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Biologically Plausible Class
Discrimination Based Recurrent
Neural Network Training for Motor
Pattern Generation
Parami Wijesinghe*†, Chamika Liyanagedera † and Kaushik Roy

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States

Biological brain stores massive amount of information. Inspired by features of the

biological memory, we propose an algorithm to efficiently store different classes

of spatio-temporal information in a Recurrent Neural Network (RNN). A given

spatio-temporal input triggers a neuron firing pattern, known as an attractor, and it

conveys information about the class to which the input belongs. These attractors are the

basic elements of the memory in our RNN. Preparing a set of good attractors is the key to

efficiently storing temporal information in an RNN.We achieve this bymeans of enhancing

the “separation” and “approximation” properties associated with the attractors, during

the RNN training. We furthermore elaborate how these attractors can trigger an action via

the readout in the RNN, similar to the sensory motor action processing in the cerebellum

cortex. We show how different voice commands by different speakers trigger hand

drawn impressions of the spoken words, by means of our separation and approximation

based learning. The method further recognizes the gender of the speaker. The method is

evaluated on the TI-46 speech data corpus, and we have achieved 98.6% classification

accuracy on the TI-46 digit corpus.

Keywords: echo state networks, separation property, approximation property, class discrimination, motor

pattern generation

1. INTRODUCTION

The biological brain continues to be one of the most astounding enigmas of nature. Unearthing
the brain’s mysteries for inspiration is prevalent in recent artificial neuron modeling efforts. For
instance, spiking neural networks have gained attention over the years due to their information
representation with biological neurons (Davies et al., 2018; Wijesinghe et al., 2018). Owing to
spike based inter-neuron communication, the brain has evolved to achieve its signal-processing
capabilities, at a power consumption which is orders of magnitude smaller than the state-of-
the-art super computers (Cruz-Albrecht et al., 2012). Similar to the spike based communication,
the “memory” is another important aspect that makes the biological brain fascinating. Memory
is the information stored inside the brain by tuning synaptic weights through supervised and
unsupervised learning transpired over a duration of time (Reber, 2010). A human brain can
typically store information worth∼ 2.5 petabytes, which is equivalent to the amount of data telecast
through a television over 300 years (Nabavi et al., 2014). Other recent studies have shown that it
could potentially be even 10-folds higher than what it was estimated, due to the discovery of 26
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distinguishable synaptic strengths (Bartol et al., 2015). In contrast
to digital memories, the content inside the brain is not byte-
addressable (Forsythe et al., 2014). Instead, the content operates
within a dynamic dictionary that constantly shifts to make room
for new meaning (Forsythe et al., 2014).

The memory of the biological brain is fundamentally
associative. As hypothesized and based on experiments
conducted on monkeys (Suzuki, 2007), the hippocampus is
important for the early formation of the new associations in
memory. A new piece of information can be absorbed well if
it can be associated to an existing knowledge that is already
anchored in the memory. For example, if one wants to learn
a new word called rubeus in Latin, which means “red,” he/she
can potentially think about the “r” sound at the beginning of
both the words. Here the word “red” is in the existing memory
and sound “r” is the association to the new word. The person
can now easily remember that rubeus means red. Finding an
association to an existing content is not merely sufficient to
properly remember new data. For instance, consider the same
previous word rubeus. The person who just remembered the
association of the “r” sound will only be able to answer the
question “which color is rubeus in Latin?,” but not “what is ‘red’
in Latin?.” If one does not remember the actual word, the answer
to question “which color is ravus in Latin?” would again be “red”
since the person merely remembers some association with the
sound “r.” The answer is incorrect since ravus means gray. In a
more complicated situation, assume one should remember the
word rot which is red in German along with rubeus. Now the
person should consider ways of distinguishing the two words
despite the fact that they have the same meaning “red,” in order
to properly digest them simultaneously.

In this work, we consider the above phenomenon related to
memory and construct an algorithm to help store significant
amounts of data in a neural network. The brain is capable
of remembering both static (example an image) and temporal
(example a song) information. We will be focusing on the latter
form of data learning for a recurrent neural network. One
hypothesis for the way the brain stores temporal information
is by means of attractors (Laje and Buonomano, 2013). This
hypothesis is built upon the functionality of the cerebellum: a part
of the biological brain that plays an important role inmaintaining
correct timing of motor actions. The role of cerebellum in
sensory-motor actions is explained by means of experiments
conducted on cerebellar patients (Jacobson et al., 2008). Such
patients have increased temporal variability between motor
actions, such as inaccurate timing of ball release when throwing a
ball (Timmann et al., 2001) or variability shown during rhythmic
tapping (Ivry et al., 1988). Cerebellum is also known for using
associative learning to pair external stimuli with motor timing
tasks (Paton and Buonomano, 2018). The classical eyeblink
conditioning experiment shows how associative learning is
used to program the cerebellum to react to a conditional
stimulus such as a tone with an eyeblink reflex (Medina and
Mauk, 2000; Johansson et al., 2016). This experiment is a
perfect demonstration of the cerebellum’s capacity for temporally
specific learning. There are many standing theories as to how
the cerebellum generates these temporal patterns and one such

theory is the aforementioned attractor hypothesis (Laje and
Buonomano, 2013). In this work we implement a biologically
plausible reservoir computing (Wang and Li, 2016; Tanaka et al.,
2019) network that uses this attractor hypothesis to emulate the
temporal pattern generation capabilities of the cerebellum.

The temporal inputs that belong to a particular class trigger
a certain internal neuron firing pattern. These patterns can be
thought of as a representation of the existing knowledge in the
memory corresponding to the temporal input. Let us call these
anchored knowledge (or the internal dynamics of the network)
as class attractors. The validity of the “attractor” hypothesis
for large amounts of data and classes is yet to be analyzed.
For instance, the work in Laje and Buonomano (2013) shows
motor pattern generation application for voice commands but
the number of inputs and classes are limited. As the number
of different pattern classes increases, the corresponding class
attractors are more likely to stay close to each other leading
to more misclassifications. For example, one might mishear the
word “bold” as “bald.” Here we propose a mechanism to enhance
the deviation between the attractor dynamics by extracting key
differences between input pattern classes.

In order to recognize whether a projection of a particular
input is a better representation (in the context of a classification
task), certain properties must be considered. Two such properties
are “separation” and “approximation.” These are analogous to
the phenomenon described previously on associativity in the
biological memory. In a classification problem, projections of
inputs corresponding to two different classes must stay apart
from each other (separation). The projections that belong to
the same class must stay close to each other (approximation).
For instance, an utterance of the word “one” by male speakers
should converge to one attractor (approximation). When this
particular attractor is triggered, brain recognizes it as the word
“one.” If the same word spoken by females also triggers the same
attractor, then the brain will not be able to recognize whether the
speaker is female or male, despite the fact that it could recognize
the spoken word. Therefore, in a scenario where the gender of
the speaker must be identified, the attractor triggered by the
male speakers and female speakers for the same word should be
different (separation). Closer the attractors are, harder it would
be to recognize the gender of the speaker. Our proposed learning
approach (for a recurrent neural network) takes into account
these properties, and improves class discrimination for better
accuracy in a sensory motor task. i.e., we convert utterances
of words (sensory data) into handwritten impressions (motor
action) using reservoir computing. The network furthermore
recognizes the gender of the speaker, and generates an impression
of letter “f” (for female) or letter “m” (for male).

In the context of temporal information processing, one can
find numerous studies investigating the speech recognition
problem using strictly feed forward networks such as
Convolutional Neural Networks (Swietojanski et al., 2014;
Palaz et al., 2015), Deep Neural Networks (Hinton et al., 2012),
Hidden Markov Models (Tran and Wagner, 1999), and Spiking
Neural Networks (Liu et al., 2019; Zhang and Li, 2019). Recently,
biologically inspired training methodologies (Neftci et al., 2016)
and reservoir computing solutions such as Liquid State Machines
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(Wang et al., 2015; Jin and Li, 2017) or Echo State Networks
(ESN) (Skowronski and Harris, 2007; Laje and Buonomano,
2013) are been investigated extensively as an effort to bridge the
gap between biological plausibility and practicality. Similarly,
the work presented here are more geared toward replicating
the activity of the cerebellum in generating complex motor
patterns. We employ an ESN configured as a bio plausible
practical implementation on how the cerebellum performs
complex motor timing tasks. Like the cerebellum, the proposed
network reacts to a temporal input and generates a timed motor
response using a single reservoir network. A strictly feed forward
network would be sufficient for the task if the objective was to
simply classify the audio inputs into classes. However, in order
to generate pre-determined timed responses such as motor tasks,
a feed forward network would require additional timers and
memory elements to store the sequences of movements to be
performed.

An ESN is a simple form of a recurrent neural network
with a pool of randomly interlinked leaky integrate analog
neurons called the reservoir (Jaeger, 2007). The time varying
inputs are connected to the reservoir by means of synapses of
random weights. The reservoir neuron dynamics are directed
toward a set of output neurons by means of a readout. These
readout connections are trained using supervised methods.
Some architectures use feedback connections from the output
neurons to the reservoir neurons. However, in this work
we do not use such feedback connections. In addition to
training the readout connections, we also tune the input-
reservoir connections and the recurrent connections within the
reservoir itself.

The training mechanism consists of three major steps.
1. Separation based input-reservoir connection training, 2.
Approximation based innate dynamic training of the reservoir
connections, and 3. Readout connection training for motor
pattern generation. During the first step, we obtain a set of
well-separated innate dynamics per class (class attractors). Then
in the second step, we converge all the reservoir dynamics of
inputs in a given class, to its corresponding class attractor. Finally
we convert the reservoir dynamics to a set of time varying
coordinates to generate an impression of the spoken word, by
means of the readout layer. We employ the entire TI46-digit and
alphabet corpuses for our experiments. Following are the key
contributions of this work.

1. Explaining the need of a set of well-separated attractors when
dealing with bigger data sets.

2. Proposing a training algorithm to initially separate the
attractors, and then make the reservoir dynamics for input
instances, converge to their corresponding class attractor
(discrimination based training).

3. Using two full data sets, validate how the accuracy improved
with the separation based training.

4. Show the ability to generate motor patterns based on other
attributes of the inputs. Apart from drawing the spoken
character, the trained ESN can now recognize the gender of
the speaker and generate a motor pattern corresponding to
that simultaneously.

5. Use the network on an image based application to show the
generality of the discrimination based training method.

2. MATERIALS AND METHODS

2.1. Echo State Networks—The Network
Structure
In this section, the structure of the recurrent neural network
involved in this work will be explained. For spatio-temporal data
processing, we used an echo state network, a simple form of
a recurrent neural network architecture (when compared with
Long Short Term Memory networks or LSTMs; Hochreiter and
Schmidhuber, 1997). An ESN (Jaeger, 2007) consists of a pool
of neurons recurrently interlinked, called the reservoir, and a
readout layer. Inputs are applied on the reservoir neurons by
means of input-to-reservoir connections. Owing to the recurrent
connections within the reservoir, a temporally varying input
signal applied on the network at time t = 0, could potentially
leave the neurons firing (an “echo” of the input) even after the
input has been detached (hence the name echo state network).
Such “echoes” or residuals of the inputs can be measured through
the output layer in order to perform a particular task. The output
connections are typically trained using supervised methods such
as delta rule, backpropagation (Rumelhart et al., 1988) and
recursive least square algorithm (RLS) (Haykin, 1991). Some
architectures (Tanaka et al., 2019) also have a set of feedback
connections from the output to the reservoir (Figure 1). There
have been multiple opinions on whether the brain acts as a
feedback system, and according to studies (Byrne and Dafny,
1997), the brain is mostly a feedforward system. Feedforward
systems are fast and require certain knowledge about the outcome
that correspond to a given input (similar to a lookup table). On
the other hand, systems with feedbacks continuously monitor the
output in order to modify the internal dynamics to achieve a
certain target output. Such systems are sluggish than feedforward
systems. Therefore, with the goal to achieve faster training, we
did not use the feedback connections in our structure.

2.1.1. Reservoir Neurons
The neurons within the reservoir are leaky integrate neurons
(Jaeger, 2007). The dynamics of the neurons are analog in fashion
and can be given by the following equation.

− τuni
dx(t)

dt
= −αlx(t)+Wresr(t)+Winu(t) (1)

r(t) = tanh
(

x(t)
)

where x(t) is the state of the neuron, r(t) is the firing rate of
the neuron (output of the neurons, which is simply a non-linear
function of the neuron’s state),Wres ∈ R

nres×nres is the connection
matrix inside the reservoir, andWin ∈ R

ni×nres is the connection
matrix from the inputs [u(t)] to the reservoir. τuni is the uniform
time constant, and αl is the leak coefficient. The output of the
network is taken from the readout as follows.

y(t) = Woutr(t) (2)
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FIGURE 1 | The structure of an echo state network. A pool of randomly interlinked neurons known as the reservoir is the major component of an ESN. The neurons

are analog leaky integrate neurons. Time varying inputs are connected to the reservoir and the reservoir neuron dynamics are decoded at the end of the readout.

Some ESN architectures have feedback connections from the output to the input.

TABLE 1 | The hyper-parameters and their values used in this work.

Parameter name Value

Sensory phase 300 ms

Motor phase 300 ms

Uniform time constant 0.04 ms

Leak constant 0.8

Time step 1 ms

Input channels 39

Output dimensions 2

Spectral radius scaling factor 1.4

Inverse learning rate (separation) 500

Inverse learning rate (approximation) 100

where Wout ∈ R
nres×nout is the connection matrix from reservoir

neurons to the outputs. The constant parameter values were
selected as proposed in literature (Laje and Buonomano, 2013)
and certain parameter were swept till the highest accuracy
was achieved for a given number of neurons. The values are
illustrated in Table 1. For solving the differential equations, we
used standardHeun’smethod (Süli andMayers, 2003) with a time
step (dt) of 1 ms.

2.1.2. Network Connections
In a conventional echo state network, the reservoir and input-
to-reservoir connections are randomly generated and only the
final readout weights are trained. However, all the connections
in the network in this work are trained using RLS learning
rule. In a reservoir with randomly initialized weights (i.e., when
no learning is involved to tune the connections), it is a good
practice to have sparsity within the network in order to get
better projections of the inputs. For example, multiple sparsely
connected small reservoirs can give better class discrimination
(hence better accuracy) for spatio-temporal data classification
tasks using reservoir computing (Wijesinghe et al., 2019). This
is due to the fact that different combinations from the same set
of inputs were fed to the readout by means of an ensemble of
reservoirs. However, in this work, since we are training all the
network connections, we left the percentage connectivity equal

to 100%. This gives more number of hyper parameters to change
and finding the optimum set of weights is much faster using
the RLS method (Sussillo and Abbott, 2009). Before training,
the input-reservoir connections and within reservoir recurrent
connections were randomly initialized using a normal Gaussian
distribution. The reservoir connections were scaled by a factor in
such a way that the spectral radius of the connection matrix is
rs = 1.5 (Laje and Buonomano, 2013).

2.2. Application
We perform a sensory motor application where the sensory
input data are utterances of words, and the outputs are hand
drawn impressions related to the spoken word and the speaker.
For example, if the input voice command is an utterance of
“six” by a female speaker, the output motor action would be
to draw digit 6, and a letter “f.” The inputs words are either
utterances of digits or letters in the alphabet. In order to show
the generality of our training method, we further included a third
application that does not involve voice as an input command.
In this application, the input is a hand drawn image, and
the output is a time sequence that can be used to draw the
corresponding digit. It further generates a letter “i” or “n” as
another output at the same time, depending upon the face of the
drawn digit (“i” for italic, “n” for normal character face). Refer to
the Supplementary Materials for further details and results on
this application.

2.2.1. Inputs
The first step is converting the input commands to a proper
format to be processed by the network. For the input voice
commands, the audio samples available in wave format were
preprocessed based on Lyon’s Passive Ear model (Lyon, 1982)
of the human cochlea, using Slaney’s MATLAB auditory toolbox
(Slaney, 1998). The model was used to convert each audio sample
to temporal variation in the amplitude of 39 frequency channels.
The 39 signals were then down sampled (×4) in the temporal axis
and applied as the input to the reservoir. The time during which
the input data is applied on the network is the “sensory phase.”

The two temporal (speech) data sets used in this work are:
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1. Digit sub-vocabulary of the TI46 speech corpus (Liberman
et al., 1993) (TI-10)

2. TI 26-word “alphabet set”; a sub-vocabulary in the TI46 speech
corpus (Liberman et al., 1993) (TI-alpha).

TI-10 consists of utterances of the words “zero” through “nine”
(10 classes) by 16 speakers. There are 1, 594 instances in the
training data set and 2, 542 instances in the testing data set. TI-
alpha, on the other hand, has utterances of the words “A” through
“Z” (26 classes). There are 4, 142 and 6, 628 instances in the
training and testing data sets, respectively.

2.2.2. Outputs
At the end of the sensory phase, the residual dynamics in the
reservoir are converted to time varying signals at the output by
means of a readout layer. The readout layer gives two sets of
time varying x and y coordinates of hand drawn impressions
(Figure 2). For the applications where the input is a set of voice
commands, one such x and y coordinate set recognizes the gender
of the speaker and draw either “f” (if female) or “m” (if male)
accordingly. The other coordinates set generates the hand drawn
impression of the uttered digit or letter. The duration within
which these impressions are drawn is the “motor phase.” The
motor phase begins just after the sensory phase.

The network presented in this work is different from other
networks that are used for traditional identification problems.
The output of our network does not specifically say what class
the input belongs to. The network responds to a spatio-temporal
input with a spatio-temporal output based on prior knowledge,

and the observer performs the classification task when they are

reading the output. If an input that does not belong to any of
the trained classes is presented to the network, the network can
produce some temporal pattern that is not recognizable by any
observer. Hence this is an open-set problem because the output
can take infinitely different forms.

3. RESULTS

3.1. Training Methodology
The temporal inputs applied during the sensory phase trigger the
neurons to fire in a certain way during the motor phase. The
goal is to activate the same neuron firing pattern when inputs
in a particular class are fed. i.e., there must be a specific firing
pattern per class as shown in Figure 3. These reservoir neuron

firing patterns are called the “class attractors.” The key idea of
the training methodology is to create a good set of class attractors
by means of changing the input-reservoir and reservoir-reservoir
connections, and changing the reservoir-readout connections to
draw the corresponding impression. Following subsections will
explain how the weights are systematically changed to craft these
attractors. The entire training process has three major steps as
explained below.

3.1.1. Step 1 : Separation Based Input-Reservoir

Connection Training
The first step is creating a set of proper attractors which are
triggered by input instances that belong to different classes. In
order to assign an initial value to the class attractors, a set of
inputs that represent each class (or class-template inputs) in the
data set is required. We categorize the instances in the data set
by both the spoken word and the gender of the speaker. For
example, the TI-10 data set contains utterances of words by 8
male speakers and 8 female speakers, and each speaker utters the
same word multiple times. Here the word “six” spoken by female
speakers is considered as one class (notified as Class6,f ), and the
word “six” spoken bymale speakers is considered as another class
(notified as Class6,m). This class assignment is done since the
readout layer recognizes both the spoken word and the gender
of the speaker. Therefore, the total number of classes assigned
for the TI-10 dataset is 20 (10 digits ×2 genders). Similarly, the
total number of classes assigned for the TI-alpha dataset is 52 (26
alphabet letters× 2 genders).

A set of class-template inputs are created by taking the mean
value of all the instances in each class. For example, assume there
are f frequency channels, nT number of time steps in the sensory
phase, and nf number of female speakers speaking the word “six”
i times each. This gives nf × i number of 2 dimensional (f × nT)
examples in Class6,f . The average 2 dimensional input among
these nf × i examples is evaluated and assigned as the input
template of the particular class.

The generated class-template inputs are then applied on the
reservoir to obtain the “innate dynamics” (“innate dynamics”
are the firing rate dynamics of the neurons in the reservoir,
for an applied input, under zero initial conditions and in the
absence of noise) that can be considered as the initial assignment
for class attractors. The work in Goudar and Buonomano
(2018) uses these innate dynamics as the final class attractors

FIGURE 2 | The inputs and outputs of the recurrent network. The network dynamics are divided in to two phases. Sensory phase during which the input is applied,

and the motor phase during which two motor patterns are generated.

Frontiers in Neuroscience | www.frontiersin.org 5 August 2020 | Volume 14 | Article 772

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wijesinghe et al. Class Discrimination

FIGURE 3 | Innate training: the instances that belong to one class should converge to a pre-assigned attractor.

(without any modifications), and the reason behind using the
dynamics inherently generated by the reservoir as the attractors
is not evident.

The difference among the innate dynamics indicate how
separated the class attractors are. If two class attractors are close
to each other, it is more likely that some input instances that
belong to one class can trigger an attractor that corresponds to
the other class, instead of converging to the correct class attractor.
This will lead to erroneous classification, or improper motor
pattern generation at the readout layer. When the number of
classes and examples are higher, the possibility of two attractors
staying close to each other in the multi-dimensional space is
higher. Hence there is a need for separating the class attractors.

In order to separate the class attractors, a quantitative
measure of separation is required. Multiple measures for
separation (a measure of “kernel quality”) in reservoirs are
available in literature. Two such key ways of quantifying
separation are known as pairwiseseparationproperty and
linearseparationproperty (Maass et al., 2005; Legenstein and
Maass, 2007; Wang et al., 2015). The pairwise separation
property is defined as the distance between two continuous
time states of a reservoir [xu(t) and xv(t)], resultant from two
separate inputs u(t) and v(t). The distance can be calculated by
the Euclidean norm between xu(tn) and xv(tn) at sample point tn.
The average across all the sampled instances (∀tn) can be used to
evaluate the final pairwise separation property, as explained in
the following equation

SPPW = 1

Nsamples

Nsamples
∑

n = 1(0<tn<T)

||xu(tn)− xv(tn)|| (3)

where Nsamples is the number of sample points. The pairwise
separation property (SPPW) can be used as a measure of the

separation property for two given inputs. However, most real-
life applications deal with more than two input spike trains.
To address this, linear separation property is proposed as a
more suitable quantitative measure to evaluate the reservoir
computational power (Maass et al., 2005; Legenstein and Maass,
2007; Wang et al., 2015). The linear separation property (SPlin) is
the rank of the N ×mmatrixMS, which contains the continuous
time states [xu1 (t0), ..., xum (t0)] of the reservoir as its columns.
The continuous time state xui (t0) is the reservoir response to
the input ui (from the training set), at time t = t0. If the rank
of the matrix is m, it guarantees that any given assignment of
target outputs yi ∈ R

Nout at time t0 can be attained by means
of a linear readout (Maass et al., 2005). The rank of MS is the
degree of freedom the linear readout has, when mapping xui to
yi. Even though the rank is < m, it can still be used as a measure
of reservoir quality(Maass et al., 2005).

MS = [xu1 (to), ..., xui (to), ..., xum (to)] (4)

SPlin = rank(MS)

However, it is noteworthy that when the number of reservoir
neurons is much larger than the number of inputs that is required
to be separated (N ≫ m), the rank of the matrix MS is most
likely equal to m (SPlin = m). Furthermore, SPlin is a discrete
function and two reservoirs having the same SPlin does not
necessarily mean that their separation capability is identical. It
is also noteworthy that the reservoir responses tom inputs can be
further separated, even though the SPlin has reached its highest
possible valuem.

In our work, it is required to increase the separation between
the attractors. The number of attractors is equal to the number of
classes, which is larger than two (SPW is not applicable) andmuch
smaller than the reservoir neurons (SPlin is not applicable). The
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need for a quantitativemeasure of separation, that is a continuous
function of the ESN weights arise. Therefore, we use insights
from linear discriminant analysis (LDA) (Fisher, 1936; Fukunaga
and Mantock, 1983; Hourdakis and Trahanias, 2013) to quantify
the separation between the class attractors. The between class
scatter matrix in the following equation contains information
on how far each data point is located from the global mean,
in the high dimensional space (Fukunaga and Mantock, 1983;
Wijesinghe et al., 2019). Each data point is a vector that contains
all the elements in an attractor matrix.

Sb =
L

∑

i = 1

P(ωi)(µi − µg)(µi − µg)
T (5)

In the equation, µi is the sample mean vector (centroid) of class
ωi, P(ωi) is the probability of class ωi, L is the number of classes,
and µg is the global sample mean vector. The single measure that
quantifies the separation is given by the trace of the above matrix
(Wijesinghe et al., 2019).

SP = trace(Sb) (6)

Higher SP suggests better separation among the attractors. In
the first step of the training process, we change the input-
reservoir connections, such that the SP is increased. We use a
modified version of the inverse of RLS for this purpose. The
standard RLS learning rule, implemented according to the first-
order reduced and controlled error (FORCE) algorithm can be
used as follows to obtain a target dynamic in the reservoir
(Sussillo and Abbott, 2009)

w(t) = w(t − 1t)− P(t)xin(t)e(t) (7)

w(t − 1t) ∈ R
ni×nres is the input-reservoir connection matrix

before the weight update, xin(t) ∈ R
ni is the input dynamics at

time t. Each weight update is done in 1t time steps and it can be
larger or equal to the simulation time step. The rule is similar to
the delta rule but with multiple learning rates given by the matrix

P(=
(

xin(t)x
T
in(t) + αI

)−1
,α is a constant), which is a running

estimate of the inverse of the correlation matrix of xin(t) (Sussillo
and Abbott, 2009). e(t) ∈ R

ny is the error between the target
f (t) and the actual reservoir dynamics at time t. ni, nres, and ny
are the number of input frequency channels, number of reservoir
neurons and number of readout neurons, respectively.

e(t) = wT(t − 1t)xin(t)− f (t) (8)

The learning rule makes the dynamics of the reservoir to reach a
target function f (t). However, the goal is to increase the distance
between a set of attractors and to that effect, we modify the
learning rule as follows. First we pick an input template of a
particular class i, and apply it on the reservoir. The resultant
reservoir dynamics of class i are then compared with previously
evaluated attractors of class j (j = 1, 2, ...., L; j 6= i) to evaluate the
difference [ei,j(t)] between them. Ideally we expect this difference

to be large to obtain a set of well separated attractors. Considering
this, the weight update rule can be modified as follows.

w(t) = w(t − 1t)+ γP(t)xin(t)
(−→
1 ⊘ ei,j(t)

)

(9)

where
(−→
1 ⊘ ei,j(t)

)

gives the element-wise inverse of the
error vector, and γ is a scaling factor. The input-reservoir
weight update method extracts subtle differences in the
input templates and exaggerates them, so that the differences
are well-portrayed in the attractors. Figures 4A,B show
how the attractors of Class1,f and Class2,f in the TI-10
dataset vary with time, before and after the weight update,
respectively. Note that the separation between the two classes has
visibly improved.

The main goal of the above elaborated first step (where we
train the input-reservoir connections), is getting a set of well
separated attractors to converge to. The attractors are directly
dependent upon the applied inputs. If the input-reservoir weights
were left randomly initialized and untrained, the contribution
from the inputs will be random. Inputs from different classes
can have different features. For instance, a female utterance of
“one” can have more high frequency components than a male
utterance of “one.” We need to enhance the contribution from
these distinguishing features in the input, to the reservoir. If
this step is done collectively with the reservoir weights, we will
have more hyper parameters to optimize. Therefore, during
collective weight training, the changes in input-reservoir weights
will be miniscule (in order to achieve the same separation
between attractors given by only training the input-reservoir
weights). For instance, when only input weights were used to
train during the first step, 51% of the weight changes (1w)
were > ±0.01. In contrast, when the input-reservoir and
reservoir-reservoir connections were trained collectively, only
0.25% of the input weight changes were > ±0.01. By training the
input-reservoir weights separately, we get the best contribution
from the input toward the reservoir and the optimum usage
of input-reservoir weights which otherwise will be left almost
untrained. Furthermore, collectively training the input -
reservoir and reservoir-reservoir connections is computationally
demanding. For instance, obtaining the attractors with
collective weight training took 43× more time, than the
input-reservoir weight training, for approximately the same
separation amounts.

3.1.2. Step 2 : Approximation Based Reservoir

Connection Training
After generating a well separated set of class attractors, the
next step is converging all the instances in each class to their
corresponding attractor. Figure 5A shows how the reservoir
dynamics change for different instances in the same class. It
is evident from the figure that all the instances in a class do
not necessarily converge to the class attractor (shown in black
dashed lines). To make them close to each other, here we train
the reservoir-reservoir connections by means of the RLS rule
implemented according to the FORCE algorithm (Sussillo and
Abbott, 2009). The synaptic weight update is carried out as
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FIGURE 4 | The neuron attractor dynamics of 16 randomly picked neurons for two input voice utterance classes, viz. Class1,f and Class2,f . (A) The dynamics before

separation enhancement training (B) The dynamics after separation enhancement training. Note that the separation between the class attractors have

significantly improved.

FIGURE 5 | The neuron firing rate dynamics of 16 randomly picked neurons for multiple input voice utterances of “one.” (A) The dynamics before innate training (B)

The dynamics after innate training. The black dashed line shows the innate dynamics of the same neurons for the class “one”.

shown below.

wres(t) = wres(t − 1t)− P(t)r(t)e(t), (10)

where wres ∈ R
nres×nres is the connection matrix within the

reservoir, r(t) gives the reservoir neuron firing rate at time t, e(t)
gives the error between the actual reservoir dynamics and the
corresponding attractor dynamic. P(t) is anN×Nmatrix updated
along with the weights as follows

P(t) = P(t − 1t)− P(t − 1t)r(t)rT(t)P(t − 1t)

1+ rT(t)P(t − 1t)r(t)
(11)

The initial value of P(t) is selected as P(0) = I/α, where 1/α is the
learning rate. As shown in Figure 5B, the reservoir dynamics are
close to the class attractor after the training step. In this second
step, we have achieved proper approximation.

3.1.3. Step 3 : Readout Training for Motor Pattern

Generation
In the previous two steps, we obtained a set of well separated
attractors, and made all the instances of each class to converge
to their corresponding class attractor. From these class attractors,
now the readout layer generates two motor patterns that
depict the gender of the speaker and the spoken word itself.
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Closer the reservoir dynamics are to their class attractors,
easier it is for the readout layer to clearly generate the
motor pattern.

The target motor patterns are given in terms of temporally
varying x and y coordinates. Hence there are two outputs (x and
y) in the readout as shown in Figure 6. The figure shows how the
x and y coordinates vary with time for a hand drawn impression
of digit 6. All the spoken words (10 digits and 26 alphabet letters)
were hand drawn in such a way that no lifting in the hand is
required while drawing. The sequential coordinates of the images
were extracted with the assistance of MATLAB ginput() function.
The obtained x − y coordinates were then resampled to generate
equally distant points. Same RLS rule is used for training the
readout weights wout :

wout(t) = wout(t − 1t)− P(t)r(t)e(t) (12)

where r(t) is the reservoir dynamics and e(t) gives the error
between the expected coordinates and the actual coordinates
at the output. Weight updates for the gender recognition
is independently carried out from that of the spoken word
recognition. Figure 7 shows expected and actual (red)
impressions drawn for the TI-10 motor pattern generation
task. Figure 8 shows expected and actual (red) impression
drawn for the TI-alpha motor pattern generation task. The
color of the motor pattern explains the time evolution
of the coordinates at the readout. Figure 9 shows the
corresponding reservoir dynamics of 10 randomly selected
neurons during the sensory and motor phases for the TI-10
data set. Refer to the Supplementary Video to view the RNN
drawing digits.

3.2. Separation vs. Accuracy
Wemeasure the error by means of the average squared difference
between the actual and the expected output (at the readout) per
input instance in the testing data set. The error d is given by

d = 1

Nex

Nex
∑

i = 1

√

√

√

√

√

Npoints
∑

j = 1

(

xti,j − xai,j
)2 +

(

yti,j − yai,j
)2

(13)

where Nex is the number of examples in the test data set, Npoints

is the number of sample points in the output motor pattern, xti,j
is the target x coordinate and xai,j is the actual x coordinate at the

output of the jth point in the ith example. Similarly, yti,j and yai,j
are target and actual y coordinates at the output, respectively.
In the TI-10 digit drawing task, we noticed an average error of
0.0151, on the entire test data set. This is a ∼ 37% reduction in
average error with respect to a system without the class attractor
separation step. We further evaluated the recognition accuracy of
the ESN by means of an additional neural network.

The final output in our work is a motor pattern. To identify
how well the digits were drawn, (i.e., can a human recognize
the drawn character?), we used a Convolutional Neural Network
(CNN). The CNNwas pretrained to recognize hand drawn digits.
The particular CNN used in the work has two convolutional
layers followed by subsampling. Each convolutional kernel is of
size 5×5 and there are 6 and 12 feature maps at the output of first
and second convolutional layers respectively (28×28−6c5−2s−
12c5−2s−10o; Palm, 2012). The training set for the CNN consists
of the MNIST training data set (TTrain

MNIST), and the 10 target hand
drawn digits involved in this work (TTARGET). Finally, the trained

FIGURE 6 | The preprocessing steps for the outputs. The hand drawn digits and alphabet letters are converted to x, y coordinates and arranged sequentially. Two x

and y coordinate signals are generated to draw the corresponding character.

Frontiers in Neuroscience | www.frontiersin.org 9 August 2020 | Volume 14 | Article 772

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wijesinghe et al. Class Discrimination

FIGURE 7 | Different motor patterns generated by the ESN for randomly picked 100 input utterances from the TI-10 test data set. (A) The spoken digit in the input

instance. (B) The gender of the speaker with “f” for female and “m” for male. Color code shows the time evolution of the signal and shown in red is the expected

motor pattern.

FIGURE 8 | Different motor patterns generated by the ESN for randomly picked 100 input utterances from the TI-alpha test data set. (A) The spoken alphabet letter in

the input instance. (B) The gender of the speaker with “f” for female and “m” for male. Color code shows the time evolution of the signal and shown in red is the

expected motor pattern.

CNN was fed with the output motor patterns generated by the
ESN (TMOTOR) to observe how “recognizable” they are by a
CNN. For generating the TTARGET and TMOTOR, we converted
the x, y coordinates of the temporal sequences into a 28 × 28
image to match the configuration of the instances in TTrain

MNIST .
The CNN network was capable of classifying the 10 training
images (TTARGET) with 100% accuracy and MNIST testing data
set with 98.9% accuracy. The accuracy on TMOTOR was 98.6%.
This accuracy is approximately similar to that reported in Goudar
and Buonomano (2018) (also used a CNN for classification).
However, it is noteworthy that there are few key differences in
the setup involved in Goudar and Buonomano (2018). Table 2
summarizes these changes along with the performances.

As tabulated in Table 2, the work proposed in Goudar and
Buonomano (2018) uses a network with 4, 000 neurons, and
shows an accuracy of 98.7% on 410 examples across five speakers.
Therefore, we have achieved similar accuracy to Goudar and
Buonomano (2018) with a network of half the size as Goudar and
Buonomano (2018), and on ∼ 4× larger number of examples
(we used all the 1, 594 instances from the TI-10 testing data set),
owing to the discrimination based training approach.

To further validate the effect of class attractor separation on
accuracy, we used the TI-alpha data set which has more number
of classes and examples. We observed an error of 0.0596 in the
spoken word generation task and an error of 0.0413 in the letter
generation task related to the gender of the speaker. Without the
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FIGURE 9 | (A) The hand drawn ESN outputs for 20 randomly selected input voice signals from TI-10 testing dataset. Color elaborates the time evolution of the

drawn impression. (B) Time evolution of reservoir neuron states for randomly picked 10 neurons (out of 400) corresponding to each output in (A).

TABLE 2 | The comparison with reference work.

Network type Discrimination

based training?

RNN type Number of

reservoir

neurons

Number of

novel testing

examples

Number of

speakers

Accuracy on 10

hand drawn

digits (%)

Ability to classify

speaker gender

Goudar and

Buonomano (2018)

No ESN 4, 000 410 5 98.7 No

This work Yes ESN 2, 000 1, 594 16 98.6 Yes

FIGURE 10 | (A) The variation of the error with the amount of separation applied on the attractors. The separation increases with the scaling factor as shown in (B).

The results are for the TI-alpha, spoken word recognition application.

separation step, we noticed an error increment of 29% in spoken
word generation task.

In order to observe the effect on the error at different amounts
of separations, we changed the scaling factor γ in the first step
of the learning process (Equation 9). Higher γ will increase the

separation between the attractors. Figures 10A,B shows how
the error changes with the amount of separation. As the figure
illustrates, high separation leads to lower error. However, if the
separation is too high, then the error increases. We conjecture
that this is due to the inability to converge instances in a class
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to its corresponding attractor, due to the high separation.
With high separation, the network enhances subtle changes
in the input to an extent that the approximation step could
no longer converge the inputs to their corresponding class
attractor. This phenomenon is clearly explained in prior work
(Wijesinghe et al., 2019), showing that the increased separation
along with insufficient improvement in approximation
property leads to reduced classification accuracy in
reservoir computing.

Obtaining this optimum point (that gives the highest
accuracy) before expensive training is beneficial. Multiple
methods of identifying the optimum point based on separation
and approximation for reservoir computing are available in
literature (Wang et al., 2015;Wijesinghe et al., 2019). As proposed
inWang et al. (2015), the metric for optimum performance point
can be obtained by the following equation

D =
√
RS − RG

RS
(14)

Where RS is a metric for separation and RG is a metric for
generalization. RS is the rank of the N × m matrix MS, which
contains the continuous time states [xu1 (t0), ..., xum (t0)] of the
reservoir as its columns (explained in section 3.1.1). Same
aforementioned rank concept is used for measuring RG, but
now on a different matrix Ma. Ma consists of reservoir states
xuij (t0) as its columns, which are measured by feeding jittered
versions of ui (uij) to the reservoir. Unlike RS, lower rank of
Ma (= RG) suggests better generalization. The RS metric for
our work is the rank of the matrix that contains the attractors
sampled at t = t0, as its columns. Given that the attractors
are equal to the number of classes, we need to find the rank
of a 2000 × 20 matrix (for the voice based digit drawing
application). As explained in section 3.1.1, the metric RS is most
likely equal to the number of classes (i.e., 20), since N ≫ m.
Therefore, RS is simply a constant and may not contain any
useful information. Hence the metric D may not be applicable
for our work. However, the Discriminant ratio (DR) proposed
in Wijesinghe et al. (2019) is much general and applicable in
finding the optimum point. The metric can be elaborated in the
following equations.

DR = tr(Sb)tr(Sw)
−1 (15)

Sw =
L

∑

i = 1

P(ωi)6̂i (16)

where P(ωi) is the probability of class ωi, 6̂i is the sample
covariance matrix (Park and Park, 2018) for class ωi. tr(Sb) is
explained in Equations (5) and (6), as separation property (SP).
As shown in Wijesinghe et al. (2019), the point at which this
DR is a maximum, is the optimum accuracy point. As shown in
Figure 10A, for the digit drawing problem, the highest accuracy
point lies at scaling factor ≈ 3.7. Obtaining this point before
the reservoir-output weight training can be done by using the
aforementioned DR metric.

3.3. Convergence and Stability of the
Network
In this section we are exploring the convergence of the training
method and the stability of the trained system. The RLS learning
method involved in this work was specifically proposed for
recurrent neural networks with chaotic activity (such as the
network used in this work). The other algorithms designed for
RNNs are computationally demanding and do not converge
under chaotic activity (Rumelhart et al., 1986; Abarbanel et al.,
2008; Sussillo and Abbott, 2009). The factors that can potentially
affect the convergence are the learning rate and the number of
parameters available for optimization. With more parameters
for optimization, we can attain more convergence (Wijesinghe
et al., 2017). However, as explained in Bengio (2012), when the
number of hyper parameters of a network is high, it becomes
less general i.e., the network can predict the data in its training
set with high accuracy, but it will likely fail to perform correctly
for previously unseen inputs. Mechanisms have been proposed in
literature to avoid such over-training situations including early
stopping of training (Doan and Liong, 2004), adding stochastic
noise (An, 1996) etc. These methods are still applicable to the
training method proposed in this work as well.

As shown in Equation (9), we are using a particular scaling
factor during training. This scaling factor could potentially be
viewed as the learning rate of the system. In general, high learning
rates may hinder the convergence to a required solution. In fact,
the output can oscillate between high accuracy and low accuracy
states between epochs (Attoh-Okine, 1999). Smaller learning
rates on the other hand would take more number of epochs to
achieve convergence, and possibly reach a local minimum point
rather than the global minimum. In this work, we have shown
the effect on the scaling factor to the accuracy in Figure 10A.
We have used the same number of epochs for the experiment.
Therefore, the magnitude of the learning rate decides how
much separation we apply between the attractors. High scaling
factors lead to higher amounts of oscillations in attractors, while
trying to reach higher separation. Figure 11 shows the attractors
corresponding to digit 1 and digit 2 before (Figure 11A) and
after (Figure 11B) training. The training was conducted with a
high scaling factor (20). Note that the amount of oscillations
has increased now to accommodate the separation between the
attractors. Even though a good separation was achieved with
the high separation rate, it is now difficult to converge different
instances available in the same class to the same attractor (due to
the highly detailed nature of the attractors).

We further analyzed the outcome of the trained system by
means of principal components. Since the output is in high
dimensional space, it is difficult to visualize the converged output.
We concatenated temporal information of all the neurons in to a
single vector per instance, and obtained the projection of them
in to the two dimensional space with respect to the first two
principal components. Figure 12A shows the data instances of
two classes (digit 1 and digit 2) before training, and it is evident
that the instances are not well separated and approximated. After
training, the data instances are well separated and approximated
as illustrated in Figure 12B. Note that even the male and female
instances of each class are very well-separated.
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FIGURE 11 | The Attractor dynamics corresponding to digit 1 and digit 2, in 16 randomly picked neurons, (A) before training (B) after training with a high scaling

factor. Notice the increased amount of oscillations leading to much detailed attractors after training with high separation.

FIGURE 12 | (A) Instances of class digit 1 and digit 2 (female) projected in to the 2D principal component space, before training. (B) Instances of class digit 1(male,

female) and digit 2 (male, female) projected in to the 2D principal component space, after training.

We further elaborate the effect of training by means of
the Eigen-value spectrum of the reservoir weight matrix. As
explained in Rajan and Abbott (2006), the eigen values of the
weight matrix of a network provides insights on stability of
the network. We noticed that the eigen values of the trained
weights are more compressed on the right hand side, when
compared with the uniformly distributed initial eigenvalue
spectrum (Figure 13). This elaborates increased stability of the
network after the training (Rajan and Abbott, 2006).

4. CONCLUSION

Biological brain; a mystery yet to be solved, is not just a system
that can be perceived as a simple cognitive machine. It has the

capability to go beyond perception based inference, and is capable
of interacting with multiple tasks. Cognitive and motor functions
are interlinked in the brain (Leisman et al., 2016). Taking that
as an inspiration, this work concatenates multiple tasks into a
single network, creating a system that goes beyond perception.
The learning algorithm furthermore tries to mimic the properties
of the brain that allows massive amount of information to
be stored. To enable efficient learning (memorizing), biological
brain creates new connections among the existing memory
structures. For an incoming input, the brain not only can
observe how close it is to an existing memory anchor, but
can also detect how different it is from another anchor. The
learning rule explained in this work emulates such mechanisms
of the brain to store information efficiently utilizing association
(approximation) and dissociation (separation) between the data.
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FIGURE 13 | The Eigen value spectrum of the reservoir weight before (red)

and after training the network.

Our technique allowed to store twice the number of classes,
with a reservoir of half the size (number of neurons), to achieve
the same accuracy reported in Goudar and Buonomano (2018),
on the entire TI-10 data set [which has ∼ 4 times the amount of
data than Goudar and Buonomano (2018)]. We further verified
the accurate performance on an even bigger data set (TI-alpha)
with 52 classes and 6, 628 training examples (in contrast to 20
classes and 2, 542 training examples).

Biological brain does not store everything in one learning
process. Over time it learns new meaning, forgets unwanted
information, and gets reshaped by experience. In contrast, our
proposed algorithm assumes that all the data are available
at the time of training. i.e., it does not learn one instance
completely and move to the rest of the data. However, the
algorithm can potentially be extended to learn things over time.
It will be analogous to increasing the number of attractors

over time, rather than starting with a predefined number of
attractors. It is as if a baby learns mothers voice first (which
is an attractor), and then over time the baby learns different
speakers (more class attractors). The class attractors must be
adjusted over time using separation, in order to make room
for new data and create the dynamic dictionaries the biological
brains have.
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