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Animals of several species, including primates, learn the statistical regularities of their
environment. In particular, they learn the temporal regularities that occur in streams of
visual images. Previous human neuroimaging studies reported discrepant effects of such
statistical learning, ranging from stronger occipito-temporal activations for sequences in
which image order was fixed, compared with sequences of randomly ordered images,
to weaker activations for fixed-order sequences compared with sequences that violated
the learned order. Several single-unit studies in macaque monkeys reported that after
statistical learning of temporal regularities, inferior temporal (IT) neurons show reduced
responses to learned fixed-order sequences of visual images compared with random
or mispredicted sequences. However, it is unknown how other macaque brain areas
respond to such temporal statistical regularities. To address this gap, we exposed
rhesus monkeys (Macaca mulatta) to two types of sequences of complex images.
The “regular” sequences consisted of a continuous stream of quartets, and within
each quartet, the image order was fixed. The quartets themselves were displayed,
uninterrupted, in a random order. The same monkeys were exposed to sequences of
other images having a pseudorandomized order (“random” sequence). After exposure,
both monkeys were scanned with functional MRI (fMRI) using a block design with three
conditions: regular sequence, random sequence, and fixation-only blocks. A whole-
brain analysis showed a reduced activation in mainly the occipito-temporal cortex for
the regular compared to the random sequences. Marked response reductions for the
regular sequence were observed in early extrastriate visual cortical areas, including area
V2, despite the use of rather complex images of animals. These data suggest that
statistical learning signals are already present in early visual areas of monkeys, even
for complex visual images. These monkey fMRI data are in line with recent human fMRI
studies that showed a reduced activation in early visual areas for predicted compared
with mispredicted complex images.

Keywords: statistical learning, expectation, predictions, sequence learning, visual cortex, monkey fMRI

INTRODUCTION

Many species, including primates, are sensitive to spatial and temporal regularities in their
environment. Behavioral studies have shown that some of these regularities can be learned [for
reviews, see Krogh et al. (2012), Turk-Browne (2012), and Dehaene et al. (2015)]. For instance, the
mere exposure to a set of scenes or sequences of visual stimuli is sufficient to learn their embedded
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statistical regularities (Fiser and Aslin, 2001, 2002). Such
extraction of statistical regularities is often referred to as
“statistical learning.”

Previous neuroimaging studies in humans addressed the
effects of the learning of temporal regularities in sequences of
visual stimuli on brain representations of those stimuli, the topic
of the present study. These studies compared the activations
to sequences of visual stimuli in which the order of successive
stimuli within a sequence was fixed (“regular” sequence) with
stimuli presented in random order (“random” sequence) or with
sequences in which the stimulus order deviated from the exposed
one. An earlier study (Turk-Browne et al., 2009) observed
stronger activation to regular compared to random sequences
of letter-like symbols in several brain regions, including the
medial temporal lobe, the frontal regions, the temporal cortex, the
parietal cortex, and the cuneus. Greater activations for random
compared to regular sequences were not observed. Using a similar
design, but with visual scenes as stimuli, a later study (Otsuka and
Saiki, 2017) showed stronger activations to random compared
to regular sequences in the left posterior cingulate cortex. Note
that in these studies the temporal regularities during stimulus
exposure were irrelevant to behavior.

In regular sequences, stimuli can be predicted from preceding
ones, and thus the above functional MRI (fMRI) studies imply
that predicted stimuli (in the regular sequences) show stronger
activations than unpredicted stimuli (in random sequences).
However, other fMRI studies, which compared activations to
regular sequences with sequences in which the same images
were presented at unexpected temporal positions within the
sequence, showed the opposite: weaker activations to the regular
compared to sequences with violations of the learned temporal
order (Richter et al., 2018; Richter and de Lange, 2019). The
weaker activations to expected complex, natural stimuli were
observed throughout the ventral visual stream and even in
V1. In both studies of Richter et al. (2018), the reduced
responses to the regular sequences were observed also in
regions (e.g., frontal cortex) outside the ventral stream, but
these did not overlap between studies and were suggested to
be task specific (Richter and de Lange, 2019). In line with
the studies of Richter et al. (2018), exposure to sequences of
simple stimuli with a probabilistic regularity was reported to
produce less activation compared to a brief random sequence
introduced within the regular sequences in (only right) V1
and prefrontal cortex (Rosenthal et al., 2016, 2018). In an
implicit visual sequence learning fMRI study (Aizenstein et al.,
2004), reduced activations in the visual cortex, the frontal and
parietal cortices, and the striatum were observed for expected
compared to unexpected colors in a regular sequence. In yet
another study, brief passive exposure to unique exemplars of
object categories presented in a regular sequence at different
locations in the visual field showed reduced fMRI activations
in multiple regions, such as the occipital cortex, the ventral
temporal cortex, the frontal cortex, and the basal ganglia
(Davis and Hasson, 2016). However, part of the activations
might have been due to differences in eye fixation patterns
between the regular and the irregular sequences, which were not
monitored in this study.

Also in rodent studies of visual statistical learning, different
types of differential responses were obtained in sequence
learning. One study (Gavornik and Bear, 2014) found an
increased electrophysiological response to predicted gratings
in mouse primary visual cortex, in line with the increased
BOLD activations for regular compared to random stimuli seen
in higher areas in human fMRI studies (Turk-Browne et al.,
2009; Otsuka and Saiki, 2017). However, a two-photon calcium
imaging study reported overall weaker visual responses for
predicted compared to unpredicted stimuli in the primary visual
cortex (Fiser et al., 2016). Adding to the complexity, this study
showed also that responses in anterior cingulate increased with
stimulus predictability.

In monkeys, recordings revealed visual statistical learning
effects in inferior temporal (IT) cortical spiking activity (Meyer
and Olson, 2011; Meyer et al., 2014; Ramachandran et al., 2016,
2017; Schwiedrzik and Freiwald, 2017; Kaposvari et al., 2018).
These studies consistently showed a reduced response to stimuli
in a learned regular sequence compared to unpredicted stimuli
that deviated from the learned sequence. These macaque IT
results agree with the reduced BOLD activations in human
ventral stream (Richter et al., 2018) using a very similar paradigm
as that of Meyer and Olson. However, Kaposvari et al. (2018)
employed a continuous presentation of short regular sequences of
stimuli similar to a human fMRI study (Turk-Browne et al., 2009)
but, contrary to that fMRI study, observed decreased responses
in regular compared to random sequences. Also, Ramachandran
et al. (2017) observed smaller responses in macaque IT to stimuli
of learned short sequences compared to random sequences, but
repetition suppression might have contributed to this effect since
the stimuli of the two conditions differed also in frequency during
the recordings in that study.

So far, the origin of the statistical learning effects in IT is
unclear, and it is unknown which other brain regions show
visual statistical learning effects in macaques. To address this
gap, we employed fMRI to map the regions that show visual
statistical learning signals in the monkey. We aimed to compare
the activations to regular and random sequences that were
presented during a continuous stream, as in a human fMRI
study (Turk-Browne et al., 2009) and our earlier macaque IT
recording study (Kaposvari et al., 2018). This paradigm differs
from that employed in the human fMRI studies that compared
activations to regular sequences and sequences in which a
stimulus deviated from the learned one (Aizenstein et al., 2004;
Rosenthal et al., 2016, 2018; Richter et al., 2018; Richter and
de Lange, 2019). In the latter paradigm, the observed greater
activations for sequences that include violations of the learned
sequence could have resulted from a surprise response to the
sequence violations. The presence of increased pupil dilation
upon presentation of the deviant stimuli (Richter and de Lange,
2019) might be related to such a surprise response. Such potential
surprise response and corresponding pupil response will also
complicate the interpretation of the enhanced responses in early
visual cortical areas observed in these fMRI studies. Furthermore,
sequence violations can result in basal forebrain activity (Zhang
et al., 2019), potentially impacting on responses in visual areas.
To circumvent these complications, we compared the responses
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between a regular stimulus sequence and a (pseudo-)random
sequence instead of a sequence with violations of a learned,
regular sequence.

In the present study, we exposed two monkeys for several
weeks to two sequences, a regular sequence consisting of
five quartets (20 stimuli in total), in which the order of the
four stimuli was fixed (transitional probabilities of 1), and
a pseudorandom sequence, in which 20 other stimuli had
transitional probabilities of 0.2. We controlled for differences
in stimulus familiarity and stimulus repetition to exclude the
possibility that the potential differences in activation between the
two sequences were due to familiarity and repetition suppression.
The groups of 20 stimuli of each sequence were counterbalanced
across the two animals to control for stimulus-specific effects
unrelated to the sequences. After exposure, we contrasted the
whole-brain fMRI activations for the two sequences, aiming to
reveal regions that show statistical learning-related signals.

MATERIALS AND METHODS

Subjects and Surgery
Two female rhesus monkeys, M1 (5.5 kg; age: 6 years) and
M2 (4.5 kg; age: 9 years) participated in this study. They were
implanted with an MRI-compatible headpost for fixing the head
during training and fMRI scanning, using standard procedures
under full anesthesia and aseptic conditions. The animal care and
experimental procedures complied with the regional (Flanders),
European, and National Institute of Health guidelines and were
approved by the Animal Ethical Committee of KU Leuven.

Stimuli and Sequences
The stimuli consisted of 40 achromatic images of animal
drawings, selected from the Snodgrass and Vanderwart image
database (Snodgrass and Vanderwart, 1980)1. The drawings were
rescaled so that their bounding box measured 4◦ of the visual
angle in either the vertical or the horizontal dimension. Their
contrast and luminance were equated using the Shine toolbox
(Willenbockel et al., 2010) and presented with gamma correction
of the display luminance on a gray background. A central red
fixation target (size 0.2◦ of the visual angle) was continuously
present and superimposed on the image.

The 40 images were assigned to two groups of 20 images
(Figure 1A). One group of 20 images was employed to create
five quartets and formed the stimuli for the regular sequence.
The order of the images within each quartet was fixed, but the
quartets were presented in random order with the constraint
that the immediate repetition of a quartet was not allowed. The
other group of 20 images was divided in four sets of five stimuli
each (columns in Figure 1A) and were presented in a random
sequence. The stimuli were presented in a pseudorandom order
in quartets so that the image at position i (i = 1–4; columns in
Figure 1) of a quartet was randomly selected from the set i of
five images. Hence, quartets were generated in which the first
element would be chosen randomly from the first set of five

1https://wiki.cnbc.cmu.edu/Objects

images (first column in Figure 1A, e.g., cow), the second element
chosen from the five images of the second set (second column
in Figure 1A; e.g., eagle), the third element chosen from the five
images of the third set (third column in Figure 1A, e.g., dog), and
the last element of the quartet would be an image of the fourth set
of five images (fourth column in Figure 1A, e.g., hen). Thus, the
order of the images within a random quartet was pseudorandom,
with transitional probabilities of 0.2 (1/5). The presentation of an
image of an immediately preceding quartet was not allowed. This
pseudorandomization made sure that the distribution of the time
interval between repetitions of a stimulus was equal between the
regular (consisting of fixed quartets) and the random sequences.
The latter sequence, together with the fact that at least seven
other images were present between the occurrences of the same
image, served to control for repetition suppression as causing the
activation differences between the two sequences.

The means of the images of each of the two groups were
similar (Figure 1B). To dissociate stimulus-specific effects from
statistical learning effects, we counterbalanced the stimuli across
the two monkeys. Thus, the 20 stimuli of the regular sequence in
one animal were employed for the random sequence in the other
animal and vice versa.

The quartets were presented in continuous sequences without
demarcation between quartets. The stimuli of a quartet were
presented for 500 ms and no interstimulus interval was present
between stimuli, even not between stimuli of successive quartets.
Regular and random sequences were presented in alternating
blocks (see below for block lengths). The first sequence of a daily
session alternated between the regular and the random sequences,
and we made sure that the exposure duration to the random and
the regular sequence stimuli was equated within practical limits
in each monkey. Monkey M1 was exposed to the regular and the
random sequences in total for 1,278 and 1,290 min, respectively, a
negligible 0.94% difference. For M2, the total exposure durations
for the two sequences were 636 and 630 min, respectively, which
is a 0.95% difference. Thus, any effect cannot be due to image
familiarity since the total image exposure was highly similar for
the two sequences and the small differences in exposure showed
opposite trends in the two monkeys.

Apparatus and Scanning Procedure
During the sequence exposure phase, the monkeys were seated
with the head fixed in a horizontal primate fMRI chair in sphinx
position in a mock MRI bore. The stimuli were displayed on a
15 × 12-in. Dell LCD monitor positioned at 57 cm from the
eyes. The position and the pupil size of one eye were measured
at 120 Hz with an Iscan video-based eye tracker.

During the exposure phase and scanning, a digital signal
processing-based computer system, developed in-house,
controlled the stimulus presentation, stimulus event timing, and
juice delivery while sampling a photodiode signal corresponding
to stimulus onset, vertical and horizontal eye positions, and pupil
size. Time stamps of the eye parameters (1,000 Hz sampling rate),
stimulus, and behavioral events were stored for offline analyses.

During scanning, the monkeys sat in a sphinx position with
their heads fixed in a MR-compatible monkey chair. The chair
was positioned directly in front of a screen, at a distance
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FIGURE 1 | Stimuli and functional MRI (fMRI) paradigm. (A) One group of images (e.g., images of the left panel) was employed as the regular sequence in one
monkey and as the random sequence in the other monkey and vice versa. The images were presented in quartets (stippled green box in the left panel), resulting in
five fixed quartets (rows) for the regular sequence. The random sequences were obtained by selecting for each presented quartet at random one of the five images
at each position [column in (A), right panel] of the quartet. The dashed orange outlines indicate one such possible selection. In this example, the quartet would be
“cow, eagle, dog, hen.” For more details, see “Materials and Methods.” (B) Mean of the images for each of the two groups. (C) Example of a run during scanning.
Reg, regular sequence; Ran, random sequence; Fix, fixation only condition; Fix Start, fixation only period at the beginning of the run. The duration of each block is
indicated. The order of the conditions was randomized across runs.

of approximately 59 cm. The gamma-corrected stimuli were
projected (Barco 6300 LCD projector) on the translucent screen
located in front of the monkey. Eye position was continuously
monitored (120 Hz; Iscan) during scanning, and the animals were

performing the same fixation task (see section “Task” below for
description) as during the exposure phase.

The monkeys were scanned with a 3T Siemens Trio scanner
following standard procedures (Vanduffel et al., 2001). Functional
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MRI images were acquired using a custom-made eight-channel
monkey coil, a saddle-shape radial transmit-only surface coil
(Ekstrom et al., 2008; Kolster et al., 2009), and a gradient-
echo T2∗-weighted echo-planar imaging sequence (repetition
time TR = 2 s, echo time TE = 13 ms, flip angle = 84◦,
84 × 84 matrix, 50 slices, 1.25 × 1.25 × 1.2 mm voxel size).
The slices were oriented transversally, covering the whole brain.
High-resolution anatomical MRI images were acquired for each
monkey in a separate session under ketamine/medetomidine
anesthesia, using a single radial transmit–receive surface coil and
a Magnetization-Prepared Rapid Acquisition with Gradient Echo
sequence (TR = 2200 ms, TE = 3.50 ms, flip angle = 9◦, 320× 260
matrix, 208 slices, 0.4 mm isotropic voxel size). To increase the
signal-to-noise ratio of the functional activations (Leite et al.,
2002), the contrast agent monocrystalline iron oxide nanoparticle
(MION; Molday ION; 8–11 mg/kg) was injected into the monkey
femoral/saphenous vein immediately before scanning.

Task
During exposure and scanning, the monkeys were performing
a fixation task for a juice reward. The delivery and the amount
of juice depended on the fixation duration (Popivanov et al.,
2012) but was independent of the presentation of the quartets.
Both monkeys had to fixate 1,500 ms before getting the first
reward, then again for 1,500 ms for the second reward. After
this, the pace accelerated and the rewards were getting larger.
After fixating for 9,000 ms, they received a constant reward every
500 ms. When the monkeys were breaking the fixation, the whole
schedule was reinitialized. The square fixation window had a size
of approximately 2.5◦. Eye tracking calibration was performed at
the beginning of each session. The fixation target was present
continuously and the stimulus sequence was continued during
fixation breaks.

Exposure to Sequences
The monkeys were exposed to regular and random sequences
in alternating order, with each sequence block lasting for
30 min (900 quartets). Unlike during fMRI scanning, the regular
sequence blocks contained 10 min of fixed sequence quartets
followed by 20 min of quartets with rare deviants. A deviant was
a stimulus of another quartet of the regular block. In the 20-min
period, 10% of the quartets contained such a deviant stimulus at
positions 2, 3, or 4 of a quartet. We added these deviant stimuli
during exposure to assess statistical learning using eye movement
measures (see “Results”). The monkeys were exposed in daily
sessions (except during the weekend), and the session duration
depended on the motivation of the animal. M1 and M2 were
exposed to the sequences in 28 and 27 daily sessions, respectively.
After the exposure phase, the fMRI scanning sessions started (five
and nine daily scanning sessions in M1 and M2, respectively).

fMRI Design
We employed a block design consisting of three conditions:
regular sequence, random sequence, and fixation-only condition.
The regular sequence consisted of only quartets without deviants.
In the fixation-only condition, only the fixation target was
presented on the gray background. Each run started with 8 s of

fixation, followed by the three conditions in a pseudorandom
order. The order of the conditions was randomized across
runs, with the restriction that an immediate repetition of a
condition within a run was not allowed. The three conditions
were presented three times for 1 min in a run (for an example
run, see Figure 1C). The total run duration was 9 min and 8 s.
The number of runs in a daily scanning session depended on the
motivation of the monkey.

fMRI Data Analysis
Only runs in which the monkeys were fixating the target for
at least 90% of the run duration (M1: 36 runs; M2: 17 runs)
were included in the analysis. For pre-processing, we re-oriented
the images and the applied slice timing correction (AFNI;
NIH, United States). A non-rigid, slice-by-slice realignment
within runs and affine realignment between runs within a
day were performed for motion correction (Kolster et al.,
2009). The mean functional images were then non-rigidly co-
registered to the T1 anatomical images of the same monkey
using advanced normalization tools (University of Pennsylvania,
United States). In a final pre-processing step, the images were
smoothed in FSL (FMRIB Software Library; University of Oxford,
United Kingdom) (Smith et al., 2004) with an isotropic Gaussian
kernel (full-width half-maximum: 1.5 mm).

Subsequent data analysis was performed with SPM12. All valid
runs were combined in a fixed-effects model for each subject
separately in their native space. They were analyzed using a
general linear model (GLM) with three regressors, one for each of
the three conditions, plus six additional head motion regressors
(translation and rotation in three dimensions) per run. Each
condition was modeled using a convolution with a Gamma
function (delta = 0, tau = 8, and exponent = 0.3), modeling
the MION hemodynamic response function. We computed
the following GLM contrasts: random–fixation only, random–
regular, and regular–random. The latter two contrasts are the
main contrasts of interest, while the first contrast shows the
regions activated by the visual stimuli. We employed the random
condition for the first contrast because this condition is a
“neutral” condition without statistical learning. The resulting
t-maps were thresholded at p = 0.05, family wise error (FWE)
rate, corresponding to t = 4.9.

To localize early visual cortical activations with respect
to retinotopic maps, we transformed each monkey’s brain
anatomy to the F99 common monkey space and applied the
same transformation to the functional maps. We employed
the probabilistic retinotopic maps in the F99 space (Zhu and
Vanduffel, 2019). The probabilistic maps included the data
of 13 monkeys, and the random–regular cortical activations
were visualized on a cortical map of the F99 brain that
included retinotopically defined areas. The retinotopic maps
were thresholded by requiring that 80% of the 13 animals
demonstrated the same retinotopic area for that voxel.

Analysis of Eye Metrics
We analyzed eye metrics during the last 8 days of the pre-
scanning exposure phase and during the runs that entered the
fMRI analysis. The last 8 days were chosen because we expected
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that learning would have occurred by that time and pooling these
days should yield an adequate sample size to detect learning-
related differences in eye metrics. For the exposure phase,
we analyzed eye movements and pupil sizes only for quartet
presentations during which the monkey kept its gaze inside the
fixation window. Since reliable measurements of microsaccades
and pupil size required that the animal stayed inside the fixation
window, those were analyzed only for the exposure phase. Since
we wanted to assess the eye metrics during the entire period of
the same runs that were employed to compute fMRI contrasts,
we did not require that the monkey kept its gaze inside the
fixation window for the eye movement analysis for the data
obtained during the scanning. Data were analyzed for each
monkey separately.

To analyze pupil size, we downsampled the data to 120 Hz
and smoothed these with a 200-ms Hamming window. We
analyzed unaborted quartet presentations that were preceded by
a 2 s interval during which the eye gaze was inside the fixation
window and followed by 500 ms of fixation. For each unaborted
quartet presentation of the regular and the random quartets,
we baseline-corrected the pupil size signal by subtracting the
mean pupil size in the 500 ms period before quartet onset. Then,
we averaged the baseline-corrected pupil size across unaborted
quartets per condition.

To detect microsaccades in the same quartets for which we
analyzed the pupil size, we employed the algorithm of Engbert
and Mergenthaler (2006). The eye velocity was computed after
lowpass filtering the data using a cutoff frequency of 40 Hz. Then,
horizontal and vertical eye velocities (Engbert and Kliegl, 2003)
were calculated as follows:

vk =
sk+2+sk+1−sk−sk−1

4 , with sk being the eye position at time
k, after downsampling at 120 Hz. The microsaccades were
detected using an elliptic threshold based on the medians of both
velocities and a linear factor lambda (Engbert and Mergenthaler,
2006) of 2.36 in 2D velocity space. Moreover, only movements
faster than 10◦/s were taken as microsaccades. The number of
microsaccades was computed for each unaborted quartet and
averaged across quartets per condition. The confidence intervals
of the mean were computed for each condition, and the difference
between the number of microsaccades for the regular and the
random conditions was tested with a Wilcoxon rank sum test.
We verified that log saccade velocity increased linearly with
log microsaccade amplitude (Pearson r of 0.82 and 0.94 in M1
and M2, respectively). For the same quartets, we computed also
the standard deviation of the eye position (without lowpass
filtering, but downsampled at 120 Hz) for the horizontal and the
vertical dimensions.

For the eye position data sampled during fMRI, we first
identified epochs during which the monkey was blinking or
making very large eye movements by using an empirically
determined threshold on the horizontal and the vertical eye
positions. For each block, we computed the number of blinks (or
large eye movements) and compared these between the random
and the regular conditions with a Wilcoxon rank sum test. For
the eye movement data outside the blink epochs, we computed
the mean and the standard deviation of the eye position for each
block of the random and the regular conditions separately for

the horizontal and the vertical dimensions. Differences between
conditions were tested with a Wilcoxon rank sum test.

All 95% confidence intervals of the mean were computed with
bootstrapping. To do this, we employed the Matlab function
“bootci” with the bias-corrected and accelerated percentile
method and 10,000 samples.

RESULTS

We exposed two monkeys for several weeks to two sequences
of visual images: one sequence that consisted of quartets in
which the image order was fixed (“regular sequence”) and another
sequence of different images in which the order was random
(“random sequence”). Both sequences were presented during
passive fixation. After exposure, we scanned the two monkeys
using a block design with three conditions: regular sequence,
random sequence, and fixation without image presentation
(fixation only).

Subtracting the fixation only condition from the random
image sequence showed activations by the visual images in
both monkeys in mainly the occipito-temporal cortex and the
frontal cortex (Figure 2), in agreement with a previous monkey
fMRI study that compared activations to intact and scrambled
objects (Denys et al., 2004). To isolate activations that were
related to statistical learning, we computed first the contrast
random–regular sequence since we expected, based on previous
electrophysiological data (see “Introduction”), stronger responses
to the random than the regular sequence. Examples of the
activations (thresholded at p= 0.05 FWE rate) on anatomical MRI
sections of each monkey are shown in Figure 3. This contrast
showed the strongest activations in early visual cortical areas in
each monkey. Activations were present also in IT, but these were
rather sparse and at different regions in the two monkeys. Frontal
cortical activations were present in a single hemisphere of M2.

To relate the early visual cortical activations to retinotopically
defined visual areas, we mapped the cortical activations of each
monkey on a probabilistic map based on the retinotopic mapping
data of 13 monkeys (Zhu and Vanduffel, 2019). The cortical
activations (thresholded at p = 0.05 FWE rate) are shown together
with the probabilistic retinotopic maps on the F99 inflated brain
in Figure 4. In both monkeys, stronger responses for the random
compared to the regular sequences were present in areas V2, V3,
and the V4 complex [DLP, V4, and V4A, as defined by Zhu and
Vanduffel (2019)], with a tendency to be more prominent in the
ventral visual cortex. Figure 4 also shows the activations in the
IT cortex, which were present mainly in posterior IT. Anterior IT
activations were present in monkey M2 but were weak and sparse
in the other animal.

Subtracting the random from the regular condition showed
only a weak bilateral V1 activation in M1 (Figures 3, 4) and
none in M2. Hence, overall, responses were suppressed for the
regular sequence images in parts of the extrastriate cortex of both
animals, while enhanced responses to the regular sequences were
negligible. Since the images of the random (regular) sequence of
M1 were identical to the images of the regular (random) sequence
in M2 and the reduced activation for the regular sequence images

Frontiers in Neuroscience | www.frontiersin.org 6 July 2020 | Volume 14 | Article 789

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00789 July 29, 2020 Time: 20:25 # 7

Vergnieux and Vogels Statistical Learning in Macaque Cortex

FIGURE 2 | Stimulus activations: contrast random sequence – fixation only. Sagittal and coronal slices illustrating for each monkey and hemisphere the activations
by the images compared to a condition in which only the fixation target was presented. The activations are presented on the MRI anatomy of each monkey. The
vertical lines indicate where the slices were taken. The color scales indicate t values, thresholded at p = 0.05 family wise error rate. (A) M1, (B) M2.

was present in both monkeys, the latter cannot be due to image
differences between sequences. Indeed, when the activations
would have resulted from differences among the images between
the two sequences, one would have expected opposite activation
patterns for the same subtraction in the two animals, which was
not the case (Figures 3, 4).

Only in a single hemisphere of M2 did we observe activations
in the frontal cortex (Figures 3, 4). A closer examination of
these activations showed an overlap with the ventral premotor
and the frontal operculum (insular) areas that show orofacial
and gustatory responses (Maranesi et al., 2012; Kaskan et al.,
2019; Sharma et al., 2019). Such responses in our setup can
obviously be related to reward delivery or reward anticipation
since the monkey worked for juice reward during the scanning.
We compared for M2 the reward frequency and reward sizes
between the two conditions in the runs that entered the
contrast computation, but these were highly similar and did not
differ significantly between the two conditions (median reward
frequency per block: random = 62; regular = 60; rank sum test:
p = 0.26; median reward size: random = 40; regular = 40; rank
sum test: p = 0.34). It is possible that the animal made, for some
unknown reasons, more orofacial movements in the random
than in the regular condition, unrelated to the presentation of
reward, but because we did not monitor the monkey’s face during
scanning, we did not know. Furthermore, it is unclear why these
frontal activations were unilateral since one would expect those
to be bilateral for orofacial movements such as sucking. Because

the frontal activations were unilateral, overlapped with orofacial
activity and were present in only one monkey, we believe that
these are unrelated to visual statistical learning signals.

Recent studies suggested that pupil size, being sensitive to
unexpected stimulus transitions, can be used as a behavioral
indicator of statistical learning (Alamia et al., 2019; Richter and
de Lange, 2019). Since pupil size measures were too noisy during
fMRI scanning, we analyzed the pupil sizes for the last 8 days
of the pre-scanning exposure phase. In both animals, the pupil
size oscillated at approximately 2 Hz, following the 2-Hz stimulus
presentation rate, but we failed to find consistent differences in
pupil size between the random and the regular sequences across
monkeys (data not shown).

The mean number of microsaccades in the random and the
regular quartets of the last 8 days of exposure was similar for M1
(Figure 5; rank sum test: p = 0.14) but differed slightly (7%) but
significantly for M2 (Figure 5; rank sum test: p = 2.34 × 10−8).
Similarly, the mean standard deviation of the horizontal and
the vertical eye movements, computed for the same quartets,
was similar for M1 for the regular and the random conditions
(Figure 5; horizontal: rank sum test: p = 0.35; vertical: rank
sum test: p = 0.13) but differed significantly for M2 (Figure 5;
horizontal: rank sum test: p = 2.9× 10−5; vertical: rank sum test:
p = 0.01). However, the sign of the difference between the two
conditions was opposite for the two eye movement dimensions,
indicating a negligible overall difference in eye movement
amplitudes between the regular and the random conditions in
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FIGURE 3 | Activations when contrasting the regular and the random sequences. Four representative slices are shown for each monkey using their own anatomy.
The red activations correspond to the contrast random–regular sequence, while the blue ones correspond to the opposite contrast. (A) M1, (B) M2. The same
conventions as in Figure 2.

this monkey. An analysis of the eye movements in the quartets
that included a deviant showed similar mean values to those
obtained for the regular quartet in both monkeys (Figure 5).

During the fMRI sessions, the eye movement signal was
noisier. We analyzed eye movements during the same runs that
entered the fMRI contrasts. First, we removed the eye blinks.

The number of blinks per block did not differ between regular
and random blocks in M1 (rank sum test: p = 0.55) and M2
(p = 0.26). Then, we computed the standard deviation of the
eye position outside the blink epochs (Figure 6). For M1, the
mean standard deviation was similar for the horizontal (rank
sum test: p = 0.55) and the vertical dimension (p = 0.42) for
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FIGURE 4 | Cortical activations shown on a probabilistic retinotopic map of the inflated F99 monkey brain. The thresholded retinotopic maps are indicated in light
gray, using the definitions of retinotopic areas by Zhu and Vanduffel (2019). The thresholded cortical activations (p < 0.05 family wise error rate) corresponding to the
contrast random–regular are shown in red–yellow; those of the opposite contrast in blue. (A) M1, (B) M2.

the two conditions. For M2, the mean standard deviation was
similar for the two conditions for the horizontal dimension
(p = 0.15) but differed significantly for the vertical dimension
(p = 7.1 × 10−8), with the same trend as for the pre-
scanning exposure sessions. The mean eye position did not differ
significantly between the regular and the random blocks in each
monkey for either dimension [rank sum test; minimum p = 0.16,
with a maximum difference in mean position being 0.13◦ (vertical
dimension in M2)].

The small differences in eye movements between the random
and the regular conditions, seen only in one subject, and
the absence of consistent pupil size differences suggest that
the reduced occipito-temporal fMRI activation for the regular
sequence, which was present in both monkeys, did not result
from differences in eye movements, pupil size, or arousal between
the two sequences.

DISCUSSION

Exposure to a continuous stream of images, consisting of a
random sequence of quartets in which the image order was fixed,
produced a reduced activation in macaque occipito-temporal
cortex compared to a random sequence of images. Marked
response reductions for the regular sequence were observed in
early extrastriate visual cortical areas, including area V2, despite
the use of rather complex images of animals. The reduced

activation for the regular sequence reflected the embedded
statistical regularities, being present for equally familiar images
and for stimuli of the two sequences that were counterbalanced
across the two subjects.

In line with the present fMRI findings, previous
electrophysiological studies in macaque IT showed reduced
spiking activity for regular compared to random two-image
sequences (Ramachandran et al., 2017) and continuous
sequences (Kaposvari et al., 2018). Because we employed
complex images, we expected to see strong statistical learning
effects in IT, but these were weaker than found here in early
extrastriate visual areas, especially in M1. We observed, in a
previous study, that the difference in spiking activity between
the regular and the random sequence is mainly present for the
early phase of the IT spiking response (Kaposvari et al., 2018).
Unlike early visual cortical areas, IT shows strongly sustained
responses, and hence the transient neural response difference
between the two sequences might be proportionally small in the
hemodynamic response, which reflects the complete, both early
and late, sustained response.

Functional MRI studies in humans have observed pronounced
reductions to regular sequences in the ventral visual stream,
when compared to an unexpected, “deviant” stimulus in the
sequence (Richter et al., 2018; Richter and de Lange, 2019). The
reductions observed in the human ventral stream appear to be
much stronger than those seen in the present study. Apart from
several technical differences between studies, one potential factor
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FIGURE 5 | Eye movement metrics of the pre-scanning exposure phase (last eight exposure sessions). The means and 95% confidence intervals for the regular
(Reg), random (Ran), and deviant (Dev) quartets are plotted for monkey M1 and M2. Std dev, standard deviation.
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FIGURE 6 | Eye movement metrics during functional MRI (fMRI) for the same runs that were employed for the fMRI analysis. The standard deviations of the eye
position outside the blink epochs were computed per block for the horizontal (top) and the vertical dimensions separately. The means and 95% confidence intervals
for the regular (Reg) and random (Ran) sequences are plotted for monkey M1 and M2.

explaining the difference between the human and the monkey
fMRI data is that, in the human experiments, the participants
were performing an active task that required attention to the
images. In our study, the monkeys were performing a passive
fixation task in which attention to the stimuli is uncontrolled.
A recent human fMRI study showed that when attention was
directed away from the images, enhanced activation to the
deviant stimulus was absent (Richter and de Lange, 2019). Note
however, that distracting attention away from the images by an
orthogonal task (Richter and de Lange, 2019) can suppress visual
responses to a larger extent than passive fixation, during which
the subject can still attend the stimuli. Furthermore, single-unit
IT studies have consistently observed statistical learning signals
during passive fixation in monkeys (Meyer and Olson, 2011;
Meyer et al., 2014; Ramachandran et al., 2016, 2017; Schwiedrzik
and Freiwald, 2017; Kaposvari et al., 2018). Thus, we believe that

it is unlikely that attentional factors can explain the difference
between the human and the monkey fMRI findings. A potentially
more likely explanation is that part of the response difference
in the human fMRI study may have resulted from an additional
“surprise response” to the stimulus that violated the learned
sequence. Indeed we observed in a previous electrophysiological
study that, in monkey IT, the spiking response to a “deviant”
is stronger and more sustained than that for the random
sequence [Kaposvari et al., 2018; but see Ramachandran et al.
(2017)].

Two human fMRI studies that compared regular and random
sequences (Turk-Browne et al., 2009; Otsuka and Saiki, 2017), as
we did here, reported the opposite effect: an increased activation
for the regular sequence. The reason for this discrepancy between
our monkey fMRI study and the human fMRI studies is unclear,
but one important factor might be the exposure duration, which
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was brief (i.e., during the single fMRI session) in the human
studies. Although we cannot exclude it, the discrepancy between
the monkey and the human fMRI studies is unlikely to reflect
a species differences since our macaque results are in line with
human fMRI studies that observed a reduced activation to a
regular compared to a deviant stimulus sequence (Aizenstein
et al., 2004; Rosenthal et al., 2016, 2018; Richter et al., 2018;
Richter and de Lange, 2019). Furthermore, the latter human fMRI
studies are consistent with single-unit studies in macaques that
employed a highly similar paradigm (Meyer and Olson, 2011;
Schwiedrzik and Freiwald, 2017).

We observed random–regular activations only in the visual
occipito-temporal cortex, except for frontal activations in one
hemisphere of one of the subjects. We believe that this frontal
activation is artifactual, related to orofacial movements. fMRI
studies in humans have reported activations related to statistical
learning in non-visual areas (see “Introduction”), but these can be
task-related (Richter and de Lange, 2019). Although we cannot
exclude that we missed areas outside the visual cortex, the
prominent activations in the visual cortex agrees with the idea
that the suppression of the response to the regular sequence
originates within the visual cortex, perhaps reflecting predictive
coding (Friston, 2005) based on recurrent interactions between
ventral areas that build object representations.

It might be surprising that statistical learning signals were
present for these complex images as early as area V2. Note
however, that some fMRI studies that compared expected and
unexpected complex images also found activations in early visual
areas, including even area V1 (Richter et al., 2018; Richter and
de Lange, 2019). These human fMRI studies attributed the V1
activations to general stimulus-unspecific response modulations
in arousal or to luminance changes due to pupil size differences
between the unexpected deviant and the regular stimuli. Indeed
pupil dilation correlated with increased V1 activation in the
human fMRI study (Richter and de Lange, 2019). Pupil-related
effects cannot account for the early visual activations in our
study since no consistent differences in pupil size were observed
between the random and the regular sequences.

Our animals were exposed to stimulus regularities for a
long period. The long exposure may have led to the response
changes in early visual areas for these complex images. Extensive
perceptual learning of complex stimuli also produces changes in
activation of early visual areas (Sigman et al., 2005). Furthermore,
single-cell studies in the macaque suggested the encoding of
shape category in early visual cortex (Ko and von der Heydt,
2018). Interestingly, a recent monkey single-cell study observed
a reduced response to familiar compared to unfamiliar complex

images in area V2 (Huang et al., 2018). It is possible that the early
visual cortical modulations of the responses to complex images by
image familiarity or by predictions reflect feedback from higher
areas that respond to complex object features. Indeed, human
fMRI studies suggested that feedback from higher areas results
in the encoding of high-level stimulus features in early visual
cortex (Williams et al., 2008; Fan et al., 2016; Morgan et al., 2019).
This is in line with the recurrent nature of the ventral visual
stream connectome (Kravitz et al., 2013), which can support the
integration of predictions and feature representations at different
stages of processing.
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