
ORIGINAL RESEARCH
published: 30 June 2020

doi: 10.3389/fnins.2020.00662

Frontiers in Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 662

Edited by:

Chiara Bartolozzi,

Italian Institute of Technology (IIT), Italy

Reviewed by:

Jonathan Binas,

Montreal Institute for Learning

Algorithm (MILA), Canada

Roshan Gopalakrishnan,

Institute for Infocomm Research

(A∗STAR), Singapore

*Correspondence:

Sadique Sheik

sadique.sheik@synsense.ai

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 02 December 2019

Accepted: 28 May 2020

Published: 30 June 2020

Citation:

Sorbaro M, Liu Q, Bortone M and

Sheik S (2020) Optimizing the Energy

Consumption of Spiking Neural

Networks for Neuromorphic

Applications. Front. Neurosci. 14:662.

doi: 10.3389/fnins.2020.00662

Optimizing the Energy Consumption
of Spiking Neural Networks for
Neuromorphic Applications
Martino Sorbaro 1,2, Qian Liu 1, Massimo Bortone 1 and Sadique Sheik 1*

1 SynSense (formerly aiCTX), Zurich, Switzerland, 2 Institute of Neuroinformatics, University of Zürich and ETH Zürich,

Zurich, Switzerland

In the last few years, spiking neural networks (SNNs) have been demonstrated to

perform on par with regular convolutional neural networks. Several works have proposed

methods to convert a pre-trained CNN to a Spiking CNN without a significant sacrifice

of performance. We demonstrate first that quantization-aware training of CNNs leads

to better accuracy in SNNs. One of the benefits of converting CNNs to spiking

CNNs is to leverage the sparse computation of SNNs and consequently perform

equivalent computation at a lower energy consumption. Here we propose an optimization

strategy to train efficient spiking networks with lower energy consumption, while

maintaining similar accuracy levels. We demonstrate results on the MNIST-DVS and

CIFAR-10 datasets.

Keywords: neuromorphic computing, spiking networks, loss function, synaptic operations, energy consumption,

convolutional networks, CIFAR10, MNIST-DVS

1. INTRODUCTION

Since the early 2010s, computer vision has been dominated by the introduction of convolutional
neural networks (CNNs), which have yielded unprecedented success in previously challenging tasks
such as image recognition, image segmentation or object detection, among others. Considering
the theory of neural networks was mostly developed decades earlier, one of the main driving
factors behind this evolution was the widespread availability of high-performance computing
devices and general purpose Graphic Processing Units (GPU). In parallel with the increase in
computational requirements (Strubell et al., 2019), the last decades have seen a considerable
development of portable, miniaturized, battery-powered devices, which pose constraints on the
maximum power consumption.

Attempts at reducing the power consumption of traditional deep learning models have been
made. Typically, these involve optimizing the network architecture, in order to find more compact
networks (with fewer layers, or fewer neurons per layer) that perform equally well as larger
networks. One approach is energy-aware pruning, where connections are removed according to
a criterion based on energy consumption, and accuracy is restored by fine-tuning of the remaining
weights (Molchanov et al., 2016; Yang et al., 2017). Other work looks for more efficient network
structures through a full-fledged architecture search (Cai et al., 2018). The latter work was one of
the winners of the Google “Visual Wake Words Challenge” at CVPR 2019, which sought models
with memory usage under 250 kB, model size under 250 kB and per-inference multiply-add count
(MAC) under 60 millions.

Using spiking neural networks (SNNs) on neuromorphic hardware is an entirely different, and
much more radical, approach to the energy consumption problem. In SNNs, like in biological

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00662
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00662&domain=pdf&date_stamp=2020-06-30
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sadique.sheik@synsense.ai
https://doi.org/10.3389/fnins.2020.00662
https://www.frontiersin.org/articles/10.3389/fnins.2020.00662/full
http://loop.frontiersin.org/people/861368/overview
http://loop.frontiersin.org/people/115791/overview
http://loop.frontiersin.org/people/862056/overview
http://loop.frontiersin.org/people/26862/overview

Sorbaro et al. Optimizing Energy Consumption in SNNs

neural networks, neurons communicate with each other through
isolated, discrete electrical signals (spikes), as opposed to
continuous signals, and work in continuous instead of discrete
time. Neuromorphic hardware (Indiveri et al., 2011; Esser et al.,
2016; Furber, 2016; Thakur et al., 2018) is specifically designed
to run such networks with very low power overhead, with
electronic circuits that faithfully reproduce the dynamics of the
model in real time, rather than simulating it on traditional von
Neumann computers. Some of these architectures (including
Intel’s Loihi, IBM’s TrueNorth, and SynSense’s DynapCNN)
support convolution operations, which are necessary for modern
computer vision techniques, by an appropriate weight sharing
mechanism.

The challenge of using SNNs for machine learning tasks,
however, is in their training. Mimicking the learning process
used in the brain’s spiking networks is not yet feasible, because
neither the learning rules, nor the precise fitness functions
being optimized are sufficiently well-understood, although this is
currently a very active area of research (Marblestone et al., 2016;
Richards et al., 2019). Supervised learning routines for spiking
networks have been developed (Bohte et al., 2002; Mostafa,
2017; Nicola and Clopath, 2017; Shrestha and Orchard, 2018;
Neftci et al., 2019), but are slow and challenging to use. For
applications which have little or no dependence on temporal
aspects, it is more efficient to train an analog network (i.e.,
a traditional, non-spiking one) with the same structure, and
transfer the learned parameters onto the SNN, which can then
operate through rate coding. In particular, the conversion of pre-
trained CNNs to SNNs has been shown to be a scalable and
reliable process, without much loss in performance (Diehl et al.,
2015; Rueckauer et al., 2017; Sengupta et al., 2019). But this
approach is still challenging, because the naive use of analog CNN
weights does not take into account the specific characteristics and
requirements of SNNs. In particular, SNNs are more sensitive
than analog networks to themagnitude of the input. Naive weight
transfer can, therefore, lead to a silent SNN, or, conversely,
to one with unnecessarily high firing rates, which have a high
energy cost.

Here, we propose a hybrid training strategy which maintains
the efficiency of training analog CNNs, while accounting for
the fact that the network is being trained for eventual use in
SNNs. Furthermore, we include the energy cost of the network’s
computations directly in the loss function during training,
in order to minimize it automatically and dynamically. We
demonstrate that networks trained with this strategy perform
better per Joule of energy utilized. While we demonstrate the
benefit of optimizing based on energy consumption, we believe
this strategy is extendable to any approach that uses back-
propagation to train the network, be it through a spiking network
or a non-spiking network.

In the following sections, we will detail the training techniques
we devised and applied for these purposes. We will test our
networks on two standard problems. The first is the MNIST-
DVS dataset of Dynamic Vision Sensor recordings. DVSs are
event-based sensors, and, as such, the analysis of their recordings
is an ideal application of spike-based neural networks. The
second is the standard CIFAR-10 object recognition benchmark,

which provides a reasonable comparison on computation cost
to non-spiking networks. For each of these tasks, we will
demonstrate the energy-accuracy trade-off of the networks
trained with our methods. We show that significant amounts
of energy can be saved with a small loss in performance, and
conclude that ours is a viable strategy for training neuromorphic
systems with a limited power budget.

2. MATERIALS AND METHODS

In most state-of-the art neuromorphic architectures with time
multiplexed units like Merolla et al. (2014), Davies et al. (2018),
and Furber et al. (2014), the various states need to be fetched
from memory and rewritten. Such operations happen every
time a neuron receives a synaptic event. Whenever one of
these operations is performed, the neuromorphic hardware
consumes a certain amount of energy. For instance in Indiveri
and Sandamirskaya (2019) the authors show that this energy
consumption is usually of the order of 10−11 J. While there are
several other processes that consume power on a neuromorphic
device, the bulk of the active power on these devices is used by
the synaptic operations. Reducing their number is therefore the
most natural way to keep energy usage low.

In this paper we explore strategies to lower synaptic operations
and evaluate their effect on the network’s computational
performance. We suggest to train, or fine-tune, networks with an
additional loss term which explicitly enforces lower activations
in the trained network—and consequently lower firing rates of
the corresponding spiking network. This is analogous to the L1
term used by Esser et al. (2016) and Neil et al. (2016), but applied
on synaptic operations directly rather than firing rates, and set
up so that a target SynOp count value can be set. Additionally,
we introduce quantization of the activations on each layer, which
mimics the discretization effect of spiking networks, so that the
network activity remains at reasonable levels even when the
regularization term is strong. The following sections illustrate the
technical details and introduce the datasets and networks we use
for evaluation.

2.1. Training Strategies
2.1.1. Parameter Scaling
By scaling the weights, biases and/or thresholds of neurons in
different layers, we can influence the number of spikes generated
in each layer, thereby allowing us to tune the synaptic activity of
the model. This is easy to do, even with pre-trained weights. For
a scale-invariant network, such as any network whose only non-
linearities are ReLUs, this method attains perfect results, because
a linear rescaling of the weights causes a linear rescaling of the
output, which gives identical results for classification tasks where
we select the class that receives the highest activation.

We use this method as a baseline comparison for our results.
We chose to rescale the weights of the first convolutional layer of
our network by a variable factor ρ:

w′
0 = ρw0,

Frontiers in Neuroscience | www.frontiersin.org 2 June 2020 | Volume 14 | Article 662

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

which is equivalent to a rescaling of the input signal by the
same factor. Note that an increase/decrease in the first layer’s
output firing rate causes a correspondent increase/decrease in the
activation of all the subsequent layers, and thereby reduces the
global energy consumption of the whole network.

For baseline comparisons, we also apply the “robust” weight
scaling suggested by Rueckauer et al. (2017). This consists of a
per-layer scaling of weights, in such a way that the maximum
level of activation is constant along the network. For robustness,
the 99th percentile of activations is taken as a measure of output
magnitude in each layer, estimated from forward passes over
25,600 samples of the training set. In this way, the activity of
the network is balanced over its layers, in the sense that no layer
unnecessarily amplifies or reduces the activity level compared to
its input.

The scale-invariance property of ReLU functions does not
hold for the corresponding spiking network, and small activation
values could cause discretization errors, or even yield a
completely silent spiking network from a perfectly functional
analog network.

2.1.2. Synaptic Operation Optimization
We measure the activity of the network, for each layer
group, in correspondence with the ReLU operations, which
effectively correspond to the spikes from an equivalent SNN
(Supplementary Figure 2). We denote the activity of neuron i in
layer ℓ as aℓ

i . We define the fan-out of each group of layers, f ℓout,
as the number of units of layer ℓ + 1 that receive the signal
emitted by a single neuron in layer ℓ. This measure is essential in
estimating the number of synaptic operations (SynOps) sℓ elicited
by each layer:

sℓ = f ℓout

∑

i

aℓ
i (1)

We directly add this number to the loss we want to minimize,
optionally specifying a target value S0 for the desired number
of SynOps:

L = C(aoutput, t)+ α

(

S0 −
∑

ℓ

sℓ

)2

(2)

where C is the cross-entropy loss, t is the target label, and α is
a constant. We will refer to this additional term as SynOp loss.
In this work, we will always choose α = 1/S20, in order to keep
the SynOp loss term normalized independently of S0. Although
setting S0 = 0 and tweaking the value of α instead is also a
valid choice, we found it easier to set a direct target for the power
budget, which leads to more predictable results.

Additionally, we performed some experiments where an
L1 penalty on activations was used, without fanout-based
weighting. Against our expectations, we did not find a significant
difference in power consumption between the models trained
with or without per-layer weighting (Supplementary Figure 1).
However, we use the fanout-based penalty throughout this paper,
since this addresses the power consumption more directly, and
we cannot rule out that this difference may be more significant in
larger networks.

2.1.3. Quantization-Aware Training and Surrogate

Gradient
Optimizing for energy consumption with the SynOp loss
mentioned above has unintended consequences. During training,
the optimizer tries to achieve smaller activations, but cannot
account for the fact that, when the activations are too small,
discretization errors become more prominent. Throughout this
paper, by discretization error we mean the discrepancy that
occurs when a real number needs to be represented in a
discrete way—namely, the value of each neuron’s activation,
which is continuous, needs to be translated in a finite number
of spikes, leading to inevitable approximations. To solve this
issue, we introduce a form of quantization during training. The
quantization of activations mimics, in the context of an analog
network, a form of discretization analogous to what happens in a
spiking network. Therefore, the network can be already aware of
the discretization error at training time, and automatically adjust
its parameters in order to properly account for it. To this end,
we turn all ReLU activation functions into “quantized” (i.e., step-
wise) ReLUs, which additionally truncate the inputs to integers,
as follows:

QReLU(x) =

{

0 x ≤ 0

⌊x⌋ x > 0
(3)

where ⌊·⌋ indicates the floor operation. This choice introduces a
further problem: this function is discontinuous, and its derivative
is uniformly zero wherever it is defined. To avoid the zeroing of
gradients during the backward pass, we use a surrogate gradient
method (Neftci et al., 2019), whereby the gradient of QReLU is
approximated with the gradient of a normal ReLU during the
backward pass:

∇x QReLU(x) ≈

{

0 x ≤ 0

1 x > 0
(4)

This is not the only way to approximate the gradient of a step-
wise function in a meaningful way, and closer approximations
are certainly possible; however, we found that this linear
approximation works sufficiently well for our purposes.

In this work, we apply QReLUs in combination with
the SynOp loss term illustrated in the previous section, but
quantization on activations could be independently used for
a more accurate training of spiking networks. We note that
quantization-aware training in different forms has been used
before (Hubara et al., 2017; Guo, 2018), but its typical purpose
is to sharply decrease the memory consumption of CNNs, by
storing both activations and weights as lower-precision numbers
(e.g., as int8 instead of the typical float32). PyTorch recently
started providing support utilities for this purpose1.

2.2. Spiking Network Simulations With
Sinabs
After training, we tested our trained weights on spiking network
simulations. Unlike tests done on analog networks, these are

1https://pytorch.org/docs/stable/quantization.html

Frontiers in Neuroscience | www.frontiersin.org 3 June 2020 | Volume 14 | Article 662

https://pytorch.org/docs/stable/quantization.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

time-dependent simulations, which fully account for the time
dynamics of the input spike trains, and closely mimic the
behavior of a neuromorphic hardware implementation, like
DynapCNN (Liu et al., 2019). Our simulations are written using
the Sinabs Python library2, which uses non-leaky integrate-and-
fire neurons with a linear response function. The sub-threshold
neuron dynamics of the non-leaky integrate and fire neurons are
described as follows:

v̇ = R ·
(

Isyn(t)+ Ibias
)

(5)

Isyn(t) = WS(t) (6)

where v is the membrane potential of the neuron, R is a constant,
Isyn is the synaptic input current, Ibias is a constant input current
term,W is the synaptic weight matrix and S(t) is a vector of input
spike trains. For the results presented in this paper, we assume
R = 1 without any loss of generality. Upon reaching a spiking
threshold vth the neuron’s membrane potential is reduced by a
value v th (not reset to zero).

As a result of the above, between times t and t + δt, for a total
input current I(t) = Isyn(t)+Ibias, the neurons generate a number
of spikes n(t, t + δt) given by the following equation:

n(t, t + δt) =

⌊

R · I(t) · δt

vth

⌋

. (7)

In order to simulate the equivalent SNN model on Sinabs,
the CNN’s pre-trained weights are directly transferred to the
equivalent SNN.

2.3. Digit Recognition on DVS Recordings
2.3.1. Task and Dataset
As a benchmark to assess the performance of the above training
methods, we used an image recognition task on real data
recorded by a Dynamic Vision Sensor (DVS). Given a spike train
generated by the DVS, our spiking networks identify the class
to which the object belongs—corresponding to the fastest-firing
neuron in the output layer. For this task, we used the MNIST-
DVS dataset at scale 16 (Serrano-Gotarredona and Linares-
Barranco, 2015; Liu et al., 2016), a collection of DVS recordings
where digits from the classic MNIST dataset (LeCun et al., 1998)
are shown to the DVS camera as they move on a screen.

During the training phase, we presented the (analog) neural
network with images formed of accumulated DVS events, i.e.,
DVS spike trains divided into chunks and collapsed along the
time dimension. The value of each pixel (0-255 in the image
encoding we chose) was determined simply by the number of
events on that pixel. The DVS recordings were split into frames
not based on time length, but according to event count: the
accumulation of each frame was stopped when the total number
of events per frame reached a value of 3,000 (Figures 1A,B).
This ensured all frames had comparable pixel values without
the need for normalization, and all contained similar amounts
of information regardless of the type of activity presented. The
information regarding event polarity was discarded, resulting in
a 1-channel input frame (analogous to gray-scale image).

2https://sinabs.ai

During testing on the spiking network simulation, the
corresponding spike trains were presented to the network with
1 ms time resolution (Figure 1C), to simulate the real-time event
transmission between the DVS and a neuromorphic chip. This
value was chosen to enable reasonable simulation times, but
could be lowered if needed. Figure 1C, to simulate the real-time
event transmission between the DVS and a neuromorphic chip.
The network state was reset between the presentation of a data
chunk and the next. The polarity of events was ignored. Of the
original 10,000 recordings (1,000 per digit from zero to nine), we
set 20% aside as test set.

2.3.2. Network Architecture
In order to solve the task mentioned above, we used a simple
convolutional neural network, with three 2D convolutional layers
(3 × 3 filters), each followed by an average pooling layer (2
× 2 filters) and a rectified linear unit. The choice of average
pooling is due to the difficulties of implementing max pooling
in spiking networks (Rueckauer et al., 2017). The last layer is a
linear (fully connected) layer, which outputs the class predictions
(Figure 1D). We used a cross-entropy loss function to evaluate
the model predictions and optimized the network weights using
the Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 10−3. Bias parameters were deactivated everywhere in
the network. A 50% dropout was used just before the fully
connected layer at training time. The network was implemented
using PyTorch (Paszke et al., 2017).

The whole procedure can be summarized as follows:

1. The dataset is prepared by dividing the original DVS
recordings in sections of 3,000 spikes each, ignoring event
polarity. From these the following is saved:

(a) The spike train itself, used for testing
(b) An image, corresponding to the time-collapsed spike

train, with pixel values equal to the number of spikes at
that location, used for training.

2. A neural network is trained, applying quantization in
correspondence with every ReLU. The loss used for training is
binary cross-entropy with the addition of the synoploss term
(Equation 2).

3. The trained weights are transferred to a spiking network
simulation, implemented in Sinabs. The network dynamics is
simulated with 1 ms time resolution. The network prediction
is defined as the neuron that spikes the most over the 3,000-
spike input. Synaptic operations are counted as the sum of
spikes emitted by each layer, weighted on the fan-out of
that layer.

For reproducibility, the python code implementing these
methods is available at gitlab.com/aiCTX/synoploss.

2.4. Object Recognition on CIFAR-10
2.4.1. Task and Dataset
In order to validate the approach on a dataset with higher
complexity than MNIST, we also benchmarked our work on
CIFAR-10 (Krizhevsky et al., 2009), a visual object classification
task. The input images were augmented with random crop and
horizontal flip, and then normalized to [−1, 1]. A 20% dropout

Frontiers in Neuroscience | www.frontiersin.org 4 June 2020 | Volume 14 | Article 662

https://sinabs.ai
https://gitlab.com/aiCTX/synoploss
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

FIGURE 1 | Illustration of the MNIST-DVS dataset, as used in this work, and of the network model we used for the task. (A) A single accumulated frame of 3,000

spikes, as used for training. (B) the corresponding 3,000 spikes, in location and time. (C) Example single-millisecond frames, as sequentially shown to the Sinabs

spiking network during the tests presented in Figure 2. (D) The convolutional network model we used for this task. All convolutional layers and the linear layer are

followed by ReLUs. Dropout is used before the linear layer at training time.

rate was applied to the input layer to further augment the
input data.

For the experimental results on this dataset, we directly
injected the image pixel analog value to the first layer of
convolutions as input current in each simulation time step for
Ndt time steps. The magnitude of the current was scaled down
by the same value Ndt , in order to have an accumulated current,
over the whole simulation, equal to the analog input value. The
Sinabs simulations were run for Ndt = 10 time steps, obtaining
SynOps and accuracy values. The network state was reset between
the presentation of an image and the next.

2.4.2. Network Architecture and Training Procedure
In order to solve the task mentioned above, we used an All-
ConvNet (Springenberg et al., 2014), a 9-layer convolutional
network, without bias terms, which has 1.9M parameters in total.
The ReLU layers in the model, including the last output layer,
were replaced with QReLUs. All the convolutional layers in this
network are followed by a dropout layer with a rate of 10%,
which not only prevents over-fitting, but also compensates the
SNN’s discrete representations of analog values. As illustrated
in Springenberg et al. (2014), training lasts 350 epochs, and the
learning rate is initialized at 2.5 × 10−4 and scaled down by
a factor of 10 at epochs [200, 250, 300]. We use the Adam
optimizer with weight decay of 10−3. Note that the model was
trained without ReLU on the last output layer, since it is harder
to train the classification layer when the outputs are only positive,
while the classification accuracy was tested with ReLU on the
output layer, in order to have an equivalent network to the
spiking model.

The entire experiment is as follows:

1. Train an ANN network, anet, get its MAC and test the
accuracy with original CIFAR10 dataset.

2. Scale up the weights of the first layer of anet by ρ, and transfer
the weights to the SNN equivalence, snet.

(a) Test the accuracy and SynOps of snet with Ndt = 10, the
input current is 1/10 of a pixel value.

(b) Increase ρ, and repeat 2(a) till the accuracy reached about
the ANN accuracy.

3. Select a ρ from Step 2, where the snet have SynOps > MAC,
and start quantization-aware training with the SynOp loss.

(a) Set the target SynOp to half of the current SynOps and
train.

(b) Test the accuracy and get the SynOps, then repeat 3(a)
until the accuracy is too low to be meaningful, and thus
a full accuracy/SynOps curve is obtained.

2.4.3. SynOps Optimization
Before training the network with QReLU activations, the network
was first trained with ReLU to get an initial set of parameters.
The network with QReLU was then initialized with the scaled
parameters (scaling up by ρ on the first layer). The scaling
factor ρ was chosen to initialize the network in a state where
enough information is propagated through layers so that the
network performs reasonably well. Consequently, the weights of
the last weighted layer were scaled by 1/ρ, in order to adapt the
classification loss back to its original range.

During testing, we measured the ANN and SNN performance
in terms of their accuracy and SynOps, and found a mismatch
of SynOps between training and testing. There are two main
reasons: (1) The output of a dropout layer (with a dropout rate
p) is always scaled down by 1− p to compensate the dropped out
activations, however themismatch could be large after a sequence
of dropout layers. (2) Due to discrete spike events operated in
the network where the order (not only the count) of the spikes
matters, the mismatch occurs between the spike count-based
analog activation and the actual spiking ones.

To compensate for this mismatch, for all the trained models
we tested the performance with both 1.5× and 2× scaled-up
first layer weights. Lastly, we optimized the QReLU-based model
with the objective of minimizing the classification error given a
target SynOps. We trained 30 models with lower and lower target
SynOps, and each model was initialized with the trained weights
of the previous one.

3. RESULTS

3.1. The SynOp Loss Term Leads to a
Reduction in Network Activity on DVS Data
In Figure 2, we show the results of four methods to reduce the
activity of the network, in a way that yields energy savings. First,
as a baseline, we trained a traditional CNN using a cross-entropy
loss function, and rescaled down the weights of its first layer.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2020 | Volume 14 | Article 662

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

FIGURE 2 | Results on the MNIST-DVS dataset. Left: SynOps-accuracy curves computed on a spiking network simulation with Sinabs. Each point represents a

different model, trained for a different value of S0 or rescaled by a different value of ρ. The red star represents the original model, standard CNN weights transferred to

the SNN without changes. The solid lines are smoothed versions of the curves described by the data points, provided as a guide to the eye. Center: a zoomed-in

version of the left panel, showing direct comparison between layer-wise gain scaling (Rueckauer et al., 2017) and our method. Right: SynOps per layer, compared

between the baseline model and a selected model trained with the SynOp loss and quantization. This is the model indicated by a black circle in the first panel. Note

that the input SynOps depend only on the input data, and cannot be changed by training.

This is equivalent to rescaling the input values, and has the effect
of proportionally reducing the activity in all subsequent layers
of the network. The “baseline” model in Figure 2 is the same
network, with no input rescaling: weights are transferred from
the CNN to the corresponding layers of the SNN without any
changes or special considerations. Thresholds are set to 1 on all
layers. Second, following Rueckauer et al. (2017), we rescaled the
weights of each layer in such a way that the maximum activation
in each layer stays constant (see section 2). The input weights are
again rescaled as stated above. Third, we introduced an additional
term in the loss function, the SynOp loss, which directly pushes
the estimated number of SynOps to a given value. We trained
CNN models, each with a different target number of synaptic
operations, independently of each other. Furthermore, excessive
reduction of the SynOps leads to the silencing of certain neurons,
and other discretization errors, causing an immediate drop in
accuracy. To account for this we jointly use the SynOp loss term
and quantization-aware training.

We tested our training methods on a real-world use case of
SNNs. Dynamic Vision Sensors (DVS) are used in neuromorphic
engineering as very-low-power sources of visual information, and
are a natural data source for SNNs simulated on neuromorphic
hardware. We transferred the weights learned with the methods
described above onto a spiking network simulation, and
used it to identify the digits presented to the DVS in the
MNIST-DVS dataset.

Our results show that adding a requirement on the number
of synaptic operations to the loss yields better results in terms
of accuracy compared to rescaling input weights and layer-
wise activation gains (Figure 2, orange). Using the SynOp loss
together with quantization during training outperforms the
simpler methods, allowing for further reduction of the SynOps
value with smaller losses in accuracy (Figure 2, blue).

Among the models trained in this way, we selected one with
a good balance between energy consumption and accuracy, and
used it for a direct comparison with the baseline (that is, weights

from an ANN without quantization and no additional loss
terms). The second and third panels of Figure 2 graphically show
the large decrease in the number of synaptic operations required
by each layer of our model, and the very small reduction in
performance. This particular model brings accuracy down from
96.3 to 95.0%, while reducing the number of synaptic operations
from 3.86M to 0.63M, an 84% reduction of the SynOp-related
energy consumption.

3.2. The SynOp Loss Leads to a Lower
Operations Count Compared to ANNs on
CIFAR10
SNNs are a natural way of working with DVS events, having
advantages over ANNs in event-driven processing. However,
it is also interesting to highlight the benefits of using SNNs
over ANNs in conventional non-spiking computer vision tasks,
e.g., CIFAR-10, where SNNs can still offer advantages in power
consumption. As stated in section 2.4, we have trained the
network with two approaches: (1) conventional ANN training
plus weight scaling as the baseline; (2) further training with
QReLU and SynOp Loss for performance optimization.

3.2.1. Weight Scaling
We first trained the analog All-ConvNet on CIFAR-10, attaining
an accuracy of 91.37% and a MAC of 306M (red star in
Figure 3). Then, we transferred the trained weights directly on
the equivalent SNN and scaled the weights of its first layer to
manipulate the overall activity level. This is shown by the blue
crosses in Figure 3: as the SynOp count grows, so does the
accuracy. However, the SynOps are around 10 times to the MAC
of ANN when the accuracy reaches an acceptable rate of 90.7%.
To improve on this result, we fine-tuned this training by adding
quantization and the SynOp loss.

A faster way to measure the same quantities is by testing the
analog model, with ReLU layers all replaced with QReLU, and
count the activation levels instead of the Sinabs spike counts.

Frontiers in Neuroscience | www.frontiersin.org 6 June 2020 | Volume 14 | Article 662

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

FIGURE 3 | Accuracy vs. SynOps curves on the non-spiking CIFAR-10 task. “ANN” results (red crosses and purple dots) are SynOp count estimations based on the

quantized activations of an analog network. “SNN” results (blue crosses and green dots) are SynOp values obtained by Sinabs simulation. The performance of models

fine-tuned with SynOp loss and quantization (dots) shows a clear advantage over weight rescaling (crosses). Right panel: a zoomed-in plot of the dashed region. A

high-light blue cross represents a good performance of the arbitrary weight scaling. The good trade-off points, trained with SynOp loss and quantization, listed in

Table 1 are marked with green “+.” The results from other work are marked with orange triangles. The original ANN model, for which the MAC is plotted instead of the

SynOps, is marked with a red star.

Estimations based on this quantized activation layers are shown
as red crosses in Figure 3. The performance on accuracy and
SynOps of the analog network and its spiking equivalent are well
aligned, showing that quantized activations are a good proxy for
the firing rates of the simulated SNN, at least in this regime.

3.2.2. SynOp Loss Optimization
We further fine-tuned one of the weight-scaled models obtained
above, with the addition of quantization-aware training and the
SynOp loss. Figure 3 also shows the classification accuracy and
SynOps for both quantized-analog and spiking models (blue and
green dots, respectively) trained with this method.

Multiple SNN test trials achieve better accuracy than the
original ANN model (red star, 91.37%), thanks to the further
training with QReLU. As the SynOp goes down, the accuracy
stays above the original ANN model until 91.43% when SynOps
are at 277M (see one of the green “+” in Figure 3). Note that, the
SNN has outperformed ANN both on accuracy and operations
count, where the number of MAC in the original ANN is 306M.
As another good example of accuracy-SynOp trade-off (90.37% at
127M), our model could perform reasonably well, above 90%, by
reducing 58% (Syn-MAC ratio is 0.42) of computing operations
from the original ANN. Therefore, running the SNN model on
neuromorphic hardware will benefit on energy efficiency not only
from the lower computation cost of SynOps but also from the
significant reduction on operation counts. Additionally, the plot
shows how this method outperforms weight scaling in terms of
operation counts by roughly a factor of 10 for all accuracy values.

As far as we know, our converted SNN model from the
AllConvNet reached the state-of-the-art accuracy at 91.75%
among SNN models (see detailed comparison in Table 1 and
Figure 3). In addition, our model is the smallest, at 1.9M

parameters, while the BinaryConnect model (Rueckauer et al.,
2017) is 7 times larger in size and WeightNorm, consisting of a
VGG-16 (Sengupta et al., 2019), is eight-fold in size. Although
achieving the best accuracy requires a SynOp of 2,179M, this
can easily be reduced by 27% by giving up 0.02% in accuracy,
see the two green “+” on the top-right of Figure 3. Comparing
to the result from Sengupta et al. (2019) (orange triangle on
the right of Figure 3), our model achieves 91.47% in accuracy
at 368M SynOps, thus only loses 0.08% in accuracy but saves
41% of SynOps and energy. Thanks to the optimization of
the SynOp loss, the number of SynOps is continuously pushed
down while keeping an appropriate accuracy, e.g., 85.71% at
a SynOp of 64M. This result not only outperforms most of
the early attempts of SNN models for the CIFAR-10 task (Cao
et al., 2015; Hunsberger and Eliasmith, 2015; Panda and Roy,
2016), but also brings down the SynOps to only 1/5 of the
MAC and saves 86% energy compared to Rueckauer et al.
(2017).

In a brief summary, (1) the energy-aware training strategy
pushes down the SynOps 10 times compared to its weight
scaling baseline; (2) the QReLU-trained SNN achieves the state-
of-the-art accuracy in CIFAR-10 task; and (3) the trade-off
performances between accuracy and energy show a significant
save in computation cost/energy comparing to existing SNN
models and the equivalent non-spiking CNN.

3.2.3. SynOp vs. Accuracy for Shorter Inference

Times
Unlike the DVS data, which has its own time dynamics, there
are no restrictions on how static images should be presented
to the network in time. Therefore we measure total spike
count instead of firing rates, thus calculating the total energy

Frontiers in Neuroscience | www.frontiersin.org 7 June 2020 | Volume 14 | Article 662

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

TABLE 1 | Comparison with best SNN models on CIFAR-10.

SNN models Net architecture Best accuracy Accuracy-SynOps trade-off

N. par. MAC Acc. SynOps
Syn-MAC

ratio
Acc. SynOps

Syn-MAC

ratio

BinaryConnect 14M 616M 90.85 N/A N/A 84.87 460M 0.75

WeightNorm 15M 313M 91.55 618M 1.98 91.55 618M 1.98

Ours 1.9M 306M
91.75

91.73

2179M

1593M

7.12

5.21

91.47

91.43

90.37

85.71

368M

277M

127M

64M

1.20

0.91

0.42

0.21

BinaryConnect: 8-layer ConvNet from Rueckauer et al. (2017); WeightNorm: VGG-16 model from Sengupta et al. (2019). The most efficient model and the best performance are

highlighted as bold fonts. Regarding to the comparisons on accuracy-SynOps trade-off, blue colored result in our models refers to the performance close to that of Rueckauer et al.

(2017); while green shows the result approximates to Sengupta et al. (2019). And the numbers in bold only highlight the winner in these two comparisons.

cost per image, independently of time. For example, Figure 3
shows how SynOp loss optimization pushes the SynOp to
a value lower than the MAC during training. This is one
of the approaches in which SNNs outperform ANNs in the
accuracy-operations trade-off; while the other benefit SNNs
naturally bring is the temporal encoding and computation.
SNNs continuously output a prediction from the moment when
the input currents are injected. This prediction becomes more
accurate with more time. For the experiments presented in the
previous sections, we only measure the classification accuracy
when the input is completely forwarded into the network,
Ndt = 10: the input currents are chosen so that the total
input accumulated over Ndt = 10 time steps is equivalent
to that of the analog network during training. In Figure 4,
we measure how SNN models perform in the course of the
entire process, Ndt = 1, 2, 3, ..., 10. The figure shows how
classification accuracy increases when more simulation time-
steps are allowed, and therefore more accumulated current is
injected to the network. Each gray curve represents a single
trained model, and the SynOp and accuracy are tested with
increasing Ndt . The colored dots mark the accuracy-SynOps pair
at Ndt = 4, 6, 8, 10 over all trained networks. The same-colored
dots approach to the expected SNN result (green dots at Ndt =

10) as Ndt increases.
On the other hand, understanding the relationship between

inference time and accuracy is very relevant when dealing
with DVS data. In general, a global reduction of spike rates

in a rate-based network causes a corresponding increase in

the latency, since more time is needed to accumulate enough
spikes for a reliable prediction. We compared one of our

networks with an equivalent model prepared through the
“robust” layer-wise normalization technique from Rueckauer

et al. (2017), with a few different values of input weight
scale. Figure 5 shows that the dependency of accuracy on

the inference time follows a similar trajectory for all these

models. We conclude that the increase in latency does not
depend on the specific method used for optimization, and our
network’s latency is similar to that of other models with similar
accuracy, despite the much lower power consumption (shown in
previous sections).

FIGURE 4 | Total activity and accuracy on the CIFAR-10 benchmark for

increasing inference times (current injected for longer times, thus leading to

more SynOps). Gray lines correspond to individual SNN models, tested at

Ndt = 1, ..., 10. To facilitate same Ndt comparison, colored dots were added

for all models at Ndt = 4, 6, 8, 10.

3.2.4. Effects on Weight Statistics
Common regularization techniques in ordinary neural networks
often involve the inclusion of an L1 or L2 cost on the network
weights. In rough, intuitive terms, L1 regularization has a
sparsifying effect, pushing smaller connections toward zero;
L2 regularization generally keeps the weights from growing to
excessively large values. Conversely, the effect on weights of
penalizing synaptic operations or reducing the network’s activity,
as we do with the SynOp loss term, is not immediately clear.
We investigate whether imposing low synaptic operations count
has a sparsifying effect on the weight structure. To this end, we
examine how many synaptic connections in our models are null
connections, which we define as weights w such that |w| < 10−9

(this threshold can be changed by several orders of magnitude
without impacting the conclusions). We performed this analysis
on the networks trained on the CIFAR-10 dataset, as explained
in the previous sections. These networks are much wider and

Frontiers in Neuroscience | www.frontiersin.org 8 June 2020 | Volume 14 | Article 662

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

FIGURE 5 | Limited-time inference on MNIST-DVS. Here, the accuracy of the networks is measured at a limited input length of 10, 20, 30, 40, 50 ms. The accuracy of

the network trained with our method (again, we chose the one indicated by the black circle in Figure 2) behaves, in relation to observation time, similarly to that of

other networks, but with lower power consumption. The models and color choices are the same as in Figure 2. The different purple lines correspond to different

rescaling of the input layer weights, chosen so to have a comparable accuracy with the other curves.

FIGURE 6 | Effect of the SynOp loss on the network’s weights. Left: the fraction of near-zero weights (|w| < 10−9) greatly increases in models where a stricter

reduction of SynOp counts were imposed. The test-set accuracy values for each model are also shown for comparison. Right: the distribution of weights as a

function of the SynOp count. Shaded areas indicate, from lighter to darker, the following inter-quantile ranges: 10–90%; 20–80%; 30–70%; 40–60%. The solid line is

the median weight. The models used for this test are the same as those shown in Figure 3, trained with quantization on static CIFAR images.

deeper than the ones used for theMNIST-DVS task, and therefore
can better show weight sparseness effects. Figure 6 (left) shows
how the fraction of null weights changes with the SynOp count
(and thus, of the regularization strength), and compares it with
the model’s accuracy. When the number of synaptic operations is
forced to be extremely low, the fraction of null weights reaches
values above 90%. A large increase in null connections, however,
is already noticeable for models above 80% accuracy, showing
that the SynOp loss term does have a sparsifying effect, and
that this is desirable. For the sake of completeness, in Figure 6

(right), we also show a depiction of the distribution of weights as
a function of the number of synaptic operations.

Setting synaptic weights to zero is effectively equivalent to
pruning certain connections between a layer and the next.
Other than L1 regularization of the weights, more sophisticated
pruning-and-retraining algorithms have been studied in the
machine learning literature (LeCun et al., 1990; Hassibi and

Stork, 1993). However, advanced pruning methods (such as
those based on Fisher information) are usually coupled with
partial retraining of the network, and are therefore more alike
a form of architectural search (Crowley et al., 2018). Due to the
retraining of the remaining weights, these forms of pruning are
not guaranteed to reduce the activity levels if not coupled to other
forms of regularization.

4. DISCUSSION AND CONCLUSION

We used two techniques which significantly improve
the energy requirements of machine learning models
that run on neuromorphic hardware, while maintaining
similar performances.

The first improvement consisted in optimizing the energy
expenditure by directly adding it to the loss function during
training. This method encourages smaller activations in all

Frontiers in Neuroscience | www.frontiersin.org 9 June 2020 | Volume 14 | Article 662

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

neurons, which is not in itself an issue in analog models, but can
lead to discretization errors, due to the lower firing rates, once
the weights are transferred to a spiking network. To solve this
problem, we introduced the second improvement; quantization-
aware training, whereby the network activity is quantized at
each layer, i.e., only integer activations are allowed. Discretizing
the network’s activity would normally reduce all gradients to
zero: this can be solved by substituting the true gradient with
a surrogate.

Applying these two methods together, we achieved an up
to 10-fold drop in the number of synaptic operations and the
consequent energy consumption in the DVS-MNIST task, with
only a minor (1-2%) loss in performance, when comparing to
simply transferring the weights from a trained CNN to a spiking
network. To demonstrate the scalability of this approach, we also
show that, as the network grows bigger to solve a much more
complex task of CIFAR-10 image classification, the SynOps are
reduced to 42% of the MAC, while losing 1% of accuracy (90.37%
at 127M). The accuracy-energy trade-off can be flexibly tuned at
training time. We also showed the consequences of using this
method on the distribution of network weights and the network’s
accuracy as a function of time.

While training based on static frames is not the optimal
approach to leverage all the benefits of spike-based computation,
it enables fast training with the use of state-of-the-art deep
learning tools. In addition, the hybrid strategy to train SNNs
based on a target power metric is unique to SNNs. Conversely,
optimizing the energy requirement of an ANN/CNN requires
modification of the network architecture itself, which can require
large amounts of computational resources (Cai et al., 2018).
In this work, we demonstrated that we can train an SNN
to a target energy level without a need to alter the network
hyperparameters. A potential drawback of this approach of
(re)training the model as opposed to simply transferring the
weights of a pre-trained model is brought to light when
attempting to convert very deep networks trained over large
datasets such as IMAGENET. Pre-trained deep CNNs trained
over large datasets are readily available on the web and can be
used to quickly instantiate a spiking CNN. The task becomes
much more cumbersome to optimize for power utilization using
the method described in this paper, ie. one has to retrain the
network over the relevant dataset for optimal performance.
However, our method can also be effectively used to fine-tune a
pre-trained network, removing the need for training from scratch

(Supplementary Figure 1). Furthermore, no large event-based

datasets of the magnitude of IMAGENET exist currently, and
perhaps when such datasets are generated, the corresponding
models optimized for spiking CNNs will also be developed and
made readily available.

The quantization and SynOp-based optimization used in
this paper can potentially be applied, beyond the method
illustrated here, in more general contexts such as algorithms
based on back-propagation through time to reduce power
usage. Such a reduction in power usage can make a large
difference when the model is ran on a mobile, battery-powered,
neuromorphic device, with potential for a significant impact in
the industrial applications.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: http://www2.imse-cnm.csic.es/caviar/
MNISTDVS.html, http://www.cs.toronto.edu/~kriz/cifar.html.

AUTHOR CONTRIBUTIONS

SS designed the research. QL and SS contributed to the methods.
MS, QL, and MB contributed the code and performed the
experiments. All authors wrote the paper.

FUNDING

This work was supported in part by H2020 ECSEL grant TEMPO
(826655). The funder was not involved in the study design,
collection, analysis, interpretation of data, the writing of this
article or the decision to submit it for publication.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Felix Bauer, Mr. Ole
Richter, Dr. DylanMuir, and Dr. Ning Qiao for their support and
feedback on this work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00662/full#supplementary-material

REFERENCES

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-

backpropagation in temporally encoded networks of spiking

neurons. Neurocomputing 48, 17–37. doi: 10.1016/S0925-2312(01)

00658-0

Cai, H., Zhu, L., and Han, S. (2018). Proxylessnas: direct neural architecture search

on target task and hardware. arXiv preprint arXiv:1812.00332.

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Crowley, E. J., Turner, J., Storkey, A., and O’Boyle, M. (2018). A Closer Look

at Structured Pruning for Neural Network Compression. arXiv preprint

arXiv:1810.04622.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S.

H., et al. (2018). Loihi: a neuromorphic manycore processor with

on-chip learning. IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.112

130359

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney, IL: IEEE), 1–8. doi: 10.1109/IJCNN.2015.7280696

Frontiers in Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 662

http://www2.imse-cnm.csic.es/caviar/MNISTDVS.html
http://www2.imse-cnm.csic.es/caviar/MNISTDVS.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://www.frontiersin.org/articles/10.3389/fnins.2020.00662/full#supplementary-material
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/IJCNN.2015.7280696
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy,

R., Andreopoulos, A., et al. (2016). Convolutional networks for fast

energy-efficient neuromorphic computing. Proc. Nat. Acad. Sci. U.S.A. 113,

11441–11446. doi: 10.1073/pnas.1604850113

Furber, S. (2016). Large-scale neuromorphic computing systems. J. Neural Eng.

13:051001. doi: 10.1088/1741-2560/13/5/051001

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Guo, Y. (2018). A survey on methods and theories of quantized neural networks.

arXiv preprint arXiv:1808.04752.

Hassibi, B., and Stork, D. G. (1993). “Second order derivatives for network pruning:

optimal brain surgeon,” in Advances in Neural Information Processing Systems,

164–171.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2017).

Quantized neural networks: training neural networks with low precision

weights and activations. J. Mach. Learn. Res. 18, 6869–6898.

Hunsberger, E., and Eliasmith, C. (2015). Spiking deep networks with LIF neurons.

arXiv preprint arXiv:1510.08829.

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Indiveri, G., and Sandamirskaya, Y. (2019). The importance of space and time for

signal processing in neuromorphic agents: the challenge of developing low-

power, autonomous agents that interact with the environment. IEEE Signal

Process. Mag. 36, 16–28. doi: 10.1109/MSP.2019.2928376

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Krizhevsky, A., Hinton, G., et al. (2009). Learning Multiple Layers of Features From

Tiny Images. Technical report, Citeseer.

LeCun, Y., Cortes, C., and Burges, C. J. (1998). TheMNIST database of handwritten

digits, 1998. Available online at: http://yann.lecun.com/exdb/mnist

LeCun, Y., Denker, J. S., and Solla, S. A. (1990). “Optimal brain damage,” in

Advances in Neural Information Processing Systems, 598–605.

Liu, Q., Pineda-García, G., Stromatias, E., Serrano-Gotarredona, T., and Furber,

S. B. (2016). Benchmarking spike-based visual recognition: a dataset and

evaluation. Front. Neurosci. 10:496. doi: 10.3389/fnins.2016.00496

Liu, Q., Richter, O., Nielsen, C., Sheik, S., Indiveri, G., and Qiao, N.

(2019). “Live demonstration: face recognition on an ultra-low power

event-driven convolutional neural network ASIC,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops.

doi: 10.1109/CVPRW.2019.00213

Marblestone, A. H., Wayne, G., and Kording, K. P. (2016). Toward an

integration of deep learning and neuroscience. Front. Comput. Neurosci. 10:94.

doi: 10.3389/fncom.2016.00094

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J. (2016). Pruning

convolutional neural networks for resource efficient inference. arXiv preprint

arXiv:1611.06440.

Mostafa, H. (2017). Supervised learning based on temporal coding in spiking

neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.

doi: 10.1109/TNNLS.2017.2726060

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in

spiking neural networks. arXiv preprint arXiv:1901.09948.

Neil, D., Pfeiffer, M., and Liu, S.-C. (2016). “Learning to be efficient: algorithms

for training low-latency, low-compute deep spiking neural networks,” in ACM

Symposium on Applied Computing. Proceedings of the 31st Annual ACM

Symposium on Applied Computing (New York, NY: Association for Computing

Machinery). doi: 10.1145/2851613.2851724

Nicola,W., and Clopath, C. (2017). Supervised learning in spiking neural networks

with force training. Nat. Commun. 8:2208. doi: 10.1038/s41467-017-01827-3

Panda, P., and Roy, K. (2016). “Unsupervised regenerative learning of hierarchical

features in spiking deep networks for object recognition,” in 2016 International

Joint Conference on Neural Networks (IJCNN) (Vancouver, CA: IEEE), 299–306.

doi: 10.1109/IJCNN.2016.7727212

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).

“Automatic differentiation in PyTorch,” in NIPS Autodiff Workshop (Long

Beach).

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen,

A., et al. (2019). A deep learning framework for neuroscience. Nat. Neurosci.

22, 1761–1770. doi: 10.1038/s41593-019-0520-2

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks

for image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.

00682

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: VGG and residual architectures. Front. Neurosci.

13:95. doi: 10.3389/fnins.2019.00095

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). Poker-DVS and

MNIST-DVS. Their history, how they were made, and other details. Front.

Neurosci. 9:481. doi: 10.3389/fnins.2015.00481

Shrestha, S. B., and Orchard, G. (2018). “Slayer: spike layer error reassignment in

time,” in Advances in Neural Information Processing Systems, 1412–1421.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving

for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806.

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy

considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243.

doi: 10.18653/v1/P19-1355

Thakur, C. S. T., Molin, J., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N.,

et al. (2018). Large-scale neuromorphic spiking array processors: a quest to

mimic the brain. Front. Neurosci. 12:891. doi: 10.3389/fnins.2018.00891

Yang, T.-J., Chen, Y.-H., and Sze, V. (2017). “Designing energy-efficient

convolutional neural networks using energy-aware pruning,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (Honolulu),

5687–5695. doi: 10.1109/CVPR.2017.643

Conflict of Interest:All authors were employed by SynSense AG during the course

of the work published in this article.

Copyright © 2020 Sorbaro, Liu, Bortone and Sheik. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 11 June 2020 | Volume 14 | Article 662

https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1109/MSP.2019.2928376
http://yann.lecun.com/exdb/mnist
https://doi.org/10.3389/fnins.2016.00496
https://doi.org/10.1109/CVPRW.2019.00213
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1145/2851613.2851724
https://doi.org/10.1038/s41467-017-01827-3
https://doi.org/10.1109/IJCNN.2016.7727212
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2015.00481
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1109/CVPR.2017.643
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Optimizing the Energy Consumption of Spiking Neural Networks for Neuromorphic Applications
	1. Introduction
	2. Materials and Methods
	2.1. Training Strategies
	2.1.1. Parameter Scaling
	2.1.2. Synaptic Operation Optimization
	2.1.3. Quantization-Aware Training and Surrogate Gradient

	2.2. Spiking Network Simulations With Sinabs
	2.3. Digit Recognition on DVS Recordings
	2.3.1. Task and Dataset
	2.3.2. Network Architecture

	2.4. Object Recognition on CIFAR-10
	2.4.1. Task and Dataset
	2.4.2. Network Architecture and Training Procedure
	2.4.3. SynOps Optimization

	3. Results
	3.1. The SynOp Loss Term Leads to a Reduction in Network Activity on DVS Data
	3.2. The SynOp Loss Leads to a Lower Operations Count Compared to ANNs on CIFAR10
	3.2.1. Weight Scaling
	3.2.2. SynOp Loss Optimization
	3.2.3. SynOp vs. Accuracy for Shorter Inference Times
	3.2.4. Effects on Weight Statistics

	4. Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

