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Structural segmentation of T1-weighted (T1w) MRI has shownmorphometric differences,

both compared to controls and longitudinally, following a traumatic brain injury (TBI).

While many patients with TBI present with abnormalities on structural MRI images, most

neuroimaging software packages have not been systematically evaluated for accuracy in

the presence of these pathology-related MRI abnormalities. The current study aimed

to assess whether acute MRI lesions (MRI acquired 7–71 days post-injury) cause

error in the estimates of brain volume produced by the semi-automated segmentation

tool, Freesurfer. More specifically, to investigate whether this error was global, the

presence of lesion-induced error in the contralesional hemisphere, where no abnormal

signal was present, was measured. A dataset of 176 simulated lesion cases was

generated using actual lesions from 16 pediatric TBI (pTBI) cases recruited from the

emergency department and 11 typically-developing controls. Simulated lesion cases

were compared to the “ground truth” of the non-lesion control-case T1w images.

Using linear mixed-effects models, results showed that hemispheric measures of cortex

volume were significantly lower in the contralesional-hemisphere compared to the ground

truth. Interestingly, however, cortex volume (and cerebral white matter volume) were not

significantly different in the lesioned hemisphere. However, percent volume difference

(PVD) between the simulated lesion and ground truth showed that the magnitude of

difference of cortex volume in the contralesional-hemisphere (mean PVD = 0.37%)

was significantly smaller than that in the lesioned hemisphere (mean PVD = 0.47%),

suggesting a small, but systematic lesion-induced error. Lesion characteristics that could

explain variance in the PVD for each hemisphere were investigated. Taken together, these

results suggest that the lesion-induced error caused by simulated lesions was not focal,

but globally distributed. Previous post-processing approaches to adjust for lesions in

structural analyses address the focal region where the lesion was located however, our

results suggest that focal correction approaches are insufficient for the global error in

morphometric measures of the injured brain.
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INTRODUCTION

Automated analysis to derive quantitative measures of brain
structure offers significant benefit to large scale research
endeavors that have clinical translation potential. In addition
to reducing the time burden and potential error induced by
manual methods (Bigler et al., 2010), quantitative approaches
may be more sensitive to subtle but clinically-relevant imaging
biomarkers that are not apparent on routine visual reporting.
Accordingly, successful use of automated techniques has been
demonstrated in disorders with relatively subtle global or
regional changes [e.g., dementia of the Alzheimer’s type (Frisoni
et al., 2010)]. Recent traumatic brain injury (TBI) research
has utilized segmentation and analysis of T1-weighted (T1w)
structural magnetic resonance images (MRI) to quantify the post-
injury morphometric changes [Dennis et al., 2017; Ryan et al.,
2017; Urban et al., 2017, see King et al. (2019) for a review].
The accuracy of automated methods in the context of gross
lesions/pathology, however, may be reduced by errors introduced
during the processing of such MRI. This then makes it difficult
to ascertain whether differences between control and patient
morphology are due to an injury-related pathology or due to
systematic error which is specific to the patient cases with gross
lesions (King et al., 2019).

The MRI features of TBI are heterogeneous due to injury
mechanisms such as white matter deformation and shear,
Wallerian degeneration, compromised vasculature, hemosiderin
deposits and encephalomalacia (Bigler and Wilde, 2010; Bigler
et al., 2013, 2016), presenting as abnormal signal within the
image, hereto referred to as “lesions.” The current study
investigated MRI lesions in a cohort of pediatric TBI patients. In
TBI cases, lesions occur within the context of a still-developing
brain (Wilde et al., 2012a), and accurate quantification of brain-
morphology will allow us to assess the effects of traumatic brain
insults on the developmental trajectory of the brain.

Lesions are not uncommon in this population; in a
retrospective, accidental pediatric TBI (pTBI) cohort (n = 68),
MRI within 2 weeks detected intraparenchymal lesions on∼29%
of cases (Buttram et al., 2015). In a study of 36 patients, lesions
were detected on MRI (T1w, T2w, or FLAIR) for ∼56% of
cases [n = 20, Beauchamp et al. (2011)]. However, this is likely
an inflated prevalence as Beauchamp et al. (2011) specifically
included only those patients who explicitly had been clinically
referred for CT.

pTBI lesions can be as unique between individuals as the

precipitating injury, with no two individuals sharing the same

biomechanics of injury, genetic context, or experience-dependent
plasticity (Saatman et al., 2008). This means that the presentation

of lesions on MR imaging is highly variable between individuals,
but also within-cases. The pattern of pathology varies across time
post-injury: for example, white-matter shear is more common
acutely, whilst Wallerian degeneration is a late manifestation of
injury. Even for a given individual, lesion presentation on MRI is
highly dependent on factors such as MR sequence and time post-
injury (Bigler, 2007; Bigler andMaxwell, 2011; Bigler et al., 2013).
This heterogeneity means that lesion characterization presents a
major challenge for neuroimaging software and analysis.

There are multiple potential sources of error in neuroimaging
pipelines due to the presence of lesions. Frank parenchymal
lesions in TBI can result in abnormal voxel intensities (due
to pathology such as gliosis and oedema), distorting image-
processing of intensity gradients (Merkley et al., 2008; Irimia
et al., 2012; Goh et al., 2014). Gross TBI pathology can also lead to
inaccurate voxel-mappings to brain-atlas space, biasing estimates
of structural TBI volumetrics (Irimia et al., 2012; Goh et al., 2014).
Many automated approaches to segmentation are therefore likely
to show a lesion-induced error when used to process MRI from
clinical populations with visible lesions and pathology.

Regardless of their exact origin within the processing pipeline,
the effect of errors in the automated processing of these MRI is
the potential to obscure or falsely identify findings of pathology-
mediated changes to the morphology of the brain. For example,
focal white matter (WM) lesions seen in multiple sclerosis
have been shown to bias measures derived from SPM (Penny
et al., 2011), FIRST (Patenaude et al., 2011), Freesurfer (Fischl,
2012), and multi-atlas segmentation methods (Chard et al., 2010;
Gonzalez-Villa et al., 2017).

Freesurfer (Fischl, 2012) is a tool for the semi-automated
segmentation of T1w structural MRI to estimate the
morphometry of the brain. Whilst other structural neuroimaging
pipelines are available, Freesurfer utilizes a 2D surface based
approach which holds advantages over 3D volume based
approaches, including better adherence to the cortical geometry
(Fischl, 2012; Dickie et al., 2019). Documentation does not
discuss how to approach surface-based segmentation of lesioned
images but does emphasize that the tool should not be used
for clinical purposes. To date, little work has investigated
Freesurfer’s performance in the presence of pathology-related
MRI abnormalities. Despite these limitations, it has been
disproportionately used in pTBI studies [e.g., Mayer et al.
(2015), Drijkoningen et al. (2017), Ryan et al. (2017); Wilde et al.
(2012b); Wu et al. (2018)]. The majority of the pTBI studies listed
here report little detail on the implementation of Freesurfer in
the presence of TBI-lesions, beyond the fact that manual-editing
was performed. This paucity of detail restricts the ability to
replicate study findings and assess the effect lesions may have on
the Freesurfer pipeline.

Despite a lack of research into methodologies to approach
automated segmentation in the presence of lesions, previous
studies investigating brain morphometry in pTBI have reported
and adopted strategies to deal with the effect of lesions on their
analyses. One utilized approach is to exclude cases with focal
lesions from analyses (Serra-Grabulosa et al., 2005), however,
this both reduces statistical power (through reduced sample size)
and limits clinical applicability and generalizability of findings to
the full spectrum of injuries. Other studies have used post-hoc
procedures to “correct” for the effect of lesions on their analyses
by replicating analyses with/without patients presenting with
focal lesions in the region of interest (ROI) being tested (Spanos
et al., 2007), or excluding ROIs where the presence of a lesion
caused errors to the Freesurfer parcellation (Drijkoningen et al.,
2017). The post-hoc correction methods outlined here rely on the
assumption that the lesion-induced error is focal. However, it is
important to consider whether this algorithmic error could be

Frontiers in Neuroscience | www.frontiersin.org 2 November 2020 | Volume 14 | Article 491478

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


King et al. Lesion-Induced Error in TBI

distributed globally across the brain, causing an error in regions
not edited by these correction approaches.

We aimed to identify and quantify this potential global
lesion-induced error by simulating TBI-lesions in a healthy
pediatric cohort. Simulated lesions facilitate measurement of
the effect of image processing in the presence of a lesion as
compared to the “ground truth,” the non-lesioned counterpart
of the image. This is necessary to disentangle both the
morphological changes due to algorithmic error and potentially
“real,” globally-distributed pathological effects of the injury. To
achieve our aim, we investigated morphometry in both the
lesioned and contralesional hemispheres. This was to disentangle
the volumetric differences due to injury and those due to the
algorithmic error within the surface-based output of Freesurfer,
likely induced by the erroneous signal within the lesion (Chard
et al., 2010). Specifically, investigating volumetric differences
in the contralesional hemisphere is the purest test of the
hypothesized algorithm-induced error as, in this hemisphere,
the anatomy is identical be was anatomically identical across
ground-truth MRI and simulated lesion cases.

We predicted that the presence of lesions would result in
an error in morphometric measurement by Freesurfer, beyond
that of the spatial extent of the lesion. We had three explicit
hypotheses (hypotheses a and b were defined a priori, whereas
c was exploratory):

a) that for cases where we have simulated a lesion there will
be a difference in measured volume from ground truth in
both the lesioned hemisphere, due to sections of the gray and
white matter being replaced with lesioned tissue, but also the
contralesional hemisphere due to systematic bias introduced
by the lesion,

b) that the magnitude of this difference will be greater in the
lesioned hemisphere than the contralesional hemisphere,

c) that this lesion-induced error (both in the lesioned and
contralesional hemisphere) will vary as a function of
lesion characteristics.

METHODS

Participants
The data used in the current study represent a subset of
an existing dataset of pediatric TBI. This dataset contains a
total of 157 children (patients n = 114) who were recruited
between 2007 and 2010 into a study on “Prevention and
Treatment of Social Problems Following TBI in Children and
Adolescents.” Further details of the study including details of
the recruitment strategy have recently been published elsewhere
(Anderson et al., 2013, 2017; Catroppa et al., 2017). In brief,
children with TBI were recruited on presentation to The Royal
Children’s’ Hospital, Melbourne (RCHM), Australia. Children
were eligible for the study if on presentation they: (i) were
aged between five and 16 years at the time of injury, (ii) had
recorded evidence of both a closed-head injury and at least
two post-concussive symptoms (such as headaches, dizziness,
nausea, irritability, poor concentration), (iii) had sufficient detail
within medical records [Glasgow Coma Scale [GCS; Teasdale

TABLE 1 | Injury variables for lesion cases.

Case

no.

Injury-MRI

interval

(days)

Injury

severity

Cause

of injury

Lesioned

hemisphere

Lesion

volume

(mm3)

1 35 Moderate MVA lh 25.00

2 40 Moderate MVA lh 1,030.00

3 19 Moderate MVA rh 3,063.75

4 35 Moderate MVA lh 505.75

5 7 Moderate MVA lh 12,081.50

6 42 Mild-complex Fall lh 60.25

7 29 Mild-complex Fall rh 63.00

8 57 Severe Fall rh 35.00

9 32 Mild-complex Fall rh 2,059.25

10 71 Moderate Fall rh 8,815.00

11 38 Moderate MVA lh 83.50

12 35 Severe Fall rh 3,858.50

13 20 Moderate Fall rh 391.50

14 36 Moderate Fall lh 15.00

15 43 Moderate Fall rh 37.50

16 63 Moderate MVA rh 407.00

and Jennett (1974)], neurological and radiological findings] with
which to determine the severity of the injury, (iv) had no
prior history of neurological or neurodevelopmental disorder,
non-accidental injuries or previous TBI, and (v) were English
speaking. TD controls were required to meet criteria (i), (iv),
and (v). Of the participants recruited, 107 survivors of TBI and
36 typically developing (TD) controls had MRI scans acquired.
MRI scans were acquired within the first 90 days post-injury
(for details, refer to Table 1). A favorable ethical opinion was
granted from Aston University as a site for secondary analysis of
neuroimaging data.

Control cases were selected from the overall dataset based
on four criteria, to ensure that the control data used was of
high quality: (i) MRI data available, (ii) no manual-editing of
surfaces required after Freesurfer recon-all pipeline completed,
(iii) no MR-artifacts, and iv) no “failed” ratings (a “bad” rating
on any of “image sharpness,” “ringing,” “subcortical SNR,” or
“GM + WM SNR” scales) on a qualitative rating scale of
T1w images [Backhausen et al. (2016); performed by DJK].
Eleven (out of 36) control cases met these criteria for inclusion,
consisting of 5 females and 6 males, with a mean age of 9.7 yrs
(range= 6.8–14.6 yrs.).

Patients were all investigated for visible lesions on T1w
images, blind to severity ratings. Nineteen patient cases were
identified as presenting with lesions that could be identified on
these T1w images. However, three patients were excluded from
this selection. The first was excluded due to the presence of
bilateral lesions which therefore precludes comparison between
the lesion and contralesional hemispheres. The second exclusion
was due to the resolution of the T1w image being significantly
different from the other images (0.8mm Isotropic). The final
exclusion was due to the lesion being an incidental finding, rather
than due to the TBI. The final sample consisted of 16 lesion cases
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(8/8 M/F). Mean age at injury for patients was distributed across
childhood (age at injury: mean= 9.8 yrs., range= 5.8–13.7 yrs.),
with MRI conducted shortly after (age at MRI: mean = 10.0
yrs., range = 5.9–13.8). Additional demographic characteristics
of the lesion cases can be seen in Table 1. The included lesions
were visualized as binary masks in MNI space in Figure 1. Lesion
volumes (mm3) were calculated as a count of the number of non-
zero voxels in the associated lesion mask multiplied by the voxel
size. This was calculated in the native space of the lesion patient
space (reported in Table 1) and once transformed into control
space as a simulated lesion (see below).

MRI Acquisition
MRIs were acquired for the patient group acutely after injury
(<90 days post-injury). MRI images were acquired at 3T as a
part of an existing research protocol on a Siemens Trio scanner
(Siemens Medical Systems, Erlangen, Germany) using a 32-
channel matrix head coil. The acquisition sequence consisted of
a sagittal three-dimensional (3D) MPRAGE [TR = 1,900ms; TE
= 2.15ms; IR prep = 900ms; parallel imaging factor (GRAPPA)
2; flip angle 9 degrees; BW 200 Hz/Px; 176 slices; resolution
1 × 0.5 × 0.5mm], sagittal 3D T2-w non-selective inversion
preparation SPACE (Sampling Perfection with Application-
optimized Contrast using different flip-angle Evolution) [TR =

6,000ms; TE = 405ms; inversion time (TI) = 2,100ms; water
excitation; GRAPPA Pat2; 176 slices; 1× 0.5× 0.5mm resolution
matched in alignment to the 3D T1w sequence].

Simulated Lesions
All MRI processing was conducted on a Linux system (UBUNTU
16.04.4 LTS). The lesions described above were initially
segmented manually (by JN with 8 years previous experience of
lesion delineation in pediatric neurooncology and TBI research)
using theMRTrix (version 3.0) software package (Tournier et al.,
2012), producing a binary lesion mask for each patient. Lesions
were identified in our dataset by a single rater and masks drawn
where visible lesions could be identified by eye on the T1w image,
using FLAIR MRI to support lesion identification.

The approach in the current paper was similar to that
proposed by Brett et al. (2001), and Gonzalez-Villa et al.
(2017) using lesions from pTBI cases recruited on admission to
an emergency department. The use of actual lesions provides
distinct benefits over computer-generated lesions, specifically
reflecting the complexity of actual lesions, retaining natural
characteristics such as texture and size (Seghier et al., 2008). The
full methodology is outlined in the supplementary materials and
is visualized diagrammatically in Supplementary Figure 1. The
resultant simulated dataset contained n= 176 cases, where every
included lesion (n= 16) had been applied to every control image
(n= 11) in all possible pairwise permutations. From here on, the
control images with the simulated lesions applied will be referred
to as the simulated lesion cases (n= 176) and the control images
without editing will be referred to as “ground truth” cases (n =

11). Examples of these lesion images and simulated cases can be
seen in Figure 2.

Automated Structural Segmentation Using
Freesurfer
Both the simulated-lesion and the ground-truth cases were
processed using the standard Freesurfer recon-all pipeline (v5.3),
which has good replicability and has been histologically validated
(Rosas et al., 2002; Han et al., 2006). Explanations of the
Freesurfer pipeline for 3D tissue segmentation and measurement
of morphometry are given elsewhere (Fischl et al., 2004;
Fischl, 2012). No additional “optional” processing flags were
used beyond the required arguments. No manual editing was
performed on either the simulated-lesion or control cases once
segmented using Freesurfer to prevent any potential bias toward
manual delineation (Perlaki et al., 2017).

Raw data were extracted using Freesurfer for both
the simulated-lesion and ground truth cases of two
volumetric measures; (a) Cortex volume [left (lh) and right
(rh) hemisphere] and (b) Cerebral white matter (cWM)
volume (lh and rh).

Statistical Analysis
For each lesion applied to the control cases to generate the
simulated-lesion cases, lesion masks were used to ascertain
laterality of lesions. Using this information, and knowing which
lesion is applied to each of the simulated-lesion cases, the
raw volumetric measures for each case were recoded as the
lesioned hemisphere and the contralesional hemisphere. This
is the case for all metrics calculated for the study. This
allowed us to see if any lesion-induced error is present in the
hemisphere where no volumetric differences should occur in
comparison to ground-truth, as no image manipulation has
occurred in the contralesional hemisphere. For each simulated-
lesion case, the appropriate reference ground-truth case was
matched and also recoded to maintain the mapping from lh/rh
to lesioned hemisphere/contralesional hemisphere. Thus, each
repeatedmeasure “datapoint” contained ameasure of both cortex
and cWM volume for; (i) lesioned hemisphere in the simulated-
lesion case, (ii) contralesional hemisphere in the simulated-lesion
case, (iii) lesioned hemisphere in the reference ground-truth
case and (iv) contralesional hemisphere in the reference ground-
truth case.

All statistical analyses were conducted in R (R Core Team,
2016) using “lme4: Linear Mixed-Effects Models using “Eigen”
and S4” [lme4 (Version 1.1); Bates et al. (2015)]. All analyses
utilize linear mixed-effect models [using the “lmer” function and
restricted maximum likelihood (REML) estimation] to account
for the crossed random effects of both the control MRI and
lesion used to construct the simulated-lesion cases (lesion used
was coded as 0 for the ground-truth cases where no lesion was
applied). The random effects of lesion and control MRI used were
defined as crossed, rather than nested. All model constructions
are outlined in the (Supplementary Table 1).

To test hypothesis (a), cortex and cWM volumes were
modeled as a function of the fixed effect of case (simulated-
lesion vs. ground-truth cases) and the random effects of lesion
and control MRI used to construct the simulated-lesion case.
As per Barr et al.’s (2013) recommendations for best practices
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FIGURE 1 | Visualization of individual lesion masks in MNI space, as well as overlap of all lesions used in the cohort (color bar represents the number of cases).

Visualization generated with code from Whitaker et al. (2017).
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FIGURE 2 | Examples (i-v) of original lesion cases (a), also shown with lesion masks (b), and example chimeric images (c), the simulated cases where the

corresponding lesion has been applied to a control subject (in native space) with the outlined methodology. (d) shows these chimeric images with transformed lesion

masks overlaid. Cases (ii) and (iv) show two example chimeric images to demonstrate that (in native space) the simulated lesions show both morphological and spatial

variation.

in mixed-effect modeling, a maximal model was defined. Barr
et al. suggest that random slopes are required for within-
unit effects, but random intercepts are sufficient for between-
unit effects. Therefore, random slopes were estimated for case
across participant but not for lesion-used or control MRI-used,
variables which represent the lesion and control images used
to generate the simulated case. This model was tested for both
the lesioned hemisphere and contralesional hemisphere, using
the lmer “subset” argument. When investigating the individual
hemispheres, this decreased the number of observations per
participant for the random effect of case across participants, and
thus a random slope was no longer appropriate. Therefore, only
a random intercept was used in the subset analyses.

As hypothesis (b) pertains to the magnitude of differences,
the outcome variable was switched to the percent volume
difference (PVD) between the simulated-lesion and ground-truth
cases. Percentage volume difference for lesioned hemisphere

and contralesional hemisphere between simulated-lesion and
ground-truth measurements was also calculated as:

PVD = 100×
|V(Simulated Lesion)− V(Ground Truth)|

1
2 (V

(

Simulated Lesion
)

+ V
(

Ground Truth
)

)

where V is the volume (calculated for both cortex and cWM
volumes), with a greater PVD value representing greater
volume differences between the simulated-lesion and ground-
truth cases (Perlaki et al., 2017). This is used for two
reasons. Firstly, it is a well-accepted approach to segmentation
comparison (Fischl et al., 2002) and is used in multiple
existing studies of segmentation errors/biases (Morey et al.,
2009; Amann et al., 2015; Katuwal et al., 2016; Perlaki et al.,
2017). Secondly, it allows us to recode what would be a
2 × 2 interaction (simulated-lesion/ground-truth × lesioned
hemisphere/contralesional hemisphere) when using raw volumes
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as a single factor (PVD of lesioned hemisphere/contralesional
hemisphere), meaning that the statistical results reported here are
more interpretable. The 20% trimmed means (Xt) and median
values for PVD are also reported.

The mixed-effects model was defined similarly to hypothesis
(a), but the fixed effect of hemisphere (lesioned/contralesional
hemisphere) was included rather than case (simulated-
lesion/ground-truth). No random slope of hemisphere across
participants was included as there were not sufficient
observations per participant to warrant/enable this.
Therefore, the maximal model, in this case, included only
random intercepts.

As the random effect of control image and lesion significantly
improved model fit for both hypothesis (a) and (b), we, therefore,
conducted a final, exploratory analyses to investigate how specific
characteristics of the lesion, such as lesion size and intensity,
explain variance in PVD for both the lesioned hemisphere
and contralesional hemisphere. Due to the non-quantitative
nature of T1w MR intensity values, voxel intensities of the
lesions (in the simulated lesion cases) were calculated in a unit-
invariant space, to enable between-participant comparisons of
these intensity values. This was achieved by demeaning and
scaling intensity values of the MRI of all non-lesioned voxels.
These MRI images (where the intensity values were in a unit-
invariant space) were only used to calculate lesion characteristics
for the exploratory correlation analyses only. These exploratory
analyses were conducted using a linear mixed-effects model as
per hypothesis (a) and (b), however, the random effect of lesion
used was not included, as this variance should be explained by
the fixed effects of the lesion characteristics added to the model.
The outcome variable was PVD and fixed effects were: lesion size,
mean lesion intensity and the SD of lesion intensity, whilst the
only random effect was that of control image used to generate the
simulated-lesion case. This model was estimated in the lesioned
hemisphere and contralesional hemisphere separately, using the
lmer subset function. Therefore, the random effect of participant
was not included as these models no longer represented
repeated measures.

For all hypotheses, the mixed-effects model (estimated with
maximum likelihood rather than REML to facilitate model
comparison) was compared to a linear model including only the
fixed effects but none of the random effects to assess whether
the random effects were warranted and significantly improved
model explanation. All model comparisons were conducted using
a Likelihood ratio test to assess whether the reduction in the
residual sum of squares was significant. To test the significance of
fixed effects concerning all hypotheses, p-values were estimated
using the normal distribution of t-statistics. All results are
presented using the “ggplot2” (Wickham, 2009) and “ggpubr”
(Kassambara, 2018) packages.

RESULTS

All models, including parameter estimates for all
effects and associated lmer syntax, are described in
(Supplementary Tables 1–5).

Differences in Volume Between Simulated
Lesion and Ground Truth Cases
For hypothesis (a) both cortex and cWM volume were predicted
by the fixed effect of case (simulated-lesion and ground-
truth). When adding random effects, for cWM volume, the
maximal model failed to converge and thus, as per Barr
et al.’s (2013) recommendations, the random correlations
between random slope and random intercept were removed
from the model, as this performed similarly to the maximal
model in simulations (Barr et al., 2013). The addition of
the random effects to the model significantly improved
model fit for both cortex and cWM volume [χ2 (5) =

2,894.47, p < 0.0001; χ
2 (6) = 4,025.22, p < 0.0001),

and thus the inclusion of random effects in the model
was warranted.

For cortex volume, across both hemispheres, the fixed effect
of case was non-significant [B = −942.61, Standard Error (SE)
= 531.83, t = −1.77, p = 0.076]. When considered separately,
surprisingly, the fixed effect of case was non-significant in the
lesioned hemisphere (B = −1,324.46, SE = 1,155.34, t = −1.15,
p = 0.25), but significant in the contralesional hemisphere (B
= −560.76, SE = 136.47, t = −4.11, p < 0.0001). In both
hemispheres, the parameter estimates were negative for the
simulated lesion case, suggesting that the cortex volume was
lower when a lesion was simulated. The significant difference
found in the contralesional hemisphere was smaller than the
non-significant difference in the lesioned hemisphere. For cWM
volume, the effect of case was non-significant across hemispheres
(B=−161.75, SE= 261.88, t=−0.62, p= 0.54), and within the
individual lesioned hemisphere and contralesional hemisphere,
respectively (B=−308.84, SE= 619.14, t =−0.50, p= 0.62; B=

−14.66, SE = 101.00, t = −0.15, p = 0.88). These effects can be
seen in Supplementary Figure 2.

Magnitude of Error in Lesioned vs.
Contralesional Hemispheres
As hypothesis (b) pertains to the magnitude of differences,
the outcome variable was switched to the percent volume
difference (PVD) between the simulated-lesion and ground-
truth cases. For cortex volume, PVD was slightly higher in
the lesioned hemisphere (Xt = 0.47%, median = 0.39%)
than the contralesional hemisphere (Xt = 0.37%, median
= 0.39%), but overall, the volume difference was minimal
between simulated-lesion and ground-truth cases. Only 44 cases
showed PVD >1% in the lesioned hemisphere and 27 in the
contralesional hemisphere, with maximum PVD being 2.78
and 2.07%, respectively. For cWM volume, PVD was similar
between the lesioned hemisphere (Xt = 0.34%, median =

0.31%) and contralesional hemisphere (Xt = 0.34%, median
= 0.33%).

For hypothesis (b) the baseline model (including no random
effects) was defined similarly as per hypothesis (a). No random
slope of hemisphere across participants was utilized as there were
not sufficient observations per participant to warrant/enable this.
Therefore, the maximal model in this case included only random
intercepts and represents a significant improvement over a model
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TABLE 2A | Summary of results showing trimmed mean for PVD and fixed effect

of hemisphere on these PVD measures.

Measure Mean PVD Fixed effect of

hemisphere

Lesioned

hemisphere

Contralesional

hemisphere

Cortex volume Xt = 0.47% Xt = 0.37% B = 0.140**

cWM Xt = 0.34% Xt = 0.34% B = −0.007

**p < 0.01.

TABLE 2B | Summary of effect of lesion characteristics upon PVD measures.

Measure Lesion

characteristic

Lesioned

hemisphere

Contralesional

hemisphere

Cortex volume Lesion volume B = 0.28*** B = −0.00

Mean lesion

intensity

B = −0.14 B = −0.01

SD lesion intensity B = −0.23** B = −0.16*

cWM Lesion volume B = 0.15*** B = 0.05

Mean lesion

intensity

B = 0.03 B = 0.02

SD lesion intensity B = 0.00 B = 0.11

*p < 0.05; **p < 0.01; ***p < 0.001.

with just the fixed effect of hemisphere [cortex volume: χ2(3) =
62.19, p < 0.0001; cWM volume: χ

2(3) = 53.71, p < 0.0001].
Due to the varying scales across the fixed effect variables, these
were converted to z-scores (centered and scaled) to facilitate
model convergence.

For PVD of cortex volume, the fixed effect of hemisphere
was significant (B = 0.140, SE = 0.047, t = 2.96, p = 0.003),
with parameter estimates suggesting that the contralesional
hemisphere had a smaller PVD. However, the effect of
hemisphere on cWM PVD was non-significant (B = −0.007,
SE = 0.039, t = −0.18, p = 0.86). This can be seen in
Supplementary Figure 3.

Lesion Characteristics Associated With
Magnitude of PVD
For PVD of both cortex volume and cerebral white matter
volume, the random effect of control and lesion used significantly
improved model fit. This suggested that there was some variance
significantly attributable to the specific lesion used to generate the
simulated lesionMRI, as can be seen in Supplementary Figure 4.

Therefore, an exploratory analysis investigated the effects of
certain lesion characteristics on PVD. For cortex volume, in the
lesioned hemisphere, the fixed effects of lesion volume and SD
of lesion intensity were significant (B = 0.28, SE = 0.038, t =
7.35, p < 0.0001; B = −0.23, SE = 0.088, t = −2.60, p = 0.0094,
respectively). However, in the contralesional hemisphere, only
the fixed effect of SD of lesion intensity was marginally significant
(B = −0.16, SE = 0.080, t = −2.02, p = 0.044). For cWM, the
only significant fixed effect found was the effect of volume on

PVD of cWM in the lesioned hemisphere (B = 0.15, SE = 0.030,
t = 5.08, p < 0.0001).

Table 2 summarizes the results pertaining to PVD.

DISCUSSION

Frank parenchymal lesions as a result of pTBI pathology result in
surface reconstruction errors due to abnormalMRI features, such
as distortions to the voxel-intensity (Merkley et al., 2008; Irimia
et al., 2012; Goh et al., 2014). The current study investigated
the accuracy of surface-based, morphometric measurement
from T1w images containing TBI-lesions, using a pediatric
cohort of simulated lesions and their base control images as a
reference. Specifically, we examined whether the lesion-induced
error within the Freesurfer pipeline was globally distributed
by assessing this error in both the lesion and contralesional
hemispheres of the brain.

Statistically significant differences were only found for cortex
volume between simulated-lesion and ground-truth cases within
the contralesional hemisphere, with the simulated lesions cases
having reduced volume. This suggests a significant measurement
error introduced to the cortex volume measurement by the
lesion, distal to the location of the pathology itself. Surprisingly,
no significant differences were found in the lesioned hemisphere
for either cortex or cWM volume suggesting that the estimated
volumes did not differ when a lesion was simulated. However,
this is likely due to the large variance in the effect seen
across participants, as shown by the large standard error of the
parameter estimates for case in these models for the lesioned
hemisphere. This variability is likely because, where pathology is
found near to the GMborder when the pial and white surfaces are
plotted in Freesurfer, these can be erroneously shifted to include
WM tissue within the GM ribbon or vice versa (dependant on
lesion location). This could, therefore, result in EITHER (a)
GM volume reduction or (b) GM volume increase (respectively),
hence the high variance in the effect of adding a lesion on
measures of brain volume.

It is important to consider that, within the lesioned
hemisphere, differences from ground truth segmentation can
be thought of as being due to both algorithmic error
and “actual” changes: for instance where lesioned tissue is
successfully no longer included in the cortical ribbon. However,
in the contralesional hemisphere, there has been no image
manipulation of the MRI, and thus these reliable, significant
differences from the ground truth image are attributable to the
lesion-induced error.

Despite the lack of significant differences for cWM volume,
descriptive statistics of PVD values, as a measure of the deviation
of the simulated-lesion from ground-truth cases, did suggest
that there is error, albeit relatively minimal, from the ground
truth volumes seen in the cases where a lesion had been
simulated. This is seemingly present in both the lesion and
contralesional hemispheres and for both cortex volume and
cWM. This is in line with our hypothesis of a globally distributed
lesion-induced error. However, when comparing PVD between
hemispheres to compare the magnitude of these differences,
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only significant results were found for cortex volume, suggesting
that the PVD was greater in the lesioned hemisphere. In terms
of the magnitude of differences, we found a maximal PVD
from ground truth in the hemispheric cortex and cWM volume
of around 2.07–2.78%, respectively. Whilst this represents the
extreme cases (Xt and median values were in the order of around
0.5%), this maximal magnitude of the difference is comparable to
that seen for the error induced by minor motion in adult MRI
(Reuter et al., 2015).

Overall, the pattern of results we report suggest that whilst the
lesion produces large magnitudes of PVD across subjects (PVD
was significantly larger in the lesioned hemisphere), this is not
consistent across subjects (non-significant differences in cortex
volume for the lesioned hemisphere between simulated-lesion
and ground-truth) whilst in the contralesional hemisphere,
the magnitude of PVD is smaller but is seen consistently
across subjects (significant differences in cortex volume for
the contralesional hemisphere between simulated-lesion
and ground-truth). This holds for cortex, but not cWM
volume. These results suggest that, in the contralesional
hemisphere, there is a small but systematic bias introduced
into the automatic processing and calculation of these
morphometric measurements.

We also investigated how MR characteristics of the lesion
explained variance in the PVD of our morphometric measures in
both the lesioned hemisphere and the contralesional hemisphere.
We found that cortex and cWM PVD variance was significantly
explained by lesion volume in the lesioned hemisphere, and
this was expected as a large lesion will deform the surface to
a greater extent, causing greater differences in morphometric
measurements. However, more interestingly, we found that in
both the lesioned hemisphere and contralesional hemisphere,
there was a significant effect of SD of voxel intensities within the
lesion on cortex PVD. Specifically, there was a greater difference
in cortex volume for lesions with a lower SD of voxel intensities.

One plausible mechanism by which this may be the case is
that, where the SD of voxel intensities is high within the lesion,
the number of any given “outlier” intensities is low and thus
doesn’t exceed the noise in the dispersion of voxel intensities
across the entire T1w image. However, when the SD is low,
there is a higher concentration of potentially “outlier” intensities
(especially in lesions of greater volume), and thus these intensities
within the lesion may be enough to affect and bias any of
Freesurfer’s operations which rely on the dispersion of voxel
intensities across the image. One example of this may be in the
intensity normalization step. Therefore, it is not necessarily the
heterogeneous-appearing lesions that would induce the greatest
lesion-induced error in both the affected (lesioned hemisphere)
and unaffected (contralesional hemisphere) hemispheres, but
those lesions which are more homogenous in intensity. However,
given the exploratory nature of these correlations, it will be
important to perform confirmatory tests on these within an
independent pTBI dataset.

Given that Freesurfer processes the two hemispheres
separately for a vast proportion of its later pipeline (especially in
processing cortical thickness measures), the fact that we see these
lesion-induced errors in the hemisphere where there has been

no image manipulation of the MRI, suggests that the bias due to
lesion-induced error is early in the pipeline. This is in keeping
with our findings that the SD of voxel intensities within the
lesion effects cortex PVD in both hemispheres, as it is in these
early pipeline stages that multiple intensity normalization and
correction steps [including an Non-parametric Non-uniform
intensity Normalization (N3) correction (Sled et al., 1998)].

The global lesion-induced error was detected in the current
study using very coarse measures of brain volume, looking
at the entire volume of each hemisphere. It may, in fact, be
the case that our estimates of the “error” are conservative
overall, and individual ROIs in the contralesional hemisphere
may experience a greater error, in differing directions of over-
and underestimations. The current investigation precluded ROI
analysis of the lesion-induced error across hemispheres due to
the fact that the lesioned hemisphere varies between left and
right hemispheres for differing lesions. Thus, because many
atlases, including those used by Freesurfer do not parcellate
the hemispheres with identical homologs, it would be difficult
to compare all ROIs between the lesioned hemisphere and
contralesional hemisphere. Also, in the presence of gross
pathology, probabilistic labeling (such as that performed by
Freesurfer to produce ROI volumes) may fail and produce
inaccurate registration between the individual and the atlas.

It is important to consider how this may affect previous and
future investigations of case/control differences at the group level.
Within previous investigations of the pTBI cohort used in the
current study, groupmeans for total gray matter differed between
pTBI patients and typically developing controls by a PVD value
of a similar order of magnitude to the current findings [mild
0.38%,mild-complex 4.8%, moderate 2.7%, and severe TBI 0.77%
(Ryan et al., 2016); mild 3.1%, mild-complex 0.93%, moderate
0.66%, and severe TBI 8.1% (Ryan et al., 2017)]. No differences
between controls and any TBI severity groups were significant
(Ryan et al., 2017). Due to the similar magnitude of changes
seen in both real and error-based cases, group-level differences
may be contaminated by this error and may erroneously be
attributed to pathology-related changes. Whilst this error has
been investigated within the context of Freesurfer, it is possible
that this error may generalize to other neuroimaging pipeline,
especially those that rely upon contrast detection for image
processing. Overall, this error has potential ramifications for
multiple previous investigations of morphometry.

It is also important to consider the dynamic state of these
lesions in the brain. Lesioned tissue within the MRI will likely
change in appearance as a function of time, due to effects such
as the stabilizing of pathological mechanisms after the acute
period, but also potential recovery mechanisms over time. As
the lesion changes over time (lesion presentation on MRI is
highly dependent on time post-injury (Bigler andMaxwell, 2012),
this will result in differences in the lesion-induced error we
have detected in the Freesurfer pipeline. These errors may then
be misattributed to longitudinal changes to the morphometry
of the brain post-pTBI, confounding therapy effects, or “real”
recovery measures.

However, it is important to note that not all patients within
pTBI studies will present with pathological lesions on T1w MRI
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and thus the cumulative error from these cases may not exceed
the typical “noise” in group-level comparisons. The lesion-
induced error, therefore, poses the greatest threat to group-level
analysis in those cases where there are small sample sizes, such
as can be seen in the existing literature of pathology-related
morphometric change to the brain post-pTBI [n= 12 (Krawczyk
et al., 2010) and n= 13 (Urban et al., 2017)], and the relatively few
lesion-cases will have a greater artifactual effect on the findings
due to limited power to detect true group-differences above and
beyond this additional “noise”.

These ideas can be seen in Spanos et al. (2007), who found that
group-level reductions in cerebral white matter in a pTBI group
compared to typically developing controls were still apparent
when excluding those cases where there was a focal lesion. This
is an example where, at the group-level, the lesion-induced error
we have quantified in this paper seemingly has little effect. We,
therefore, recommend that for all group analyses where there are
MR lesions present, that a robustness check where lesion-cases
are removed and analyses rerun, would be a prudent step to take
in assessing the impact of this lesion-induced error on findings.
This would be relatively easy to adopt across the field as standard
practice, the only difficulty being in those studies where sample
sizes are small, and the reduction of statistical power would be
too great if these cases were removed.

Of greater concern, however, is the impact of this error
on individual-level prediction. Prognostication of cognitive
outcome at the individual level is a key goal of many
studies investigating TBI, attempting to understand how brain
pathology give rise to changes in functional behavior (Bigler,
2016) and therefore aid prediction of long-term outcomes for
individuals. However, as noted by Irimia et al. (2012), and
subsequently supported by the results of the current study,
lesions inappropriately bias the morphometric measurements
from automated software packages, thus leading to erroneous
measurements of potentially useful biomarkers. In terms of
recent methods in medical prognostication using machine
learning approaches, this could bias training data in a way that
leads to unsuccessful prediction and/or classification of cases.
Therefore, the current lesion-induced error renders the subset
of pTBI cases which present with pathological lesions on MRI
unreachable in terms of prognostication using morphometric
measurements of the brain.

Devising a solution to allow for the correction of these
individual-level errors in segmentation due to the presence of
lesions is non-trivial. Foulon et al. (2017) proposed an approach
to study cortical thickness in patients with stroke lesions. They
took an approach whereby they enantiomorphically fill the lesion
(Nachev et al., 2008) followed by masking cortical thickness
within the lesion. Briefly, the enantiomorphic filling is based on
the assumption of hemispheric structural symmetry, a chimeric
image is produced with the corresponding reflected section of the
non-lesioned hemisphere overlaid on the lesioned hemisphere,
essentially “filling” the lesion (Nachev et al., 2008). This image
is used for calculating the solution to the cost-function in
the normalization process, producing a transformation or warp
which can later be applied to the non-manipulated T1w image.
Thus, the lesion can be transformed without it influencing the

spatial normalization process [see Brett et al. (2001) for a further
investigation of the effect of lesions on spatial normalization].
Finally, voxels within the lesioned tissue were removed from
maps of cortical thickness, thus preventing this “contamination”
of measurements. This means that, for an ROI where 50% is
covered by lesion tissue, there is still 50% of non-lesioned tissue
by which to estimate a mean cortical thickness value for the
region. Whilst this was a different software package to Freesurfer,
it is important to consider that, within the context of the findings
presented here, this approach is unlikely to deal with the global
lesion-induced error seen across the brain.

We, therefore, recommend a Freesurfer focal pre-processing
approach, similar to the approach by Foulon et al. (2017),
whereby the lesioned T1w image is enantiomorphically-filled
locally, and this is the image which is processed by Freesurfer.
Given our finding that the contralesional hemisphere lesion-
induced error seems to be associated with the SD of voxel
intensities within the lesion region, it is prudent to think that,
by replacing the intensities of this region with homologous
intensities from the normal-appearing voxel intensities from
within the contralesional regions of the brain, the contralesional
lesion-induced error would be mitigated. Therefore, dependent
on the quality of the lesion-filling, this would ensure more
biologically-meaningful morphometric measurements of the
whole-brain to be calculated. As a further Freesurfer post-
processing step, individual-subject level atlas parcellations could
then be masked as per Foulon et al.’s (2017) approach, whereby
region labels which are completely or partially occluded by lesion
tissue will be edited. Morphometric measures (such as cortical
thickness, volume, etc.) could be calculated using the standard
Freesurfer approaches but due to this masking, the output of
this pipeline would be cortical morphology measurements which
are not contaminated by (a) lesion-tissue within the original
image or (b) filled with estimated/imputed voxel intensities in
the enantiomorphically filled T1w images. Future studies should
investigate the potential of such an approach.

Limitations
One particular limitation was the drawing of lesion masks.
Lesions were identified in our dataset by a single-rater and
masks drawn by hand (as is the typical “gold standard” for
lesion segmentation of MR images) where visible lesions could
be identified by eye using T1w and FLAIR images (by JN). It
may, in fact, be the case that some smaller, more subtle lesions
were missed and therefore not used in the simulated cases. This,
alongside the fact that the array of lesions used as source material
for the simulated dataset was small in size (n = 16), we cannot
ascertain for certain that this effect is ubiquitous to all pTBI
cases which present with lesions. However, the purpose of these
lesion masks was to allow the extraction of lesion tissue for use
in the simulated dataset. Therefore, the issue of false-negatives
in the binary voxel masks are less of a concern as lesion tissue
was still able to be extracted. Although, it must be acknowledged
that potential false-positive identification of lesion voxels in the
binary lesion mask is a potential cause for concern, especially as
we did not conduct inter- or intra-rater reliability tests.
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We aimed to provide specific commentary on the types of
lesions observed in TBI, specifically the pathologies seen in our
pediatric population. The idea of a “lesion-induced error” to
structural segmentation and measurement of morphometry is
neither new nor specific to the field of pTBI, and we, therefore,
accept that the specific magnitude of error presented here is only
generalizable to the current population.

Despite this, the fact that we have utilized “real” lesion cases
is beneficial in the sense that it provides us a lesion which retains
those characteristics which may be harder to replicate artificially
such as texture and the complexity of the distribution of lesions
(Seghier et al., 2008). This approach also captures the diverse
array of pathology seen post-TBI. Multilevel models presented
in the current study showed greater model fit on the inclusion
of a random effect of the ID of the lesion used to generate the
simulated case. This suggests that the effect of lesions on volume
vary across specific lesions. However, the use of these “real”
lesions does mean we are limited in the ability to systematically
investigate specific lesion characteristics (Chard et al., 2010),
such as locale (GM vs. WM vs. Both), size or number (focal
vs. multifocal) in comparisons to artificially generated lesions.
Figure 1 shows that the spatial distribution of the lesions was in
the expected regions [fronto/temporal (Bigler et al., 2016)] but
was still varied. There was also a large variation in size of the
lesion, focality (multifocal vs. focal), and pathology. This, in turn,
makes it difficult to assess which types of lesion are characteristic
of this lesion-induced error, or whether the location of the lesion
is of specific consequence. Given the current findings that certain
characteristics of pathological lesions contribute more/less to the
global, lesion-induced error, it may be the case that different
pathologies require different correction approaches, dependent
on how the pathologies alters the MR signal within the tissue.

CONCLUSIONS

Many previous studies investigating morphometric differences in
the brain post-TBI have reported very little information as to
how Freesurfer manual-edits have been performed to deal with
lesion tissue in some TBI cases. Of those that did, the methods
used were post-processing approaches, which dealt with potential
error considering only focal errors in the Freesurfer algorithm
(Spanos et al., 2007; Drijkoningen et al., 2017). The current
study is the first empirical investigation to show that, for cortex
volume, in particular, these approaches may not be sufficient.
These results suggest that volumetric measures calculated in the
presence of lesions are like to show inaccuracies (which are
highly variable between individuals) in the lesioned hemisphere,
with but also a small, but consistent systematic lesion-induced
error being found in the contralesional hemisphere. Thus, this

may call into question previous work which has found group
differences in brain morphometry, with lesion-induced error
being misattributed to pathology-related changes. Future work
investigating TBI using morphometric investigations of the brain
should be aware of the potential for lesion-induced errors
beyond the lesion and be more robust in the reporting of
their methods.
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