014). This diffuse
slowing feature is well-preserved in WVG, and WVG of AD
patients can be clearly observed in more communities, indicating
the feasibility of WVG method for AD detection. For further
observation of the topological feature of the WVG network, the
two adjacency matrixes are represented as network structure
diagrams that shown in Figures 2E,F. The dots in figure represent
all network nodes and the network edges are represented by
curves, and the shade of the curve color can directly reflect
the weighted value of the edges. It can be observed that the
different communities in the WVG network of normal people
are generally similar in size and the distributions of connections
are uniform. The community structure of the networks obtained
by the WVG method is more irregular for AD patients. Most
nodes are concentrated in a small part of communities, and
the connection between communities is also closer. The result
indicates that the electrophysiological signals of AD brains are
more unstable, with fluctuations that are stronger. Research on
single channel reveals that the WVG network of AD and normal
people are significantly difference. Next, we will transform all
16 channels into multi-networks ({yn}(1 ≤ n ≤ 16)) and
each layer of network can be obtained from each channel. We
further considered which parameters are selected to quantify
this difference.

To reduce the computing time and to retain as much
information as possible, the EEG signal is divided into many
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FIGURE 4 | (A) Joint distribution of clustering coefficient obtained from WVG network transformed from Channel 13 and Channel 9. (B) Classification results when the

number of input features is from 1 to 16, which is obtained under single parameter (clustering coefficient) from multi-networks set and ordered through feature

selection method.

episodes through sliding windows with lengths of 500 data
points. Since the size of the convertedWVGnetwork is consistent
with the length of EEG series, a series of adjacency matrixes of
size 500 × 500 are finally obtained. Next, we calculate clustering
coefficient (x1), graph index complexity (x2), average weighted
degree (x3), network entropy (x4), degree distribution index (x5),
modularity (x6), local efficiency (x7), and average path length
(x8) of each WVG network of both AD and control. Above
parameters can be obtained from each different network layers,
which can be considered as different features. Since there is
a considerable difference in the magnitude of the values of
different parameters, the calculated result is normalized to 0∼1.
All windows of each person were further averaged, and then
a statistical analysis was performed based on each person. As
shown in Figure 3, parameters of all subjects are statistically
analyzed and the parameters that are significantly different for
AD group and control group are marked with ∗. The values of
clustering coefficient, local efficiency, and shortest path length of
the AD group are significantly lower than that of controls with
p < 0.01. Meanwhile, the degree distribution entropy of AD
group is higher than that of controls with p < 0.05 while the
degree distribution lambda of AD group is lower than that of
controls with p < 0.05.The obtained results demonstrate that
network topological parameters can be used to detect AD.

Through statistical analysis, it’s obvious that some of the above
parameters can clearly distinguish AD from the control group.
In order to further verify the effect of these parameters on AD
recognition, these parameters will be used as input features of the
training fuzzy classifier. In each training process, we randomly
select 80% of the original data to form training datasets which
can be used for ten-fold cross-validation (10-CV), with 90% (90%
× 80%) utilized for model training and 10% (10% × 80%) for
constructing a validation set. The above procedure is repeated
10 times to cover the entire training set and finally determine
the optimal hyperparameters of the TSK model. The remaining

20% of all data is tested as the testing data with determined
hyperparameters. For each different input feature or feature
vector, the classification results (accuracy, sensitivity, specificity)
are averaged after training for 50 times.

The construction of each WVG network is based on a single
time series, so 16 WVGs are obtained from 16-channel EEG
used in this paper. These WVG networks contain different
electrophysiological information of neurons in different brain
regions. However, in the existing studies, the parameters
extracted from WVG networks constructed by different brain
regions’ EEG were usually regarded as the same class of features,
so the differences between brain regions were ignored. Therefore,
we consider the 16 WVG networks as different networks
and combine them into a multi-layer network. In order to
verify whether the underlying dynamic information of these
network layers are different, the classification is first performed
with a single feature as input. Each parameter extracted from
each single network layer transformed from different channels
is used as the single input feature for model training, and
the classification results are shown in Table 1 with optimal
classification result is bolded. It can be observed that for
the same network parameter extracted from different network
layers, the classification results are significantly different. The
difference in classification accuracy of the same parameter from
different network can even reach 28.39% for average weighted
degree (

{(

x3, yk
)}

, k = 1, ..., 16), indicating that the dynamic
information that contained in EEG of different brain regions does
have significant differences and parameters of different layers
maybe independent from each other. This finding shows that the
network characteristics of the multi-network composed of WVG
network layers can be used as independent input features for
the classifier.

The input feature vector consisting of multiple parameters
is used for fuzzy system training. The classification will be
performed based on the following three feature sets [as shown
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TABLE 3 | Classification results with the set of multiple parameters from single

network is taken as input feature vector.

Method Best input Accuracy Sensitivity Specificity

vector length

CFS 3 0.9259 0.9434 0.9091

DGUFS 4 0.8734 0.8772 0.8696

Fisher 2 0.8969 0.9259 0.8696

FSV 3 0.9341 0.9379 0.9321

LLCFS 6 0.9009 0.9091 0.8929

mRMR 5 0.7937 0.7692 0.8197

in Figure 1(3)]: (1) Single parameter from multi-networks:
When ensuring that the classifier input is the same parameter,
select different network layers for parameter extraction and
combination. (2) Multi-parameters from single network: In
the case of one single network layer, different parameters
are extracted and selected for combination as a classifier
input. (3) Multi-parameters from multi-network: All parameters
extracted from all network layers are used as different input
features to the classifier. Then for each set, various feature
select methods including Correlation-based Feature Selection
(CFS) (Guyon et al., 2002), Dependence Guided Unsupervised
Feature Selection (DGUFS) (Zhu et al., 2017), Fisher (Gu
et al., 2012), Feature Selective Validation (FSV) (Bradley
and Mangasarian, 1999), Locality-Constrained Linear Coding
Feature Select (LLCFS) (Zeng andCheung, 2011), andminimum-
redundancy maximum-relevance (mRMR) (Peng et al., 2005)
are used to sort the features to obtain the feature sequence for
each set. According to the obtained feature sequence, select the
different number of features in order (i.e., the first one feature,
the first two features, the first three features...) to component the
input vectors for the TSK model training process. In the feature
select process (as shown in Figure 1), the methods of Feature
Selection Library (FSLib) are adopted for determining feature
input vectors of TSK. All the algorithms are implemented with
MATLAB 2016b.

First, case 1 is described as an example, and the structure of
TSK is also described in details in following. As the clustering
coefficient (

{(

x1, y13
)}

) reached a highest accuracy of 79.96% in
Table 1, local efficiency from all network layers (

{(

x1, yk
)}

, k =

1, ..., 16) is adopted for feature selection and multi-input
classification. The orders of the features are obtained by various
sorting feature selection algorithms. After the ranking of network
parameters, we choose input feature vectors with different lengths
as inputs of TSK model and calculate classification results
(accuracy, sensitivity, and specificity), respectively. The optimal
length of input vectors and classification results are shown in
Table 2. It can be observed that with different feature select
methods, the length of the feature vectors with the optimal
classification result is different. Besides, the sensitivity is higher
than the specificity for the feature vectors filtrated by CFS and
DGUFS methods, while the others are opposite. It shows that the
change of the feature used for training will affect the properties
of the trained model. As for the parameter set of clustering
coefficients extracted from multiple networks, the Fisher method

can be used to achieve the optimal classification result. The
classification process with Fisher method are further explored.

With the applying of Fisher algorithm, the order of the
parameters is obtained as

(

x1, y13
)

,
(

x1, y9
)

,
(

x1, y12
)

,
(

x1, y3
)

,
(

x1, y1
)

,
(

x1, y2
)

,
(

x1, y1
)

,
(

x1, y6
)

,
(

x1, y10
)

,
(

x1, y8
)

,
(

x1, y5
)

,
(

x1, y15
)

,
(

x1, y7
)

,
(

x1, y4
)

,
(

x1, y14
)

,
(

x1, y6
)

. The joint distribution
of the first two channels under the ranking is illustrated to
verify the effectiveness of the same network parameter of WVG
network transformed from different channels as the multi-input
for classification. The result is shown in Figure 4A with each
point represents a subject. It’s obviously that AD subjects display
significant differences from controls, which also demonstrate
that local efficiencies, respectively, of channel 9 and channel 13
are effective to classify AD and controls. These two parameters
can also get the best classification results when multi-network
clustering coefficient is taken as single parameter input. However,
the optimal parameters obtained by feature selection are not
completely consistent with those that are optimal for the
classification result when a single parameter is used as input. This
indicates that the information of a single brain region cannot be
used as a direct feature to distinguish patients with AD, but the
implicit information of different brain regions can complement
each other. In the above ranking order, five rules TSK classifiers
are used with the number of classifier inputs is from 1 to 16 in
order, and the final classification results under cross-validation
are listed in Figure 4B. As the length of input feature vector
increases, the accuracy reaches a maximum of 95.28% at four
inputs and then begins to decrease.

In this part, the framework of the TSK is also described in
details based on the selected optimal combination feature. The
input vector x consists of the clustering coefficients of channel
13(
(

x1, y13
)

), channel 9(
(

x1, y9
)

), channel 12(
(

x1, y12
)

), and
channel 3(

(

x1, y3
)

). Membership functions can be linguistically
expressed using a fuzzy linguistic description including “very
low,” “low,” “medium,” “high,” and “very high.” Eachmembership
function of different features corresponds to different description
in ascending order of the values of centers. To provide further
explanation, the clustering coefficient of channel 13 is interpreted
as an example. We define the gaussian model as a membership
function, and each rule will get a set of antecedent parameter
(centers, standard variance), respectively, which are (0.3990
0.0031) for Rule 1, (0.3956 0.0030) for Rule 2, (0.4165 0.0032) for
Rule 3, (0.4052 0.0031) for Rule 4, and (0.4040 0.0030) for Rule 5.
By the permutation of these five centers of each rule, membership
functions can be described with fuzzy linguistic description: Rule
1 is “very low,” Rule 2 is “very high,” Rule 3 is “low,” Rule 4 is
“medium,” and Rule 5 is “high.” The other four features can also
be fuzzy and described similarly. Therefore, with the linguistic
expressions and the corresponding linear function the fuzzy rule
can be given as follows:

R1 : IFy13 is very low ∧ y9 is very low ∧ y12 is medium ∧

y3 is very low,

THEN f1 (x) =
[

0.4975− 0.1872y13 + 0.1615y9 + 0.1515y12 + 0.2134y3
−0.1385− 0.0959y13 − 0.0738y9 − 0.0514y12 − 0.1147y3

]

,
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FIGURE 5 | (A) Joint distribution of clustering coefficient and local efficiency obtained from WVG network obtained from Channel 13. (B) Classification results when

the number of input features is from 1 to 8, which is obtained under multi-parameters from single network (y13) set and ordered through feature selection method.

R2 : IFy13 is very high ∧ y9 is very high ∧ y12 is very low ∧

y3 is very high,

THEN f2 (x) =
[

−1.99e-4+ 1.59e-5y13 − 9.79e-5y9 − 2.13e-5y12 + 2.03e-4y3
0.0013+ 3.34e-4y13 + 4.12e-4y9 + 2.65e-4y12 + 1.15e-4y3

]

,

R3 : IF y13 is low ∧ y9 is low ∧ y12 is high ∧ y3 is low,

THEN f3 (x) =
[

0.2508− 0.0485y13 + 0.0555y9 + 0.0167y12 + 0.1049y3
−0.0039− 0.0195y13 − 0.0095y9 − 0.0572y12 − 0.0341y3

]

,

R4 : IF y13 is medium ∧ y9 is high ∧ y12 is very high ∧

y3 ismedium,

THEN f4 (x) =
[

−0.0536− 0.0429y13 − 0.0341y9 − 0.0765y12 − 2.05e-4y3
0.2071+ 0.0872y13 + 0.0759y9 + 0.1244y12 + 0.0450y3

]

,

R5 : IF y13 is high ∧ y9 ismedium ∧ y12 is low ∧ y3 is high,

THEN f5 (x) =
[

0.0130+ 0.0016y13 − 0.0020y9 + 0.0025y12 + 0.0041y3
2.47e-4+ 0.0026y13 + 0.0017y9 + 0.0011y12 + 4.33e-5y3

]

.

The fuzzy system that has been learned based on
these five rules above, the example with an input of
[0.2098 0.2106 0.3585 0.2264] is given to further explain
the mechanism of testing process. Inputs of the identification
process based on the trained fuzzy system are the network
features of an AD patient, and the decision output is the
prediction of label vector. The sum of the five calculated rule-

based outputs is f = [0.8940 0.00956]
T
, then the maximal

element in f is set to 1 while others to 0 for handling the decision
output. Finally, AD patient can be identified based on the final

value of the output y =
[

1 0
]T
.

Next, multi-parameters from single network are also used

as input set for the classifier together. The classification results
obtained by various feature select methods and the optimal

lengths of input feature vectors are shown in Table 3. The
parameters selected by FSV method can be used to form

the vector to obtain the optimal classification result, and the
sorted parameters are further analyzed in detail. The features

in order obtained through the FSV algorithm is
(

x7, y13
)

,
(

x1, y13
)

,
(

x2, y13
)

,
(

x3, y13
)

,
(

x8, y13
)

,
(

x5, y13
)

,
(

x6, y13
)

,
(

x4, y13
)

.
Clustering coefficients (

(

x7, y13
)

) and local efficiencies (
(

x1, y13
)

)
are chosen to verify the feasibility of the classification, and
the image is shown in Figure 5A. It is clear that there

is a significant difference between the AD and the control
group. The TSK classification is applied to all feature input
groups. As shown in Figure 5B, the classification accuracy

reaches a maximum value of 93.41% when the first three
features are taken as input vector. The optimal combination

obtained by the feature sorting method is local efficiency
(x7), clustering coefficient (x1), and graph complexity index

(x2). The graph complexity index has a low discrimination
between AD and the control group, and the TSK models
trained with graph complexity index extracted from each

network layer as single input have low classification accuracy.
However, the image complexity index can supplement the

clustering coefficient and local efficiency, indicating that the
redundancy between some parameters from same network

layer is small, which is of great significance as a feature of
model training. Through the above classification results, multi-
parameters, and multi-networks can both be applied to the TSK

classification, and they are not the same type as input sets for

model training.
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FIGURE 6 | The schematic diagram of channel position with the frontal lobe is marked within red lines, the temporal lobe in blue, the parietal lobe in green, and the

occipital lobe in orange. The optimal parameters and corresponding classification results under different feature select methods.

Finally, the multi-parameters from multi-networks are used
for training. We further applied different feature select methods
on this input set, and find the best feature input vectors,
respectively. Figure 6 provides the methods and corresponding
classification results. The brain area enclosed by the red
line is the frontal lobe, the blue is the temporal lobe, the
green is the parietal lobe, and the orange is the occipital
lobe. It can be observed that the parameters that are filtered
by different methods are more common to be extracted
from the network layers of the frontal EEG. This suggests
that information in the frontal lobe is more effective in
identifying AD patients. Damage to the frontal lobe of
the brain, which plays a prominent role in thinking and
behavior, can lead to forgetfulness, delayed behavior, and
distraction. Meanwhile, signals from other brain regions
also play an important role in AD recognition, indicating
that AD disease has a global impact on the brain. The
best result of multi-parameters from multi-networks set are
selected through FSV method, which up to 97.28%. The

combination is
{(

x7, y3
)

,
(

x3, y13
)

,
(

x1, y13
)

,
(

x3, y12
)

,
(

x4, y4
)}

.
The accuracy rate with set 3 is improved compared with set
1 and set 2, indicating that it is of certain significance to
take multiple parameters extracted from multiple networks as
different features.

CONCLUSION AND DISCUSSION

This paper proposes a multi-input machine learning method
that combines fuzzy classifier and WVG to identify AD patient’s
EEG. In order to improve the interpretability and recognition
accuracy of the model, complex network theory and TSK fuzzy
system model is adopted. A WVG network layer is constructed
using a single channel EEG. The multi-parameters obtained
from multiple networks can be used as independent input
features for model training, and the TSK model based on fuzzy
rules is used to classify AD EEG with better interpretability.
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We considered three types of classification input sets: multi-
parameters from single network, single parameter from multi-
networks, and multi-parameters from multi-networks. These
three types of inputs are, respectively, applied as the training set
of the learning of the TSK model. The experimental results show
that the fuzzy model-based system model can achieve optimal
performance with multi-parameters from multi-networks as
classification input set, and the accuracy is up to 97.83%.
Meanwhile, the optimal input numbers are different for the
three types of input sets proposed in this paper. The best
input combination is 5 input features in the input set of multi-
parameters from multi-networks.

The current clinical techniques of AD identification, mainly
including the scale assessing, cerebrospinal fluid examination,
and the observation of atrophy of gray matter through
the brain functional imaging, are difficult to obtain reliable
diagnostic markers. It is also difficult to find obvious organic
changes in the early stage of AD. We propose an AD
diagnostic model that combines the TSK fuzzy model with
complex network obtained by WVG method and propose three
different kinds of training input sets, which provides a new
method for the search of AD EEG biomarkers. Compared
with traditional methods, the AD identification approach
proposed in this paper, has lower implementation difficulty and
higher accuracy.

EEG, which is commonly considered to have significant
chaotic characteristics, cannot be well-evaluated with linear
analysis. The WVG method used in this paper can transform
the one-dimensional time series into images and extract
the underlying information contained in electrophysiological
activities of different brain regions. In contrast with other
network construction methods like synchronous network, the
WVG networks obtained by each EEG channel are independent
of each other. Thus, more network features can be found and
effective biomarkers can be obtained from kinds of feature
sets with WVG (Zhu et al., 2014). The classification results
show that this WVG method is very effective for feature
extraction of AD recognition. In future works it will be
combined with multi-layer network theory, further discussing
the correlation between different channels with constructing
multi-layer network. In past research we confirmed the feasibility
of the multi-layer network scheme, and extracted the multiplex
clustering coefficient and multiplex participation coefficient (Cai
et al., 2020). Future work will consider both the implicit
characteristics of single channels and the information integration
between multiple channels.

We propose three different kinds of feature sets and prove
that the optimal parameter vectors can be obtained from
the set multi-parameters from multi-networks. This finding
indicates that simultaneously considering different networks
and different parameters as disparate features has obvious help
for the acquisition of AD biomarkers. At the same time, the
classification results show that the excessive features as input is
not conducive to the optimization of the classification model,
so it is necessary to reduce the feature dimension. Too much

feature increase may lead to the overfitting of the learning
model, and even the increase of invalid features may lead
to the decrease of the accuracy based on test set (Guyon
et al., 2002). Therefore, the application of feature selection
plays an important role in improving the accuracy of fuzzy
learning models.

In this paper, we combined the identification model
combining feature selection approaches with machine
learning. Researchers can effectively reduce the number of
EEG channels, and the difficulty of data collection will be
significantly reduced. Meanwhile, with the reduction of the
parameters, it can be easier to improve the efficiency of the
AD recognition process. Compared with traditional manual
diagnosis, machine learning methods have higher reliability,
and improved recognition accuracy. Especially, the TSK method
has higher interpretability and robustness by integrating the
advantages of fuzzy rules and membership functions. There
are still some limitations in our research. We used a variety
of feature selection methods, but a feature selection method
suitable for the highly interpretable TSK model is necessary
to be considered. Future work may focus on how to select
features more efficiently and accurately to achieve higher
classification accuracy.
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