
fnins-14-00931 September 1, 2020 Time: 19:18 # 1

ORIGINAL RESEARCH
published: 03 September 2020
doi: 10.3389/fnins.2020.00931

Edited by:
Reza Lashgari,

Brain Engineering Research Center,
Institute for Research in Fundamental

Sciences, Iran

Reviewed by:
Per Niklas Hedde,

University of California, Irvine,
United States

Hamed Azarnoush,
Amirkabir University of Technology,

Iran

*Correspondence:
Kevin W. Eliceiri

eliceiri@wisc.edu

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 15 June 2019
Accepted: 11 August 2020

Published: 03 September 2020

Citation:
Sagar MAK, Cheng KP,

Ouellette JN, Williams JC, Watters JJ
and Eliceiri KW (2020) Machine

Learning Methods for Fluorescence
Lifetime Imaging (FLIM) Based

Label-Free Detection of Microglia.
Front. Neurosci. 14:931.

doi: 10.3389/fnins.2020.00931

Machine Learning Methods for
Fluorescence Lifetime Imaging
(FLIM) Based Label-Free Detection of
Microglia
Md Abdul Kader Sagar1,2, Kevin P. Cheng1, Jonathan N. Ouellette1,2, Justin C. Williams1,
Jyoti J. Watters3 and Kevin W. Eliceiri1,2,4*

1 Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States, 2 Laboratory
for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, United States, 3 Department
of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States, 4 Morgridge Institute
for Research, Madison, WI, United States

Automated computational analysis techniques utilizing machine learning have been
demonstrated to be able to extract more data from different imaging modalities
compared to traditional analysis techniques. One new approach is to use machine
learning techniques to existing multiphoton imaging modalities to better interpret
intrinsically fluorescent cellular signals to characterize different cell types. Fluorescence
Lifetime Imaging Microscopy (FLIM) is a high-resolution quantitative imaging tool that
can detect metabolic cellular signatures based on the lifetime variations of intrinsically
fluorescent metabolic co-factors such as nicotinamide adenine dinucleotide [NAD(P)H].
NAD(P)H lifetime-based discrimination techniques have previously been used to develop
metabolic cell signatures for diverse cell types including immune cells such as
macrophages. However, FLIM could be even more effective in characterizing cell types if
machine learning was used to classify cells by utilizing FLIM parameters for classification.
Here, we demonstrate the potential for FLIM-based, label-free NAD(P)H imaging to
distinguish different cell types using Artificial Neural Network (ANN)-based machine
learning. For our biological use case, we used the challenge of differentiating microglia
from other glia cell types in the brain. Microglia are the resident macrophages of the
brain and spinal cord and play a critical role in maintaining the neural environment and
responding to injury. Microglia are challenging to identify as most fluorescent labeling
approaches cross-react with other immune cell types, are often insensitive to activation
state, and require the use of multiple specialized antibody labels. Furthermore, the use
of these extrinsic antibody labels prevents application in in vivo animal models and
possible future clinical adaptations such as neurodegenerative pathologies. With the
ANN-based NAD(P)H FLIM analysis approach, we found that microglia in cell culture
mixed with other glial cells can be identified with more than 0.9 True Positive Rate
(TPR). We also extended our approach to identify microglia in fixed brain tissue with
a TPR of 0.79. In both cases the False Discovery Rate was around 30%. This method
can be further extended to potentially study and better understand microglia’s role in
neurodegenerative disease with improved detection accuracy.
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INTRODUCTION

Unlike external fluorescent labeling approaches, label-free
microscopic identification methods can provide equally useful
information while leaving the cellular microenvironment
unperturbed. Identification of unique metabolic fingerprints
based on quantitative data obtained from endogenous cellular
properties has been recently explored to develop biomarkers
of different cell types and/or disease states. These techniques
take advantage of different optical imaging modalities and the
intrinsic properties revealed by them followed by quantification
techniques to identify different biomarkers. Examples include:
diffused optical tomography for breast cancer (Flexman et al.,
2013), collagen signature (Kirkpatrick et al., 2006), Stimulated
Raman Scattering (SRS) based label-free chemical contrast
(Freudiger et al., 2008), and fluorescence lifetime based
macrophage signature (Szulczewski et al., 2016).

Fluorescence Lifetime Imaging Microscopy (FLIM) is a
well-suited modality for identifying candidate biomarkers
as it can be used to assess intrinsic cellular metabolism.
Fluorescence lifetime depends on physiological parameters such
as pH and ion/oxygen concentrations; it is also independent
of intensity, concentration, sample absorption, and sample
thickness (Berezin and Achilefu, 2010; Suhling et al., 2015).
FLIM can monitor metabolism by taking advantage of the
intrinsic fluorescence of the ubiquitous metabolic coenzyme
NAD(P)H (Nicotinamide Adenine Dinucleotide). NAD(P)H is
a key electron donor/acceptor involved in many metabolic
processes, especially redox reactions (Lakowicz et al., 1992; Skala
et al., 2007; Mongeon et al., 2016). FLIM can quantify the ratio
between free and bound NAD(P)H, and calculate the mean
fluorescence lifetime based on the relative quantity of free: bound
components and the individual component’s lifetime (Lakowicz
et al., 1992; Bird et al., 2005; Skala et al., 2005; Provenzano
et al., 2008). The mean lifetime, long lifetime component, or
free: bound ratios of NAD(P)H are indicative of whether a
cell’s metabolism is in a more glycolytic or oxidative state. For
example, more free NAD(P)H measured via FLIM can be used
to show a shift toward glycolysis in cancer per the Warburg
theory. As a result, FLIM is gaining widespread acceptance as
a way to probe the cellular microenvironment (Wang et al.,
1992; Suhling et al., 2005, 2015; Provenzano et al., 2008; Berezin
and Achilefu, 2010). FLIM is also increasingly used to probe
brain metabolism and neuronal function in vivo. For instance,
quantitative FLIM data has been used by researchers to (1) find
contrast between glioblastoma and normal brain tissue (Leppert
et al., 2006; Sun et al., 2010; Kantelhardt et al., 2016), (2) map
alterations in cerebral metabolism based on NAD(P)H binding
(Chia et al., 2008; Yaseen et al., 2017), (3) non-invasively, optically
image Alzheimer’s Disease (Das et al., 2018), (4) visualize
redox activities in the brain (Mongeon et al., 2016), and (5)
quantify neuronal dysfunction in neuroinflammation using FLIM
instrumentation (Rinnenthal et al., 2013).

One type of cells of growing imaging interest has been
those of the central nervous system (CNS) such as microglia.
Microglia are a critical cell type in the nervous system
whose activities are implicated in virtually all neuropathologies

including traumatic injury, neurodegenerative disease, ischemia,
and infection (Watters et al., 2005; Garden and Möller, 2006;
Tambuyzer et al., 2009; Charles et al., 2011). These CNS tissue-
resident macrophages influence brain development, maintain
the neural environment, respond to injury and infection, and
orchestrate repair processes among other important functions.
Their production of neurotoxic inflammatory molecules often
exacerbates neuronal damage. Due to this biological significance
and the need for improved tools for further characterization, we
chose microglia as our biological use case for developing a non-
invasive label free imaging workflow that combines fluorescence
lifetime imaging with machine learning.

The goal of this study was to develop a FLIM-based fingerprint
for microglia, as has been done for macrophages (Alfonso-
García et al., 2016) and bacteria (Bhattacharjee et al., 2017).
Our lab previously demonstrated that FLIM-based, label-free
imaging could be used to distinguish unique glycolytic type FLIM
signatures between tumor-associated macrophages and mouse
mammary tumors cells (Szulczewski et al., 2016). However,
this has not been done in the context of the CNS and
microglia. Previous studies have used FLIM to show neural
stem cell differentiation (Stringari et al., 2012) or characterize
the metabolic response of astrocytes (Stuntz et al., 2017), but
not to identify microglia identity. In order to optimally exploit
differences in metabolism-induced lifetime changes for microglia
identification, a fast, quantitative approach that can identify their
unique metabolic signature would be ideal. Accordingly, we have
coupled FLIM with a machine learning-based solution to detect
microglia based on their FLIM parameters.

One of the most common ways FLIM acquisition is performed
is Time Correlated Single Photon Counting (TCSPC) connected
to multiphoton laser scanning microscopes. TCSPC offers
picosecond level time resolution, which is arranged in histograms
based on timing information of the detection photon. In a
typical time domain FLIM analysis workflow, the lifetime decay
curve is subject to one- or two-component exponential curve
fitting to estimate the lifetime parameters such as free: bound
NAD(P)H lifetime, the amplitude of their decay curve, and
goodness of fit (chi-squared error). If a machine learning (ML)
algorithm has raw unfitted decay data, it could be possible
to estimate lifetime accurately and subsequently characterize
cell types. This approach would be advantageous in two ways:
(i) it will reduce time for calculating lifetime from a decay
curve (the only remaining bottleneck would then be collection
time; the lifetime can be estimated instantly without the time-
consuming exponential curve fitting); and (ii) possibly identify
an optical/metabolic fingerprint which would otherwise not be
apparent with regular analysis. This approach of calculating
lifetime directly from the decay curve is relatively new, to
our knowledge, there is one previous published report that
has estimated lifetimes using artificial neural networks (Wu
et al., 2016). Another approach of possible utility would be to
use the estimated lifetime parameters calculated using standard
curve fitting approaches and train where the label is created by
antibody staining. Recently there is work by Smith et al. (2019)
have utilized deep neural network with FLIM data to estimate
lifetime in fit free fashion. Another group demonstrated machine
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learning approach using random forest classifier on FLIM data
for classification of tumor FLIM image (Unger et al., 2020).

In this study, we have used both approaches to train an
Artificial Neural Network (ANN) to identify the location of
microglia, i.e., (i) a fitting based method (FBM) where the
fitted data are exported from standard curve fitting routines,
and (ii) an experimental decay based method (DBM) training
with the exponential decay curve consisting of 256 time-bins
directly. To our knowledge, this is the first application of a FLIM-
based machine learning application for intrinsic fluorescence
signature development.

MATERIALS AND METHODS

Animals
All animals were maintained in an AALAC-accredited animal
facility with a 12-h light/dark cycle regime and had access to
food and water ad libitum. All experiments were performed
in accordance with the University of Wisconsin-Madison
Institutional Animal Care and Use Committee.

For FLIM imaging, 100 µm thick coronal slices were prepared
from the fixed brains of young adult C57BL/6J and CX3CR1-GFP
mice (Jackson Labs), aged 6–8 weeks. Animals were euthanized
by isoflurane overdose and transcardially perfused with ∼30 ml
of ice-cold PBS, followed by a second perfusion with an ice-cold
solution of 4% PFA in PBS. Brains were then dissected, post-fixed
for 24 h in a solution of 4% PFA in PBS, and then moved to HBSS
(all performed at 4◦C and protected from light).

Preparation of Primary Neonatal Mixed
Glial Cultures
Mixed primary glial cultures were prepared from 3 to 7 day
old, CX3CR1-GFP mouse pups as previously described (Crain
et al., 2013). Briefly, brains were dissected immediately after
decapitation, and the brain stem, olfactory bulbs, meninges, and
visible blood vessels were removed. The remaining tissue was
finely minced, thoroughly triturated with a serological pipette
in 0.25% trypsin-EDTA containing 0.1 mg/ml deoxyribonuclease
I, and then incubated at 37◦C for 20 min. The reaction was
immediately stopped by the addition of an equal volume of heat-
inactivated horse serum. The dissociated cells were resuspended
in DMEM supplemented with 10% FBS and 100 units/ml
penicillin/streptomycin. Brains were processed individually for
each pup, and the resulting cell suspension was divided equally
and plated in 35 mm dishes (4–6 plates/brain). The plated cells
were cultured for 7–14 days in a 37◦C incubator supplemented
with 5% CO2; the culture medium was replaced every 3–4 days.

Immunohistochemistry
One hundred micrometers thick coronal sections were prepared
from the midbrain region of each brain using a Leica Vibratome.
Two slices from each animal were used for immunohistochemical
staining. Briefly, slices were washed at room temperature
with 0.3% TritonX-100 in PBS, before incubating in blocking
buffer (1% BSA, 0.3% TritonX-100/PBS) for 2 h at room
temperature. Slices were then incubated with anti-Iba1 antibodies

(1:1000; Wako Catalog No. 019-19741) in blocking buffer
in the dark at 4◦C overnight. Slices were washed again at
room temperature with 0.3% TritonX-100 in PBS followed by
incubation in the dark for 2 h with AlexaFlour594 anti-rabbit
IgG antibodies (1:200) in blocking buffer, at room temperature.
Slices were washed with 0.3% TritonX-100 in PBS and mounted
on 1 mm slides using Cytoseal60 mounting medium. Mounted
sections were stored at room temperature, protected from light
until they could be imaged.

Multiphoton Lifetime Imaging
The multiphoton based (Denk et al., 1990) lifetime and intensity
imaging was performed on a custom multiphoton laser scanning
system built around an inverted Nikon Eclipse TE2000U at
the Laboratory for Optical and Computational Instrumentation
(Yan et al., 2006). A 20× air immersion objective (Nikon Plan
Apo VC, 0.75 NA) (Melville, NY, United States) was used
for all imaging. For NAD(P)H imaging, data was collected
using an excitation wavelength of 740 nm, and the emission
was filtered at 457 ± 50 nm (Semrock, Rochester, NY) for
the spectral peak for NAD(P)H/NADPH. For GFP intensity
imaging, the excitation was set at 890 nm, and an emission
520 ± 35 filter was used (Semrock, Rochester, NY). For
AlexaFluor594 imaging, excitation was set at 810 nm, and
a 615/20 (Semrock, Rochester, NY) bandpass emission filter
was used for emission. We used time domain FLIM imaging
where the FLIM decays curves were built with TCSPC (Time
Correlated Single Photon Counting) electronics. FLIM images
of 256 × 256 pixels were collected with 120 s collection
using SPC-150 Photon Counting Electronics (Becker & Hickl
GmbH, Berlin, Germany) and Hamamatsu H7422P-40 GaAsP
photomultiplier tube (Hamamatsu Photonics, Bridgewater, NJ).
Urea crystals were used to determine the Instrumentation
Response Function (IRF) with a 370/10 bandpass emission
filter (Semrock, Rochester. NY). For each sample, around 20
neighboring FOVs were randomly selected, and the average
value of lifetime and free NAD(P)H ratio was calculated based
on masking described in the “Data Analysis” section. The
instrument response function of the optical system was calibrated
during each imaging session. Autofluorescence intensity and
fluorescence lifetime data were analyzed in SPCImage (Becker &
Hickl GmbH, Berlin, Germany) where a Levenberg–Marquardt
routine for nonlinear fitting was used to fit the fluorescence
decay curve collected for each decay after binning. Data were
assessed by the minimized chi-square value generated during
the fit so that the analyses were unbiased. To eliminate
background fluorescence, a threshold for analysis was applied
based on photon counts.

Data Analysis
The cell cultures used for experiments were CX3CR1-GFP
positive, and the GFP intensity image was used to create the mask
for identifying microglia. For the brain tissue imaging, anti-Iba1
antibodies visualized with AlexaFluor594 was used to identify
microglia (Figure 1A) and the mask is shown in Figure 1B.
The lifetime fitted data from SPCImage (Becker & Hickl GmbH,
Berlin, Germany) and all the parameters were exported for more
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FIGURE 1 | Method demonstrating microglia prediction using ANN. (A) Microglia image using Iba1. (B) Mask created from Iba1 image (C) NAD(P)H intensity image
from the same FOV. (D) Lifetime image of the same FOV created from SPCImage (Becker and Hickl GmbH, Berlin, Germany) (E) ANN showing the inputs used for
training instances and output (F) predicted microglia image. (G) Composite image showing fusion of predicted microglia image and actual microglia image created
from Iba1 (scale bar 10 µm, A–D,E,F).

custom operations. Figure 1C shows the NAD(P)H intensity
image created from the lifetime image. Figure 1D shows the
lifetime image (mean lifetime) created by curve fitting. Mean
lifetime is one of the parameters exported for ANN training.
The exported data were imported in MATLAB (MathWorks Inc.,
Natick, MA) for calculating the means of custom regions and
statistical analyses. The masks were created from intensity images
in MATLAB. The time-resolved Becker and Hickl SDT data were
read using Bio-Formats (Linkert et al., 2010) MATLAB support
package. For generating the threshold of the predicted image, we
tuned a optimal threshold that maximizes overlap on the training
images. Then the trained network is applied to the test images and
the threshold is applied. A cell is considered a positive detection
when it overlaps with the cell body or the processes, otherwise it
is considered a false positive.

ANN Implementation, Fitting-Based Method (FBM)
In this approach, the fitted data for NAD(P)H lifetime was
exported in ∗.asc format from SPCImage and read in MATLAB
for post-processing and training. The exported data were mean
free/bound/mean NAD(P)H lifetimes (τ1, τ2, τm), amplitude of
their decay curve and free bound ratio (a1, a2, a1[%]), goodness
of fit (chi-squared error, χ2). The neural network for training
and testing is applied on the image data after some preprocessing
to create smaller block. All exported images were exported from
256 × 256 size lifetime images, and smaller overlapping blocks

of 8 × 8 size were taken from each dataset for training instances;
the average of each block was calculated for each parameter. The
neural network is applied on the each pixel of the new calculated
point from the 8 × 8 block. In this way, 8,494,137 labeled training
datasets were created for cells, and 5,456,088 training datasets
were created for tissue training. Subsequently, the data was used
for training using MATLAB’s neural fitting toolbox. Seventy
percentage of the dataset was used for training, and Fifteen
percentage was set aside for validation and testing. Bayesian
regularization (Foresee and Hagan, 1997) backpropagation was
used as a network training function, that updates the values
according to Levenberg-Marquardt optimization. We used a
feed-forward network with one hidden layer with 10 neuron in
the hidden layer. As a cost function, we used mean squared error.
The performance index is the mean square error, generated by the
neural network toolbox comparing the result of test and training
dataset (random splitting between training/testing/validation)
with a number ranging from 0 to 1, 0 indicating maximum
match 1 indicating no match. The performance with 10 hidden
neuron and Bayesian Regularization was 0.0202 for mixed glial
cell culture and 0.013 for tissue; increasing the number of hidden
neurons further did not improve performance. For example, with
20 hidden neuron with cell the performance was 0.020 but with
five hidden neuron the performance was 0.024. With additional
hidden layers, the performance remained the same. We also
compared training performance using Naive Bayes classifier,
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support vector machine (SVM) and K-nearest neighbor (Knn).
We reached performance of 0.92 with Naïve bayes and 0.802
with Knn. With SVM the performance varied from 0.07 to 0.15.
Given the performance achieved by ANN, we decided to used
it for further classification. The accuracy for microglia detection
was determined by first exporting the FLIM parameters from
NAD(P)H lifetime from a separate testing dataset. The input data
for feeding the ANN (Figure 1E) was created the same way as
the training process. Following this step, the label for each block
was predicted using the trained model, and the label for that
block was created. Repeating this step for all pixels generated
a 2D image with microglia detection probabilities. Pixels with
lower probability was discarded and smaller detected regions
were also discarded. The calibration was done on training images
to ensure overlap. Then, these thresholds were used to create
a probability image. Figure 1F shows such a mask which has
seven microglia in the FOV. The predicted image was compared
with antibody-labeled (Figure 1A) images to locate microglia
positions. The composite image (Figure 1G) shows the overlap
between the predicted microglia region and antibody detected
microglia region. We calculated the sensitivity (True Positive
Rate), Positive Predictive Rate (PPV), False Negative Rate (FNR),
and False Discovery Rate (FDR) (Sammut and Webb, 2017) from
the detected microglia after prediction and post-processing. We
did not calculate the rest of the parameters of the confusion
matrix as we do not have the true negatives with our current
approach of imaging. We do not have labeled data for non-
microglia cells, as it was out of the scope of this paper.

ANN Implementation, Decay-Based Method (DBM)
This approach exports the decay directly, which has 256 times
bins in the histogram. The data were directly read from time-
resolved SDT file using the Bio-Formats file reader library
(Linkert et al., 2010) in MATLAB. Instead of using the fitted
parameters as input to the ANN, we used an ANN with 10 hidden
neuron and 256 input nodes. The rest of the training and testing
was the same as the previous method. The performance with
these settings for cells was 0.0227.

RESULTS

ANN-FLIM Can Detect Microglia in Mixed
Glial Cell Cultures
In this section, we demonstrate the ability of ANN-based
techniques to identify microglia in mixed glial cell cultures.
ANN is applied on exported data after curve fitting from
SPCImage software. NAD(P)H lifetime fitted data are exported
from SPCImage (see section “Materials and Methods”), and
exported parameters are used to compute training instances for
individual blocks. The training is performed on training sets
and tested on a separate testing dataset. Figure 2A shows the
GFP intensity image created from GFP positive microglia. The
predicted microglia image from a sample field of view is shown
in Figure 2B. Figure 2C shows the fused image of the original
microglia image and predicted image from the same FOV. It
is evident from the fused image that, most of the microglia

are properly detected when compared with actual microglia
image created from GFP. There are some microglia which are
not predicted and some false positive in the lower left corner
where microglia are falsely identified. Figure 2D shows the error
obtained by prediction of individual instances created from FLIM
parameters of the testing dataset. The total number of microglia
in all (testing) FOVs were 348 and of them 313 were correctly
identified, 35 microglia was missed by the prediction algorithm,
but 138 additional microglia was falsely identified. Figure 2E
shows the result for microglia detection for five different dishes;
we got TPR 0.90 ± 0.03, PPV 0.67 ± 0.10, FNR 0.09 ± 0.03, FDR
0.33 ± 0.10.

ANN-FLIM Can Detect Microglia in Brain
Tissue
Next, we extended our approach to identifying microglia in
fixed mouse brain tissue slices. Imaging brain tissue is more
challenging than imaging cell cultures because of greater
heterogeneous spatial structures, and a wider degree of variation
in microglia lifetimes. The algorithm implementation was
the same as in the in vitro cell culture experiments, where
ANN was applied to the exported lifetime data from curve
fitting software, SPCImage. An anti-Iba1 antibody with an
AlexaFluor594 secondary antibody was used to visualize and
create a microglial intensity image (Figure 3A). Figure 3B shows
the predicted microglia image created from NAD(P)H lifetimes
of the same field of view as in Figure 3A, in which the microglia
are stained with Iba1. Figure 3C shows the fused image of
the original microglia image (from tissue)- and predicted image
from the same FOV. It is evident from the fused image that
all of the microglia from this FOV is properly detected when
compared with the Iba1 intensity positive microglia. Figure 3D
shows the error obtained by while predicting using individual
instances created from FLIM parameters of the testing dataset.
The total number of microglia in the testing FOVs are 170
and 137 were correctly identified, but 76 microglia were falsely
identified. Figure 3E shows the result for five different tissues
where we got TPR 0.79 ± 0.08, PPV 0.638 ± 0.09, FNR 0.2 ± 0.08,
FDR 0.36 ± 0.09. The TPR is reduced for microglia in tissue
and FNR is increased as the heterogeneity and complexity of the
structure complicates the prediction.

ANN Directly on Exponential Decay Can
Detect Microglia in Mixed Cell Cultures
Finally, we implemented an experimental approach, where
instead of exporting the lifetime fitted data, we used the decay
data having 256-time bins as a training instance. A recent study
showed the effectiveness of using ANN to calculate lifetime
directly from decay (Wu et al., 2016). Instead of calculating
lifetime, we directly used microglia locations as labels. This
approach is simpler because it bypasses the steps involving
exponential curve fitting routines and exporting the fitted lifetime
parameters. Figure 4A shows the intensity image of microglia
created from the GFP channel in the mixed glial cultures.
Figure 4B shows the recreated image from ANN-predicted
microglia from the exponential decay. Figure 4C shows the
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FIGURE 2 | Prediction of microglia from NAD(P)H lifetime data in mixed glial cell cultures where microglia cells are GFP-labeled. In this approach, ANN is applied on
exported lifetime parameters of the endogenous fluorophore NAD(P)H. (A) Original fluorescence intensity image of microglia created from the GFP channel
(B) Predicted microglia image from NAD(P)H lifetime data from the same field-of-view. (C) Composite image of predicted microglia image and original intensity
image. Most of the microglia are accurately predicted as seen from the composite image. But there are a few microglia not detected and some false positive in the
lower left corner (D) Error rate from testing instances, created from the testing microglia dataset (E) TPR, PPV, FNV and FDR from five different dishes (Scale bar 20
µm, A–C,E).

fused image of the original microglia image (from mixed glial
culture)- and predicted image from the same FOV. Figure 4D
shows the error obtained by while predicting using individual
instances created from FLIM parameters of the testing dataset.
The total number of microglia in the testing FOVs are 371
and 136 were correctly identified, but 24 microglia were falsely
identified. Figure 4E shows the result for five different dishes
where we got TPR 0.36 ± 0.09, PPV 0.82 ± 0.16, FNR 0.63 ± 0.08,
FDR 0.17 ± 0.15.

DISCUSSION

In this paper, we have used ML and fluorescence lifetime to
identify microglia in both mixed cell cultures and in brain
tissue sections. To our knowledge, this is one of the first

studies to apply ML algorithm to FLIM data to identify intrinsic
cellular metabolic signatures. Moreover, applying ML methods
directly on exponential decay data can be potentially augmented
to calculate lifetime without curve fitting to help understand
underlying trends in biological samples. The techniques applied
in this paper can be extended in various ways in studies
related to brain metabolism. Although there have been some
FLIM studies to visualize brain metabolism, but ML-FLIM was
not used to characterize cell types previously. This technique
can be potentially extended to identify other CNS glial cells
such as astrocytes, oligodendrocytes, and neurons. For in vivo
brain studies, a ML-based, label-free technique can be used
in the future where FLIM for different spectral channels can
be used in conjunction with trained ML networks to identify
and study specific cell types. Here, we used the lifetime
information generated by exponential curve fitting from each
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FIGURE 3 | Prediction of microglia from NAD(P)H lifetime data in mouse brain tissue. In this approach, ANN is applied on exported lifetime parameters of the
endogenous fluorophore NAD(P)H. (A) Original intensity image of microglia location created from the anti-Iba1 antibody AlexaFluor594 channel (B) Predicted
microglia image from NAD(P)H lifetime data from the same field-of-view. Composite image of predicted microglia image and original intensity image. (C) Composite
image of predicted microglia image and original intensity image. (D) Error rate from training and (E) TPR, PPV, FNV, and FDR from five different tissues (Scale bar 10
µm, A–C,E). (F) Zoomed in image of a microglia where a process is identified as positive.

pixel as training instances, and antibody-stained microglia
locations are used as positive microglia pixels. The goal was
to be able to identify microglia using the NAD(P)H lifetime
information alone. We have used two different approaches for
training, (1) the calculated lifetime parameters created from
curve fitting software SPCImage, FBM, and (2) ML directly on
time-resolved data, DBM. The second approach bypasses the
time-consuming curve fitting process and reduces the overall
number of processing steps. We first implemented our ANN-
based approach on microglia in mixed glial cell culture and
then extended this to testing tissue samples. In the future,
the tissue-based identification can be repurposed for in vivo
identification of microglia given there was enough training data
before detection testing.

Microglia are normally visualized with antibody-based
methods, using antibodies, such as anti-TMEM119 (Bennett
et al., 2016), anti-Iba1, and the combination of anti-CD11b and
anti-CD45, among others. These standard labeling techniques
have several limitations, including the extended sample

preparation time and associated complexity, inefficient antibody
penetration, and the potential for non-specific antibody binding.
A FLIM based, label-free imaging technique is advantageous
because it is simple, free from exogenous labeling, provides the
ability to directly measure intrinsic cellular properties, and its
potential for extending its use to observe cell activity in vivo.
NAD(P)H-FLIM based endogenous biomarker visualization is
an effective way to image intrinsic metabolism as NAD(P)H
lifetimes and free: bound ratios change with alterations in
metabolic state. The metabolic state of immune cells like
microglia can be different from other non-immune cells and the
surrounding tissue, and these differences are reflected by the
alternations in their lifetime signature.

For fitting-based methods (FBM), where the fitted parameters
were exported from SPCImage, we were able to achieve TPR
of 0.90 ± 0.03 for five different microglia mixed culture group
(Figure 2). However, we got some false positives with FNR being
0.09 ± 0.03 and FDR being 0.33 ± 0.10. For clinical application
the false positive need to be reduced in future studies. We expect
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FIGURE 4 | Prediction of microglia from NAD(P)H lifetime data in mixed glial cell cultures where microglia cells are GFP-labeled. In this approach, ANN is applied
directly on exponential decay curves of the endogenous fluorophore NAD(P)H. (A) Original intensity image of microglia location created from the GFP channel
(B) Predicted microglia image from NAD(P)H lifetime data only. Both images are from the same field-of-view. (C) Composite image of predicted microglia image and
original intensity image. (D) Error rate from training and (E) TPR, PPV, FNV, and FDR from five different dishes (Scale bar 20 µm, A–C).

this number will be improved by increasing the number of
training samples with more diverse samples matching the realistic
use case for in vivo imaging. This approach would require a
significant amount of data acquisition and processing time as
each FLIM image takes 1–2 min to acquire. This FBM approach
was also applied to brain tissue sections, which achieved a lower
accuracy than cell culture which we expected. The tissue is much
more heterogeneous and different fluorescent signature add to
the variation in lifetime alternations. Still, we managed to achieve
TPR of 0.79 ± 0.08 and PPV of 0.64 ± 0.09 but increased false
positive resulted in FNR of 0.2 ± 0.08 and FDR of 0.36 ± 0.09
(Figure 3). The reduction in TPR for tissue can be attributed to
several factors. In the mixed glial cell, there were primarily glial
cell of which majority of non-microglia cells were astrocyte. The
lifetime variation is much smaller in this environment compared
to an actual brain tissue where lots of different factors contribute
to the NAD(P)H lifetime variation. We also had fewer number of
microglia cell for training for the same number of FOVs, which
can also contribute to the reduction in accuracy to some extent.
Combination of these factors can contribute to the reduction in
TPR and increase in FDR.

The second approach, DBM used the decay curve directly as
the input training parameter. However, there is shortfall in the
accuracy possibly introduced by curve shift between successive
imaging, after pulsing of the detectors that requires taking into
account Instrument Response Function (IRF). When the testing
instances (from mixed glial culture) were reorganized to form
image after classification, we obtained a TPR of 0.36 ± 0.09
but a PPV of 0.82 ± 0.15. But we also got an increased FNR
of 0.63 ± 0.08 but reduced FDR 0.17 ± 0.15. This method has
the lowest TPR but also achieved the best FDR. With more
training samples this method could lead to significantly better
performance. This method did not yield an acceptable result
in tissue as the heterogeneity in the tissue might add to the
variation. To make this method more accurate and clinically
viable, we need more training datasets as well as take into account
the FLIM instrumentation originated variation such as shift in
decay and IRF. Moreover, surface-based markers such as CD11b
for microglia could result in a better classification compared to
Iba1 as they are able to properly identify all of cell body and
processes which would reduce false negatives for training. We
intend to explore this further in future work, as well as combining
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advanced deep learning tools such as Convolutional Neural
Networks (Krizhevsky et al., 2012) to better predict microglia
location using lifetime information and morphological features.

One limitation of our approaches is inherent to the TCSPC
approach itself, as TCSPC acquisition takes several minutes to
finish a single frame depending on the sample fluorescence
intensity. For in vivo live acquisitions, the TCSPC approach
might be less useful if real-time visualization is required.
Frequency domain FLIM (Gratton et al., 2003) acquisition
followed by ML could be another approach to overcome
acquisition time limitation. Another limitation is the variability
of relative shift in the exponential decay, although this can be
overcome with the fitting-based method. The FBM already deals
with shifts during the fitting process by the fitting software.
It could be an issue with the decay-based method where the
shift is not taken into account. It might be one of the reasons
why the decay-based method did not yield good results with
tissue sections. We plan to address the issue with the decay-
based approach in tissue sections by using more training data in
the future, incorporating the IRF and adding more classification
features that consider morphology and/or the intensity of
different spectral channels. Other potential exponential curve
fitting issues include fitting bias and local minima. One way
of overcoming this issue would be avoiding curve fitting by
either using raw data (which we demonstrated) and using phasor
analysis methods with the TCSPC FLIM data. We ran some
preliminary experiment to test the accuracy of the phasor-
based approach (TPR 0.41 ± 0.03, PPV 0.49 ± 0.11, FDR
0.51 ± 0.12) and found that false positives were relatively high.
But in the future, a hybrid approach where phasors are part
of classification features alongside morphology could provide
better discrimination for cell type. Another issue we would like
to bring to attention is the tissue/cell fixation. All of our testing
and training was performed using fixed cell/tissue. While there
is some past concern with FLIM imaging with fixed samples
for NAD(P)H imaging, our lab has demonstrated recently that,
although fixation causes shift in NAD(P)H lifetime values, the
metabolic signature and trend are not altered (Chacko and
Eliceiri, 2019). For classification for live tissue, new training
sample would be required to tune the parameters. Another
limitation of our experiment was that we did not identify True
Negative (TN) and as a result all the components of confusion
matrix and accuracy can’t be determined. For the mixed glial
culture, the TNs would be the non-microglia glial cell. But it
is more complicated in brain tissue to define TN as the brain
tissue is heterogeneous and consist of components that are
challenging to define in terms of TN. One last limitation would
be the variability of NAD(P)H lifetimes from sample to sample.
Based on the microenvironment, the NAD(P)H lifetime can vary
even though the cells/tissues are treated similarly. One way to

overcome this limitation would be to train with larger datasets
with similar treatments.

CONCLUSION

We have demonstrated a novel machine learning based approach
that can use FLIM data to identify microglia based on NAD(P)H
lifetime parameters. We have successfully shown the effectiveness
of the method in both cells and tissue slices and achieved close
to 90% True Positive Rate and moderately low False Discovery
Rate. Additionally, we have shown that the decay can be used
to directly identify microglia using ANN without exponential
curve fitting. This approach can be further enhanced to calculate
lifetimes and other parameters from lifetime decay data directly
using machine learning.
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