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This paper reports on a benchmark dataset acquired with a brain–computer interface
(BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The
dataset consists of 64-channel electroencephalogram (EEG) data from 64 healthy
subjects (sub1,. . ., sub64) while they performed a target image detection task. For
each subject, the data contained two groups (“A” and “B”). Each group contained
two blocks, and each block included 40 trials that corresponded to 40 stimulus
sequences. Each sequence contained 100 images presented at 10 Hz (10 images per
second). The stimulus images were street-view images of two categories: target images
with human and non-target images without human. Target images were presented
randomly in the stimulus sequence with a probability of 1∼4%. During the stimulus
presentation, subjects were asked to search for the target images and ignore the
non-target images in a subjective manner. To keep all original information, the dataset
was the raw continuous data without any processing. On one hand, the dataset can
be used as a benchmark dataset to compare the algorithms for target identification
in RSVP-based BCIs. On the other hand, the dataset can be used to design new
system diagrams and evaluate their BCI performance without collecting any new data
through offline simulation. Furthermore, the dataset also provides high-quality data for
characterizing and modeling event-related potentials (ERPs) and steady-state visual
evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from
http://bci.med.tsinghua.edu.cn/download.html.

Keywords: rapid serial visual presentation, brain–computer interface, electroencephalogram, target detection,
public dataset, event-related potential

INTRODUCTION

Brain–computer interfaces (BCIs) provide a direct communication and control channel between
the brain and external devices by analyzing neural activity, which has become one of the current
study hot spots (Gao et al., 2014; Chen et al., 2015a; Han et al., 2020). Electroencephalogram
(EEG) is the most widely used tool for BCIs because of its advantages such as non-invasiveness,
low cost, and high temporal resolution (Stegman et al., 2020; Zhang et al., 2020). At present,
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remarkable progresses have been made in the performance and
practicability of BCIs due to the optimization of the experimental
paradigm, the improvement of the signal processing algorithm,
and the application of the machine learning method (Chen et al.,
2015b; Nakanishi et al., 2018; Zhang et al., 2018). Especially in
recent years, the emergence of free open datasets has spared
the time, money, and labor costs of data collection, thus
providing convenience for the majority of BCI researchers and
promoting the progress of algorithm development. The datasets
covered many BCI paradigms such as steady-state visual evoked
potentials (SSVEPs) (Wang et al., 2017; Lee et al., 2019), event-
related P300 potentials (Abibullaev and Zollanvari, 2019; Vaineau
et al., 2019), and motor imagery (Cho et al., 2017; Kaya et al.,
2018). In addition, there are some open multimodal datasets for
BCIs obtained synchronously with EEG (Lioi et al., 2019). As the
broad audience of these datasets, researchers in a wide range of
fields have contributed their intelligence to the BCI technology.

Rapid serial visual presentation (RSVP)-based BCI is a
special type of BCI that detects target stimuli (e.g., letters or
images) that are presented sequentially in a stream by detecting
the brain’s response to the target. RSVP is the process of
sequentially displaying images in the same spatial position
at a high presentation rate with multiple images per second
(such as 2–20 Hz) (Lees et al., 2017). In the applications that
benefit from this paradigm, computers are unable to analyze and
understand images with deep semantic and unstructured features
as successfully as humans, and the manual analysis tools are slow,
which makes the study of RSVP-BCI more and more popular in
recent decades. RSVP-BCI has been used in counterintelligence,
police, and health care that require professionals to review
objects, scenes, people, and other relevant information contained
in a large number of images (Huang et al., 2017; Singh and
Jotheeswaran, 2018; Wu et al., 2018).

Different EEG components are associated with target and non-
target stimuli (Bigdely-Shamlo et al., 2008; Cohen, 2014), and
BCI signal processing algorithms have been used to recognize
event-related potential (ERP) responses and link them to target
images. The most commonly exploited ERP in RSVP-based BCI
applications is the P300, ideally on a single-trial basis (Manor
et al., 2016). In order to detect ERPs induced by target images,
researchers have developed a variety of algorithms and evaluated
them with the data collected independently (Sajda et al., 2003;
Alpert et al., 2014; Zhao et al., 2019). Unfortunately, as far as
we know, there is still a lack of a benchmark dataset for the
RSVP-based BCI paradigm. It is always difficult to compare the
performance of different algorithms with a small amount of data.
One of the main difficulties in collecting a benchmark dataset is
the large number of system parameters in RSVP-based BCIs (e.g.,
frequency of image presentation, target definition, target sparsity
and identifiability, and number of trials and subjects). There is a
great need to collect and publish a large benchmark dataset using
the RSVP-based BCI paradigm.

This study provides an open dataset for BCI study based
on the RSVP paradigm. The characteristics of this dataset are
described as follows. (1) A large number of subjects (64 in
total) were recorded. (2) A large number of stimulation image
circles (16,000 for each subject) were included. (3) Complete

data were provided with the original continuous data without
any processing, including EEG data, electrode positions, and
subjects information. (4) Stimulus events (onsets and offsets)
were precisely synchronized to EEG data. (5) The 64-channel
whole-brain EEG data were recorded. That means that this
dataset contains a total of 64 subjects, 10,240 trials, 1,024,000
image circles, and 102,400 s of 64-channel EEG data. This dataset
provides potential opportunities for developing signal processing
and machine learning algorithms that rely on large amounts
of EEG data. These features also make it possible to study the
algorithms for ERP detection and the methods for stimulus
coding with the dataset. In addition, through offline simulation,
stimulus coding and target recognition methods can be jointly
optimized toward the highest performance of an online BCI.

The rest of this paper is organized as follows. The Methods
section introduces the experimental setup of data recording.
The Data Recording section introduces the data records and
other relevant information. The Technical Validations section
introduces the basic methods in data analysis and gives three
examples to illustrate how to use the dataset to study the methods
of target detection in RSVP-based BCIs. The Discussions and
Conclusion section summarizes and discusses the future work to
improve the dataset.

MATERIALS AND METHODS

Subjects
Sixty-four subjects (32 females; aged 19–27 years, mean
age 22 years) with normal or corrected-to-normal vision
were recruited for this study. Each subject signed a written
informed consent before the experiment and received a
monetary compensation for his or her participation. This
study was approved by the Research Ethics Committee of
Tsinghua University.

Experimental Design
This study developed an offline RSVP-BCI system. A 23.6-inch
liquid crystal display (LCD) screen was used to present visual
stimuli. The resolution of the screen was 1,920 × 1,080 pixels,
and the refresh rate was 60 Hz. The visual stimulus images were
rendered within a 1,200 × 800-pixel square in the center of the
screen. The screen area surrounding the stimuli image was gray
colored [red green blue (RGB): (128, 128, 128)].

The stimulus program was developed under MATLAB
(MathWorks, Inc.) using the Psychophysics Toolbox Ver. 3
(PTB-3) (Brainard, 1997). The stimulus images, downloaded
from the Computer Science and Artificial Intelligence Library of
MIT University, were street-view images of two categories: target
images showing human and non-target images without human.
During the experiment, subjects were asked to search for the
target images and ignore the non-target images in a subjective
manner. As previous studies have shown similar performance
between motor and non-motor response tasks (Gerson et al.,
2006), subjects in this study were required to make a manual
button press to maintain attention once detecting target images
in the RSVP task.
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Figure 1 shows the time course of the RSVP paradigm. Each
trial started with a blank for 0.5 s with a cross mark on the
center of the screen, and subjects were asked to shift their gaze
to the cross mark as soon as possible. The frequency of image
presentation was set to 10 Hz (10 images per second).

Figure 2 shows the parameter settings of the experiment for
each group. Each group covered two blocks, each containing 40
trials. Each trial contained 100 images, including one, two, three,
or four target images. Images in each trial were presented in a
random order. At the beginning of each image’s presentation, a
time marker named “event trigger” was sent by the stimulation
program to mark the current stimulus image and was recorded on
an event channel of the amplifier synchronized with EEG. There
was a short key-controlled pause between trials. The duration of
each block was about 10 min. There was an average rest time of
about 5 min between two blocks to relieve subjects’ fatigue.

Data Acquisition
Electroencephalogram data were recorded using the Synamps2
system (Neuroscan, Inc.) at a sampling rate of 1,000 Hz. All 64
electrodes were used to record EEG and were placed according
to the international 10–20 system. The reference electrode, with
the 10–20 electrode name of “Ref,” was located at the vertex.
Electrode impedances were kept below 10 k�. During the
experiment, subjects were seated in a comfortable chair in a dimly
lit soundproof room at a distance of approximately 70 cm from
the monitor. The EEG data were filtered from 0.15 to 200 Hz by
the system. The power-line noise was removed by a notch filter
at 50 Hz. It is worth to mention that the impedance of M1 and
M2 electrodes (channels of 33 and 43) was higher than 10 k� for
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FIGURE 1 | The time course of rapid serial visual presentation (RSVP)
paradigm.
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FIGURE 2 | The parameter settings of the experiment for each group.

some subjects. We therefore suggest to select EEG data from the
other 62 channels for analysis, and the EEG analysis in this study
used the 62-channel data with the channel indices of [1:32 34:42
44:64] and removed the bad channels.

Data Preprocessing
The dataset was the continuous data at a sampling rate of 250 Hz,
and it was obtained from the raw EEG data (sampling rate at
1,000 Hz) after four times downsampling. For each of the datasets
from 1 to 64 (sub1,. . ., sub64), EEG data contained four blocks,
which were divided into two groups (namely, groups A and B)
in chronological order. Each group contained two blocks, and
each contained 40 trials. Each trial contained 100 circles, and
each circle corresponded to one image. For each group, the two
blocks were used for training and testing in the ERP-based target
detection, respectively. In addition, a 10-fold cross-validation
using both blocks 1 and 2 was performed to further evaluate the
classification performance.

To verify the validity of the dataset, the continuous EEG
data at a sample rate of 250 Hz were processed by a four-
order Butterworth filter with a bandwidth of [2 30] Hz. EEG
data epochs were extracted according to event triggers generated
by the stimulus program. In this study, time 0 represented the
beginning of each image stimulus period (marked by a trigger),
and the EEG data corresponding to each image (namely, one
circle) were intercepted within the time interval from −200 to
1,000 ms. The waveforms of ERPs and SSVEPs corresponding to
target and non-target images were obtained using the averaged
EEG data within the time interval of (−200 1,000) ms.

Target Classification
Single-circle EEG data were firstly processed by spatial filtering
methods, and then the target detection was realized by
classification algorithms. Four spatial filtering methods, namely,
common spatial pattern (CSP), SIgnal-to-noise ratio Maximizer
(SIM), task-related component analysis (TRCA), and principal
component analysis (PCA) whitening, were compared in this
study. The effects of the number of components (from 1 to
50) of different spatial filtering methods on the classification
performance were compared. The performance of spatial
filtering was evaluated by the followed classification results
of the classical Hierarchical Discriminant Component Analysis
(HDCA) algorithm, which was adopted as a baseline measure
of classification performance for single-circle EEG between
target and non-target images (Gerson et al., 2006; Sajda et al.,
2010). As a classical classification method widely used in
RSVP-BCIs, HDCA algorithm realizes target images recognition
based on spatial and temporal projection features of ERP
signals. EEG data were firstly divided into 100-ms data
segments, and then the feature extraction and classification were
conducted according to the spatial and temporal characteristics
of the data segments.

To evaluate the performance of the classification methods,
four classification algorithms, namely, Support Vector Machine
(SVM), Spatially Weighted Fisher linear discriminant (FLD)-
PCA (SWFP), Discriminative Canonical Pattern Matching
(DCPM), and HDCA, were compared based on this dataset.
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The EEG data used for single-circle classification were the
data in the time interval of [0, t] ms, “t” might be 200,
300,. . ., 1,000 ms. SIM algorithm was used as a basic spatial
filtering method before the performance comparison of the four
classification algorithms.

Performance Evaluation
R-square values for each time point were used to show the
separability between target and non-target stimuli. For each
subject, we selected all the target data and the same amount
of non-target data randomly selected to calculate r-square
values. For each time point, the input was composed of
two one-dimensional vectors, which were composed of target
data and non-target data, respectively. The r-square values of
each subject were calculated, and the r-square values of all
subjects were averaged to obtain the final results, as shown in
Figure 3B.

Classification performance of single-circle EEG data for target
and non-target circles was measured using the area under the
receiver operating characteristic (ROC) curve (Fawcett, 2006).
ROC curves are used when applications have an unbalanced
class distribution, which is typically the case with RSVP-BCI,
where the number of target stimulus is much smaller than that
of non-target stimuli.

Statistical Analysis
Statistical analyses were conducted using SPSS software (IBM
SPSS Statistics, IBM Corporation). One-way repeated-measures
analysis of variance (ANOVA) was used to test the difference
in the classification performances among different algorithms.
The Greenhouse–Geisser correction was applied if the data did
not conform to the sphericity assumption by Mauchly’s test of
sphericity. All pairwise comparisons were Bonferroni corrected.
Statistical significance was defined as p < 0.05.
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DATA RECORDING

EEG Data
The dataset is freely available at http://bci.med.tsinghua.edu.
cn/download.html. The dataset was the raw continuous data
without any processing. It contains 128 MATLAB MAT files
corresponding to data from all 64 subjects (approximately 15 GB
in total). Data were stored as double-precision floating-point
values in MATLAB. Each MAT file covers a group of EEG data.
There are two sets of EEG data (groups A and B) for subjects
from 1 to 64. The files were named as subject and group indices
(i.e., sub1A.mat, sub1B.mat,. . ., sub64A.mat, sub64B.mat). For
each file, the data loaded in MATLAB generate two 2-D matrices
named “EEGdata1” (block1) and “EEGdata2” (block2) with
dimensions of [64, L] (the two dimensions indicate “Electrode
index,” “Time points,” respectively) and two 2-D matrices named
“class_labels” and “trigger_positions” with dimensions of [2,
4000]. The parameter of L (the length of time points) might
be different for different blocks. The two dimensions indicate
“class labels,” in which “2” and “1” indicate “non-target images”
and “target images,” respectively. Each circle corresponds to the
EEG data of a visual stimulus image. For each group, the data
matrix consists of 8,000 circles (100 circles × 40 trials × 2
blocks), and each circle consists of 64 channels of EEG data.
A “Readme.txt” file explains the data structure and other task-
related information.

Electrode Position
The electrode positions were listed in a “64-channels.loc” file,
which contained all channel locations in polar coordinates.
Information for each electrode contained four columns:
“Electrode Index,” “Degree,” “Radius,” and “Label.” For example,
information on the first electrode was as follows: (“1,” “−18,”
“0.51111,” and “FP1”), which indicated that the degree is −18, and
the radius is 0.51111 for the first electrode (FP1). The electrode
file can be used for topographic analysis by the topoplot()
function in the EEGLAB toolbox (Delorme and Makeig, 2004).

TECHNICAL VALIDATIONS

Temporal Waveform and Amplitude
Spectrum Analysis
To evaluate the signal quality of the dataset, this study analyzed
temporal waveform and amplitude spectrum of EEG across all
subjects. EEG data were re-referenced to the average of all
electrodes. Figure 3A shows the temporal waveform of averaged
EEG across all subjects. Three representative midline electrodes
(FPz, Cz, and Oz) were selected for temporal waveforms display.
For each subject, all EEG data corresponding to target and non-
target images were averaged. Then, the averaged target and non-
target EEG data for each subject were averaged across all subjects.
Finally, the cross-subject averaged EEG data corresponding to the
non-target images were subtracted from that of the target images
to generate the target-related ERP, as shown in Figure 3A. To
better observe the temporal characters of the SSVEPs, the data

were band-pass filtered between 2 and 30 Hz within the time
window from −200 to 1,000 ms.

The EEG signals in this dataset were sensitive to target
and non-target image stimuli, and the difference of the evoked
EEG between the target and non-target image stimuli could be
reflected by the ERP components within a short data length at
specific brain regions. Figure 3A showed the temporal waveforms
of EEG for target images, non-target images, and target-related
ERP data. The waveform for non-target EEG is a near-sinusoidal
signal at 10 Hz with the characteristics of SSVEP. The frequency
and phase of the SSVEPs are stable over the 1.2-s stimulation
time. The waveforms of ERP located at FPz and Oz showed
obvious P300 (FPz: 3.18 µV, Oz: 2.54 µV) and N400 (FPz:
−3.49 µV, Oz: −1.29 µV) components. Obviously, the latencies
of P300 and N400 components in the prefrontal cortex were
significantly smaller than those in the occipital cortex. For
example, the latencies of the P300 component in FPz and Oz were
272 and 336 ms, while the latencies of the N400 component were
448 and 484 ms, respectively. While the ERP signal at Cz showed
an obvious negative peak appeared around 300 ms (latency:
328 ms, amplitude: −1.29 µV). From the scalp topographies of
amplitudes of ERP in Figure 3A, it could be found that the
areas highly sensitive to ERP response were mainly located in
the occipital region and the prefrontal region. For example, these
two regions showed significant positive potentials at 300 ms and
negative potentials at 400 and 500 ms. The sensitivity of ERPs for
the electrode in the parietal region to the stimulation of target
images was limited partly because the electrodes were close to the
reference electrode.

The results of r-square values indicated the separability
between target and non-target stimuli, as shown in Figure 3B.
R-square values indicate the importance of features, and the
larger the value, the greater the contribution to classification.
In the time range of 0–200 ms, the r-square values of the three
channels were close to 0, which indicated that the features did
not contain information valid for classification. After the time
of 200 ms, the r-square values of the three channels significantly
increased, which was consistent with the emergence of the main
components of ERP. For example, the r-square value of Oz
reached the maximum value (0.07) at 340 ms, and at the same
time, the ERP of Oz also reached the peak value (2.54 µV).
Similar results were also found in Cz and Oz. These results
indicated that the emergence of the main components of ERP was
accompanied by a greater separability between target and non-
target stimuli, and ERP was a potentially effective classification
feature. Compared with Cz, the r-square values of FPz and Oz
were larger, indicating that FPz and Oz contained more effective
information and contributed more to classification.

The results of Figure 3 indicate that the rapid periodic
stimulation in RSVP produces a brain response characterized
by a “quasi-sinusoidal” waveform whose frequency components
are constant in amplitude and phases. Figure 3C illustrates
the amplitude spectra of EEG evoked by target and non-target
images. EEG data were firstly averaged across all subjects, and
then the spectrums were calculated by Fast Fourier Transform
(FFT) method. As temporal waveforms in Figure 3A have shown
the non-target EEG as a quasi-sinusoidal signal with stable

Frontiers in Neuroscience | www.frontiersin.org 5 October 2020 | Volume 14 | Article 568000

http://bci.med.tsinghua.edu.cn/download.html
http://bci.med.tsinghua.edu.cn/download.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-568000 September 30, 2020 Time: 16:7 # 6

Zhang et al. Benchmark Dataset for RSVP BCIs

frequency and phase, amplitude peaks of EEG at Oz can be
observed at 10 Hz and its harmonic frequencies (i.e., 20, 30 Hz)
from the frequency information in Figure 3C. The amplitudes
of fundamental and harmonic components decreased sharply as
the response frequency increased (fundamental: 0.60 µV, second
harmonic: 0.30 µV, third harmonic: 0.10 µV). Since the signals
were filtered from 2 to 30 Hz, the amplitudes in the frequencies
above the fourth harmonic were closed to 0. Figure 3C also
illustrates the scalp topographies of amplitude of target and non-
target SSVEP at 10 Hz and its harmonic frequencies. Consistent
with previous studies (Gao et al., 2014; Chen et al., 2015a), the
occipital area shows the highest amplitude of SSVEPs. In addition
to the occipital area, lower amplitude can also be observed at the
prefrontal area for components related to stimulus frequency (at
10 and 20 Hz). These characters show very robust and reliable
frequency features for the fundamental and harmonic SSVEP
components in the dataset and suggest that the RSVP stimulation
at 10 Hz in this dataset was stable and reliable.

As the phase characteristic of SSVEPs is synchronous
(Figure 3A) and the amplitude characteristic is approximate
(Figure 3C) between target and non-target EEG, target-related
ERP signal can be extracted by subtracting non-target EEG
from target EEG signals. There were obvious similarities and
differences between EEG signals evoked by target images and
non-target images in frequency domain. The EEG signals of
target images have similar amplitudes of EEG components at the
fundamental and harmonic frequencies (fundamental: 0.58 µV,
second harmonic: 0.31 µV, third harmonic: 0.11 µV) with
that of non-target images. Furthermore, the EEG of the target
images contained more powerful low-frequency components
(<10 Hz), which were related to ERP. This character suggests
that the spectral characteristics provide useful information for the
detection of target images.

Evaluating the Performance of Spatial
Filtering Methods
Spatial filtering aims to remove signal noise and extract
task-related brain activities by using the spatial correlation
information of EEG and is frequently applied as a preprocessing
method. It has been widely used in EEG-based BCIs. Figure 4
indicated the performance of different spatial filtering methods
in the target/non-target classification task based on the HDCA
classification algorithm. Four filtering methods were used to
enhance classification performance: CSP, SIM, TRCA, and PCA
whitening. CSP consists of finding an optimum spatial filter
to maximize the variance difference between two groups of
EEG, so as to obtain effective feature vectors for classification
(Lotte and Guan, 2011). The algorithm of SIM can be intuitively
interpreted as maximizing the signal-to-noise ratio (SNR) in
the source space and is an effective tool for spatiotemporal
analysis of ERPs (Wu and Gao, 2011). TRCA is the method
that extracts task-related components efficiently by maximizing
the reproducibility during the task period and can be applied
to enhance SNRs of time-locked EEG components such as ERPs
(Nakanishi et al., 2018). PCA whitening is a simple and standard
procedure to reduce dimension of the data, and it can reduce the
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FIGURE 4 | The effect of components number on classification performance
(block 1 for training, block 2 for testing).

complexity by reducing the number of parameters to be estimated
(Hyvarinen and Oja, 2000).

After the spatial filtering processes, we adopted the HDCA
method, which has been widely used in EEG target image
detection based on RSVP paradigm, to classify the target and
non-target images. For the two blocks in each group of the
dataset, EEG data in block 1 were used for training (i.e., to
determine parameters of the algorithms), and EEG data in
block 2 were used for testing. In addition, both block 1 and
block 2 were used for a 10-fold cross-validation to further
evaluate the classification performance. Data from all the 62
electrodes were used as the input to the feature extraction and
classification analysis. EEG data were firstly divided into 100-ms
data segments. Then the feature extraction and classification were
conducted according to the spatial and temporal characteristics of
the data segments.

The effect of components number of the four spatial filtering
methods on classification performance was evaluated. The data
length was 400 ms [time window (0 400) ms]. By setting the
number of components in the spatial filtering methods (from 1 to
50), the variation of classification performance with the number
of components can be obtained (Figure 4). The classification
performance increased as the number of components increased,
especially when the components number was less than 10. For
example, the area under the curve (AUC) results for the SIM
method were 74.1% ± 9.2%, 78.0% ± 9.2%, 80.0% ± 8.7%,
82.0% ± 8.4%, 83.4% ± 8.3%, 84.6% ± 8.0%, 85.3% ± 7.8%,
85.7% ± 8.0%, 86.3% ± 7.9%, 86.6% ± 7.9% for the components
number from 1 to 10, respectively. Especially in the case a
small number of components, the TRCA algorithm had the
best classification performance. For example, the AUC of TRCA
was 77.0, 84.3, and 85.6 as the components number from 1 to
3, respectively, which is far larger than other methods. When
the number of components is more than 10, the classification
performance no longer changes significantly for all the four
methods, and the methods of SIM and PCA whitening show the
best performance (SIM: 87.9%, PCA whitening: 88.0%).

A one-way repeated-measures ANOVA showed that there
was a statistically significant difference in accuracies among
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the four spatial filtering methods for the component numbers
of 1 [F(2.110,268.008) = 4.648, p = 0.009] and from 2 to 50
(p < 0.001). Pairwise comparisons showed that the classification
accuracies of TRCA were significantly higher (p < 0.05) than
that of CSP for the component numbers from 2 to 50 and were
significantly higher than that of SIM and PCA whitening for the
component numbers from 1 to 6. The classification accuracies
of SIM and PCA whitening were significantly higher (p < 0.05)
than that of CSP for the component numbers from 6 to 50 and
were significantly higher than that of TRCA for the component
numbers from 11 to 50.

Figure 5 shows the results of classification performance for
the four spatial filtering methods with different data lengths of
EEG. The number of components for the four spatial filtering
methods was set to 30. Two validation methods were used, that
is, block 1 for training and block 2 for testing (Figure 5A) and a
10-fold cross-validation using both blocks 1 and 2 (Figure 5B).
For each spatial filtering method, the classification accuracy
increased obviously as the data length increased when it was
less than 500 ms. For example, in Figure 5A, the average results
of SIM for all subjects were 67.7% ± 7.3%, 80.5% ± 8.8%,
88.1% ± 8.2%, and 91.1% ± 7.2% with the data length from
200 to 500 ms, respectively. The changes of accuracy results were
no longer significant when the length of EEG data increased to
600 ms and above.

In addition, there was a significant difference in the
classification performance among the different spatial filtering
methods. The CSP method corresponded to the worst
classification performance, followed by the TRCA method.
SIM and PCA whitening methods had higher classification
performance with no statistically significant difference.
For example, in Figure 5A, the classification results were
77.2% ± 10.1%, 78.3% ± 9.4%, 80.5% ± 8.8%, and 80.7% ± 8.8%
for the data length of 300 ms in the conditions of CSP, TRCA,
SIM, and PCA whitening, respectively. The statistical difference
among CSP, SIM, and TRCA was no longer significant when
the data length was more than 500 ms. Meanwhile, the high
classification results based on EEG with short data lengths

indicated that the dataset was collected in a well-designed
experimental environment, and the collected EEG data were
of high quality.

The 10-fold cross-validation method showed similar results
to the original verification method by blocks, i.e., SIM and
PCA whitening performed best among the four spatial filtering
methods, and HDCA was the best among the four classification
methods. The difference between the two validation methods was
that the accuracies and variances of the 10-fold cross-validation
method were slightly higher and smaller than the method by
blocks, respectively. For example, the classification results for
CSP, SIM, TRCA, and PCA whitening were 66.0% ± 7.0%,
70.2% ± 7.1%, 67.9% ± 7.0%, and 70.3% ± 7.1% and
63.4% ± 7.1%, 67.7% ± 7.3%, 65.4% ± 7.3%, and 67.8% ± 7.3%
for 10-fold cross-validation method and validation method
by blocks, respectively. This was due to the fact that the
10-fold cross-validation method used more data for training
than the original verification method by blocks. Since the two
validation methods have shown similar results, we only chose
the classification results of the validation method by blocks to
perform the statistical analysis in this study.

A one-way repeated-measures ANOVA showed that there
was a statistically significant difference in accuracies among the
four spatial filtering methods for the data length of 200 ms
[F(1.326,168.403) = 76.929, p < 0.001], 300 ms [F(1.324,168.179)
= 115.527, p < 0.001], 400 ms [F(1.204,152.967) = 128.453, p <
0.001], 500 ms [F(1.333,169.256) = 124.089, p < 0.001], 600 ms
[F(1.247, 58.402) = 131.426, p< 0.001], 700 ms [F(1.248,158.528)
= 101.262, p < 0.001], 800 ms [F(1.409,178.955) = 100.214,
p < 0.001], 900 ms [F(1.404,178.285) = 99.643, p < 0.001],
and 1,000 ms [F(1.350,171.387) = 102.250, p < 0.001]. Pairwise
comparisons showed that the classification accuracies of SIM and
PCA whitening were significantly higher (p < 0.001) than those
of CSP and TRCA for the data length from 200 to 1,000 ms. The
classification accuracies of TRCA were significantly higher (p <
0.01) than that of CSP for the data length from 200 to 300 ms
and were significantly lower (p < 0.001) than that of CSP for
the data length from 400 to 1,000 ms. There was no significant
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FIGURE 5 | Performance of different data lengths for spatial filtering methods (A) Block 1 for training and block 2 for testing. (B) Result of 10-fold cross-validation
using both blocks 1 and 2.
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difference between SIM and PCA whitening for the performance
of classification.

Evaluating the Performance of
Classification Methods
In addition to the evaluation of spatial filtering methods,
the dataset can also be used to evaluate the performance of
classification methods. Figure 6 indicated the performance of
different classification methods with the EEG data length from
200 to 1,000 ms. After preprocessing with the SIM method, EEG
data for each image were classified by four different algorithms
including SVM, SWFP, DCPM, and HDCA. SVM finds a
separating hyper-plane that maximizes the margin between the
two classes. SWFP is based on a two-step linear classification
of event-related responses using FLD classifier and PCA for
dimensionality reduction (Alpert et al., 2014). DCPM performs
well in classifying the miniature AVePs by first suppressing
the common-mode noise of the background EEG and then
recognizing canonical patterns of ERPs (Xiao et al., 2020). Two
validation methods were used, that is, block 1 for training
and block 2 for testing (Figure 6A), and a 10-fold cross-
validation using both blocks 1 and 2 (Figure 6B). As shown
in Figure 6A, HDCA had the best classification performance,
while the other three algorithms had approximately a similar
classification performance. This was especially true when the data
length was less than 500 ms. For example, the AUC results for
HDCA were 67.7% ± 7.3%, 80.5% ± 8.8%, 88.1% ± 8.2%, and
91.1% ± 7.2% for single-circle EEG classification between target
and non-target images with the data length of 200, 300, 400,
and 500 ms, respectively. When the data length is greater than
500 ms, the performance of the four classification algorithms
is similar, while the classification performance of the HDCA
algorithm is still the best. Figure 6B indicated the similar results
as Figure 6A, and the only difference was that the SVM method
performed the worst.

A one-way repeated-measures ANOVA based on the
validation method by blocks showed that there was a statistically
significant difference in accuracies among the four classification
methods for the data length of 200 ms [F(2.124,269.799) =

144.651, p < 0.001], 300 ms [F(1.942,246.670) = 55.645, p <
0.001], 400 ms [F(2.095,266.046) = 42.243, p < 0.001], 500 ms
[F(2.183,277.251) = 38.436, p < 0.001], 600 ms [F(2.362,299.935)
= 35.408, p < 0.001], 700 ms [F(3,381) = 27.146, p < 0.001],
800 ms [F(2.820,358.107) = 33.019, p < 0.001], 900 ms
[F(2.601,330.287) = 29.985, p < 0.001], and 1,000 ms [F(3,381)
= 32.344, p < 0.001]. Pairwise comparisons showed that the
classification accuracies of HDCA were significantly higher (p
< 0.001) than that of SVM, SWFP, and DCPM for the data
length from 200 to 1,000 ms. The classification accuracies of
SVM were significantly higher (p < 0.05) than that of SWFP
for the data length from 400 to 1,000 ms and were significantly
higher (p < 0.05) than that of DCPM for the data length from
900 to 1,000 ms. The classification accuracies of DCPM were
significantly higher (p < 0.01) than that of SWFP for the data
length from 300 to 1,000 ms.

Evaluating the Performance of
Cross-Subject Zero-Training Methods
The dataset can be used to study zero-training classification
methods of RSVP-based BCIs. To improve the performance
of the system, most of the current RSVP-based BCIs adopt
supervised feature extraction and classification algorithms that
require system calibration. The long time in training data
collection and algorithm template extraction processes bring
challenges to system practicability and user experience. With
benefits from the large scale of the dataset that contains a
total of 64 subjects, 10,240 trials, 1,024,000 image circles, and
102,400 s of 64-channel EEG data, it is possible to extract
common information of EEG for target classification. A cross-
subject strategy can be used to design zero-training algorithms
suitable for target identification in the RSVP paradigm.

In this paper, the dataset was used to design a zero-training
classification algorithm based on a cross-subject template. The
performance was estimated using a leave-one-subject-out cross-
validation. EEG data of each subject were trained separately
to obtain his or her algorithm template parameters for the
HDCA algorithm. In the testing session, by using cross-subject
template, the EEG classification performance of one subject was
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FIGURE 6 | Performance of different classification methods with different data lengths. (A) Block 1 for training and block 2 for testing. (B) Result of 10-fold
cross-validation using both blocks 1 and 2.
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FIGURE 7 | Performance of cross-subject zero-training and self-training
methods (block 1 for training and block 2 for testing).

determined by the voting results of the algorithm templates of
the other 63 subjects, all of whom had an equal voting weight.
Figure 7 showed the performance of cross-subject zero-training
method using the HDCA algorithm. Pairwise comparisons
showed that the classification accuracies of the traditional self-
training method were significantly higher than that of the cross-
subject method for the data length of 200 ms [F(1,127) = 83.0101,
p < 0.001], 300 ms [F(1,127) = 164.440, p < 0.001], 400 ms
[F(1,127) = 195.524, p < 0.001], 500 ms [F(1,127) = 137.263,
p < 0.001], 600 ms [F(1,127) = 143.973, p < 0.001], 700 ms
[F(1,127) = 139.003, p < 0.001], 800 ms [F(1,127) = 139.555,
p < 0.001], 900 ms [F(1,127) = 151.889, p < 0.001], and 1,000 ms
[F(1,127) = 141.892, p < 0.001]. Although the performance of
cross-subject method was lower than the traditional self-training
method, it still achieved good performance for more than 80% of
AUC when the data length was more than 400 ms. For example,
the AUCs were 82.2% ± 8.4% and 90.8% ± 7.4% by using
cross-subject and self-training templates, respectively, when the
data length was 500 ms. The results indicated that a variety
of cross-subject information could be mined from the dataset.
By using the dataset appropriately, we can effectively design
algorithms that do not require system calibration. With the
mining of more effective information contained in the dataset,
it is believed that the performance of zero-training algorithm can
be further improved and even closer to the performance of the
training methods. This dataset provides sufficient data for the
development of zero-training algorithms that can promote the
practical application of RSVP-based BCIs.

DISCUSSION AND CONCLUSION

This study presents a benchmark dataset for studying RSVP-
based BCIs. Distinct ERP and SSVEP features in temporal,
frequency, and spatial domains prove the high quality of data.
The examples on evaluating classification performance further
demonstrate high efficiency of the dataset for evaluating methods
in target image detection.

In this study, continuous image stimulation was divided into
periodic segments to resist fatigue and ensure the high quality and

reliability of EEG signals. To reduce the interference of blinking
on EEG, subjects were instructed to blink between trials rather
than within the image sequence of stimuli, and they initiated
the next trial by pressing a button. At the same time, subjects
were given enough rest between blocks until they felt comfortable
to start the next block. In this study, no strict experimental
interruption time was set, which fully guaranteed the quality of
EEG signals. The impact of rest time can be considered in future
practical applications.

Besides the above technical validations proposed in this study,
the dataset can be further analyzed in a variety of different
ways. In fact, although remarkable progresses have been made in
RSVP-BCI, there are still many defects to be solved. Firstly, the
parameters of RSVP-BCI need to be optimized to meet different
application requirements; secondly, the characteristics of SSVEP
and ERP that are evoked by the RSVP paradigm require further
investigation; thirdly, the separation methods of SSVEP and ERP
are not effective. This dataset can be used for developing methods
to address these limitations. On one hand, the dataset can be
used to design system diagrams toward different applications.
The optimization of parameters is very important for the design
and implementation of a practical BCI system (Zhang and Gao,
2019; Lees et al., 2020). For example, the effect of time interval
between target images on EEG characteristics can not only inspire
the design of optimal RSVP stimulation paradigm but also deepen
the understanding of attentional blink. Regarding the phase of
the EEG, although other experimental paradigms such as SSVEP-
BCIs have already shown indicators of phase character of evoked
EEG such as latency, very few studies based on RSVP-BCIs
explored phase characters. The evoked EEG phase in the RSVP
paradigm must contain higher cognitive mechanisms, which
makes the relevant research more significant. Besides, the number
of electrodes and electrode locations can be optimized using
the 64-channel dataset. On the other hand, the dataset can be
used to develop computational models for ERPs and SSVEPs.
The high SNR of ERP and SSVEPs from the dataset could be
helpful for exploring the intrinsic properties of ERP and SSVEP
harmonics. For example, the way to characterize the phases of
the fundamental and harmonic SSVEP components still remains
unknown. Furthermore, it is of great scientific significance to
study the methods for separating ERP and SSVEP signals and
the temporal dynamics and phase relations between them. The
problem has not been well solved so far, and this dataset provides
rich resources for the related studies.

In future work, the dataset can be improved in the following
directions. First, data evoked by stimulus images with different
frequencies will be included. In this study, the stimulation
frequency was set to the most commonly used 10 Hz. EEG
data with different frequencies may help to reveal the effect of
workload on EEG. Secondly, more types of target sparsity will
be included. As the target sparsity is set as 1∼4% in this study,
the probability of target images can be further increased to verify
the relationship between target density and the EEG signals.
Third, data records from the same group of subjects on different
days will be provided for developing the session-to-session
transfer approach (Zhao et al., 2019), which can facilitate system
calibration in an online BCI.
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