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Over the last 20 years, it has been shown that complex signaling cascades are
involved in zinc excitotoxicity. Free zinc rapidly induces PKC activation, which causes
reactive oxygen species (ROS) production at least in part through NADPH oxidase.
It also promotes neuronal nitric oxide synthase, thereby increasing nitric oxide (NO)
production. Extracellular signal-regulated kinase activation and Egr-1 transcription
factor activity were quickly induced by zinc, too. These concurrent actions of kinases
consequently produce oxygen free radical, ROS, and NO, which may cause severe
DNA damage. Following the excessive activity of poly(ADP-ribose) polymerase-1
depletes NAD+/ATP in the cells. Zinc excitotoxicity exhibits distinct characteristics of
apoptosis, too. Activation of caspase-3 is induced by liver kinase B1 (LKB1)-AMP-
activated kinase (AMPK)-Bim cascade signaling and induction of p75NTR receptors
and p75NTR-associated Death Executor. Thus, zinc excitotoxicity is a mechanism
of neuronal cell death showing various cell death patterns. In addition to the above
signaling cascades, individual intracellular organelles also play a crucial role in zinc
excitotoxicity. Mitochondria and lysosomes function as zinc reservoirs, and as such, are
capable of regulating zinc concentration in the cytoplasm. However, when loaded with
too much zinc, they may undergo mitochondrial permeability transition pore (mPTP)
opening, and lysosomal membrane permeabilization (LMP), both of which are well-
established mechanisms of cell death. Since zinc excitotoxicity has been reported to
be associated with acute brain injuries, including stroke, trauma, and epilepsy, we
performed to find the novel AMPK inhibitors as therapeutic agents for these diseases.
Since we thought acute brain injury has complicated neuronal death pathways, we tried
to see the neuroprotection against zinc excitotoxicity, calcium-overload excitotoxicity,
oxidative damage, and apoptosis. We found that two chemicals showed significant
neuroprotection against all cellular neurotoxic models we tested. Finally, we observed
the reduction of infarct volume in a rat model of brain injury after middle cerebral
artery occlusion (MCAO). In this review, we introduced the AMPK-mediated cell death
mechanism and novel strategy for the development of stroke therapeutics. The hope is
that this understanding would provide a rationale for acute brain injury and eventually
find new therapeutics.

Keywords: stroke, oxidative stress, apoptosis, lysosome, mitochondria, LKB1

Frontiers in Neuroscience | www.frontiersin.org 1 September 2020 | Volume 14 | Article 577958

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.577958
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.577958
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.577958&domain=pdf&date_stamp=2020-09-15
https://www.frontiersin.org/articles/10.3389/fnins.2020.577958/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-577958 September 11, 2020 Time: 18:24 # 2

Kim et al. AMPK in Zinc Excitotoxicity

INTRODUCTION

More than 50 years ago, John Olney reported a seminal
finding that natural amino acid, monosodium glutamate
(MSG) could cause neuronal death in immature murine
brains (Olney, 1969a). Following investigations showed
that neuronal excitation by glutamate is essential for its
neurotoxic effect (Olney, 1969b; Olney and Sharpe, 1969;
Burde et al., 1971), and hence the term “excitotoxicity” was
coined (Olney, 1969a). A series of studies then demonstrated
that specific measures inhibiting excitotoxicity protect against
neuronal death in models of acute brain injuries (Rothman
and Olney, 1986). Although Olney initially considered the
importance of Na influx and energy depletion as the main
ionic mechanism for excitotoxicity, subsequent studies
demonstrated that excessive calcium influx predominantly
via the N-methyl-D-aspartic acid (NMDA) subtype of
glutamate receptor mediates most of excitotoxicity at least
under brief exposure conditions (Choi, 1987). Interestingly,
while glutamate also induces Na influx via both NMDA
and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA)/kainate receptors, resulting in massive cellular swelling,
within a brief period (a few hours), such cellular swelling
seems largely reversible (Choi, 1987). Hence, calcium has
been considered the primary ionic mediator of excitotoxicity
(Choi et al., 1988).

However, a growing body of evidence supports the idea that
endogenous zinc plays a role as another ionic mediator of
excitotoxic neuronal death (Weiss et al., 1993; Koh et al., 1996).
Chelatable zinc is enriched in glutamatergic synaptic vesicles
and released with neuronal activity (Assaf and Chung, 1984;
Howell et al., 1984; Wenzel et al., 1997). Following the release,
some of zinc may enter neurons via calcium-permeable channels
such as NMDA channels, voltage-gated calcium channels, or
GluR2-lacking AMPA/kainate channels (Sensi and Jeng, 2004).
Furthermore, injuries such as oxidative stress release zinc from
zinc-binding proteins such as metallothioneins and various
organelles (Chung et al., 2007; Hwang et al., 2008). Usually,
the approximate concentration of free zinc in the cytoplasm
ranges from ten to hundreds of picomoles per liter (Peck and
Ray, 1971; Magneson et al., 1987; Simons, 1991; Frederickson
et al., 2005; Bozym et al., 2006; Krezel and Maret, 2006;
Colvin et al., 2008; Vinkenborg et al., 2009; Qin et al., 2011).
Under the stimulation conditions, cellular zinc levels increase
and reach 2 nmol/L concentrations (Maret, 2013). Unless the
buffering capacity is reduced, cellular zinc levels return to the
normal concentrations within minutes (Li and Maret, 2009).
However, under the pathological conditions, increased cellular
zinc levels are sustained, which induces neuronal toxicity (Sensi
et al., 1997, Sensi et al., 2003a; Canzoniero et al., 1999;
Aizenman et al., 2000). The relevance of zinc excitotoxicity in
acute brain injury was first demonstrated in a rat model of
transient global ischemia (Koh et al., 1996). Increases in the
level of free zinc are cytotoxic via various signaling cascades
(Szabó and Dawson, 1998; Kim et al., 1999; Noh et al., 1999;
Park and Koh, 1999; Noh and Koh, 2000; Park et al., 2000;
Sheline et al., 2000).

ROLES FOR KINASES IN ZINC
EXCITOTOXICITY

For the past three decades, we have been studying cell death
mechanisms caused by exposure to excessive zinc in cultured
cortical neurons and glia. These studies have taught us that
an increase of free zinc levels in neurons or astrocytes rapidly
activates several kinases such as PKC and extracellular signal-
regulated kinase (Erk1/2), which appears critical for the resultant
cell death (Figure 1). While PKC activation enhances the activity
of nicotinic adenine dinucleotide phosphate (NADPH) oxidase
(Noh et al., 1999; Noh and Koh, 2000), Erk1/2 induces Egr-1,
one of the immediate early zinc finger translation factors (Park
and Koh, 1999). Signaling through PKC and Erk1/2 increases
the production of oxygen free radicals. Additionally, zinc rapidly
increases nNOS expression and activity in neurons, leading to
an increase in nitric oxide (NO) (Figure 1). Conversely, Bossy-
Wetzel et al. (2004) showed that NO through the formation
of peroxynitrite (ONOO−) leads to the release of zinc from
intracellular stores, which induces mitochondrial permeability
transition pore (mPTP) opening, cytochrome C release, reactive
oxygen species (ROS) generation, p38MAP kinase-mediated
K+ efflux, and resultant neuronal apoptosis. The concomitant

FIGURE 1 | A diagram for the mechanism of zinc excitotoxicity. Zinc
excitotoxicity has characteristics of necrosis and apoptosis. Zinc rapidly
activates nNOS, PKC, and Erk1/2, which increases NO and ROS (Noh et al.,
1999; Park and Koh, 1999; Kim and Koh, 2002). These oxidative
stress-induced PARP-1 over-activation and resultant NAD+/ATP depletion
(Kim and Koh, 2002). Zinc also depletes ATP through the inhibition of GAPDH
and glycolysis (Sheline et al., 2000). These events may lead to necrosis.
Another pathway of zinc toxicity is apoptosis. Zinc induces LKB1-mediated
AMPK activation and then increases Bim expression (Eom et al., 2016).
p75NTR and NADE are also induced by zinc (Park et al., 2000). By activating
caspases, this pathway induces apoptosis (Kim et al., 1999). * represents
activation.
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increase in ROS and NO can cause severe DNA damage, which
induces the activity of poly(ADP-ribose) polymerase-1 (PARP-
1). During zinc excitotoxicity, excessive activation of PARP-1
continues, and consequently, NAD+/ATP levels in cells rapidly
decline, resulting in cell death (Kim and Koh, 2002; Figure 1).
Sheline et al. (2000) also reported that glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), a key enzyme for glycolysis,
was inhibited in the zinc excitotoxicity, resulting in a decrease
in ATP (Figure 1). Hence, the eventual cell death mechanism by
zinc may involve severe energy depletion.

As described above, zinc excitotoxicity causes a decrease in
energy in nerve cells, which may activate AMP-activated protein
kinase (AMPK) that senses metabolic stress (Carling et al.,
2008). AMPK is a hetero-trimeric complex that consists of a
catalytic alpha subunit and two regulatory subunits, beta and
gamma. Several isomers of each subunit have been reported
(alpha 1 and 2; beta 1 and 2; gamma 1, 2, and 3). In addition
to the energy reduction, phosphorylation at alpha subunit
by two different upstream kinases, liver kinase B1 (LKB1),
or calcium/calmodulin-dependent protein kinase kinase beta
(CaMKKβ), increased the enzymatic activity of AMPK (Hardie
et al., 2012). 5-aminoimidazole-4-carboxamide ribonucleotide
(AICAR) and metformin are known as representative chemical
activators, and C75 and Compound C are used as inhibitors
(Viollet et al., 2010). Since AMPK inhibitors reduce zinc toxicity,
AMPK activation may also contribute to zinc excitotoxicity (Eom
et al., 2016). However, in the mechanism of zinc excitotoxicity,
AMPK activation appears much faster than the time when the
AMP level is significantly reduced (Eom et al., 2016). Instead,
LKB1, one of the well-known upstream kinases for AMPK
(Hardie, 2004; Mihaylova and Shaw, 2011), activates AMPK in
zinc excitotoxicity. We have reported that LKB1-activated AMPK
can induce caspase-3 activation through increased expression of
Bim protein, one of the pro-apoptotic Bcl-2 family members
(Eom et al., 2016). Besides, zinc triggers the expression of NGF,
p75NTR receptors, p75NTR-associated Cell Death Executor
(NADE) in cortical neuron cultures, which also activates caspase-
3 (Kokaia et al., 1998; Park et al., 2000; Figure 1). Thus, zinc
excitotoxicity shows not only rapid ROS production and necrosis
but also induces caspase-3 activation and apoptosis (Kim et al.,
1999). Caspase-dependent apoptosis is the most differentiated
characteristic of zinc excitotoxicity because calcium-overload
glutamate excitotoxicity does not show caspase-3 activation
in cortical cultures (Gottron et al., 1997; Park et al., 2000;
Lee et al., 2008).

The studies of zinc excitotoxicity mediated by AMPK showed
different results than expected. Firstly, we estimated that AMP
reduction in cells would induce AMPK activation, but LKB1
caused AMPK activation in a much faster time (Eom et al.,
2016). CaMKKβ is known as another upstream kinase of AMPK,
also plays an essential role in zinc excitotoxicity, but it is not
linked to AMPK. We observed that CaMKKβ inhibitor, STO-609,
significantly attenuated zinc-induced cell death, but STO-609 did
not change the phosphorylation levels of AMPK (Eom et al.,
2016). The next unexpected thing was that AMPK is related to
apoptosis, rather than to oxidative damage followed by ROS and
PARP-1. Since ATP depletion appeared as the result of PARP-1

over-activation (Kim and Koh, 2002), we initially thought that
AMPK is involved in the necrotic pathway. However, contrary
to expectation, AMPK plays a crucial role in apoptosis (Kim
and Koh, 2002). In ischemic brain injury, it is known that cell
damage in the periphery of the infarct is associated with apoptosis
rather than in the central region where blood vessels damaged
(Sairanen et al., 2006). Thus, AMPK seems to play a role in
the margin of brain infarct by expanding the infarct volume in
ischemic brain injury.

ROLES OF INTRACELLULAR
ORGANELLES IN ZINC EXCITOTOXICITY

Mitochondria is the central organelle for ATP production, where
cellular respiration occurs in which electrons are transported
through the electron transport chain, and oxygen is reduced
to water. However, under diverse pathological conditions,
mitochondria become dysfunctional, and excessive ROS is
generated, resulting in cell death (Trushina and McMurray,
2007; Polster, 2013). Mitochondria are also organelles that play
a critical role in apoptosis via cytochrome C and apoptosis-
inducing factor (AIF) release (Vila and Przedborski, 2003; Polster,
2013). Therefore, many studies have focused on mitochondria
as the key player in causing cell death during acute brain injury
(Polster, 2013).

The prerequisite of zinc excitotoxicity is an increase in
intracellular free zinc levels. For this to occur, there are
two possible routes; an influx of extracellular zinc into cells
and intracellular release of zinc from zinc proteins and zinc-
containing organelles (Sensi et al., 2003b, 2009; Varea et al., 2006).
Free zinc in synaptic vesicles are released into the synaptic cleft
by synaptic activity and then enter the postsynaptic neurons
via calcium-permeable AMPA receptor or voltage-gated calcium
channels (Assaf and Chung, 1984; Howell et al., 1984; Wenzel
et al., 1997; Sensi and Jeng, 2004). Metallothionein-III, a zinc-
binding protein critical for regulating zinc concentration in
neurons and astrocytes, may serve as a source for zinc release
under oxidative stress conditions (Lee and Koh, 2010). Likewise,
intracellular organelles, including mitochondria, lysosome, and
ER, also contribute to dampen the toxic free zinc levels in the
cytosol by taking up and store intracellular free zinc (Sensi
et al., 2003a, Sensi et al., 2009; Varea et al., 2006). However,
under pathological conditions such as ischemic brain injury or
seizure, excessive levels of free zinc may be taken up into the
mitochondria or lysosomes, which triggers ROS generation in
mitochondria and membrane permeabilization of mitochondria
and lysosome, which leads to the cell death (Trushina and
McMurray, 2007; Hwang et al., 2008). In addition, subsequent
oxidative stress can release free zinc from mitochondria, which
also contributes to cell death (Sensi et al., 1999, 2000; Aizenman
et al., 2000; Zhang et al., 2004). Hence, zinc-binding proteins
such as metallothioneins and zinc-storing organelles such as
mitochondria and lysosomes may function as a kind of double-
edged sword in zinc excitotoxicity.

Organelles not only serve as zinc reservoir/source but also
interact with signaling cascades of kinases that participate in zinc
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excitotoxicity. For instance, mitochondria are essential for the
AMPK activation in hypoxia, too (Emerling et al., 2009). The
upstream kinase of AMPK, LKB1, is activated by ROS generated
in mitochondria. Unlike AMPK, LKB1 activation is independent
of AMP levels. Consistent with the key role of LKB1 in hypoxia-
induced AMPK activation, cells deficient in mitochondrial DNA
(ρ0 cells) failed to activate AMPK during hypoxia (Emerling
et al., 2009). Consistently, studies have demonstrated that
mitochondria dysfunction causes AMPK signaling defects in the
hypoxic pulmonary vasoconstriction (HPV) model (Evans, 2006;
Evans et al., 2006), a representative example of directly linking
mitochondria dysfunction and AMPK pathway.

Another possible role of mitochondria in zinc excitotoxicity is
to activate the well-established cascade of apoptosis (Calderone
et al., 2004). Zinc accumulated in mitochondria can cause mPTP
opening (Jiang et al., 2001; Malaiyandi et al., 2005; Gazaryan
et al., 2007), resulting in depolarization, swelling, and cytochrome
C release and caspase-dependent apoptosis (Jiang et al., 2001).
Calcium also induced mPTP opening and cytochrome C release,
which was far lower than that induced by zinc (Jiang et al.,
2001). That may be the reason we could not observe any pieces
of evidence related to apoptosis when we increased intracellular
calcium. Thus, through multiple mechanisms, zinc-induced
excitotoxicity is affected by mitochondria (Figure 2).

Another essential organelle that plays a crucial role in zinc
excitotoxicity is lysosome (Hwang et al., 2008). Free zinc in the
cytosol enters not only mitochondria but also lysosomes (Hwang
et al., 2008; Sensi et al., 2009). Following exposure to H2O2 or
toxic levels of zinc, the level of zinc in lysosomes rises rapidly
and significantly. Afterward, as lysosomal free zinc levels get
excessive, the lysosomal membrane becomes more permeable
to release proteolytic enzymes into the cytoplasm. Lysosomal
enzyme inhibitors were found cytoprotective, supporting the
role of lysosomal enzyme activation in cell death under
these conditions. Hence the phenomenon called lysosomal
membrane permeabilization (LMP) appears to contribute to zinc
excitotoxicity (Hwang et al., 2008; Figure 2).

Lysosomes are the actual site for the degradation of cargoes
delivered via autophagy, endocytosis, and phagocytosis (Carroll
and Dunlop, 2017). Among these, autophagy is regulated by the
opposite actions of mammalian target of rapamycin (mTOR) and
AMPK (Inoki et al., 2003; Gwinn et al., 2008). Since AMPK
is a representative kinase that operates to detect metabolic
stress and maintain the energy balance of cells or organisms,
activation of AMPK initiates autophagy (Krishan et al., 2015).
mTOR signaling is regulated by multiple signals, including
growth factors, amino acids, and cellular energy (Hung et al.,
2012; Kim and Guan, 2019). mTOR negatively regulates, and
AMPK positively regulates the unc-51-like kinases 1/2 (ULK1/2)
complex. ULK1/2 activates the downstream beclin1 complex,
which leads to autophagy induction and then triggers the
formation of vesicles called autophagosomes (Ni et al., 2013).
These vesicles are fused with lysosomes to degrade the cargoes,
including proteins and organelles, to obtain the necessary
energy and building blocks in cells (Carroll and Dunlop, 2017).
A sub-lethal dose of zinc reduces the pH of lysosomes and
promote proteases activity such as cathepsins (Figure 2). Hence,

AMPK and zinc may synergistically induce lysosomal function
enhancement, which may be beneficial for cell survival under
most conditions. However, excessive AMPK activation that may
occur in zinc excitotoxicity may further contribute to LMP
and cell death. Further studies may be warranted to address
this possibility.

A ROLE OF AMPK IN ACUTE BRAIN
INJURY

Although AMPK seems to contribute to zinc excitotoxicity in our
experiments (Eom et al., 2016), there is no consensus as to the
role of AMPK in various cell death models. In vitro neuronal
cultures or in vivo animal kidney injury models, hypoxia
or ischemia/reperfusion injury was reduced by concomitant
application of AICAR, a chemical activator of AMPK (Culmsee
et al., 2001; Wang et al., 2011; Dugan et al., 2013). Moreover,
AMPK is involved in the protective mechanism when melatonin
or resveratrol is administered to the ischemia/reperfusion animal
model (Wan et al., 2016; Yu et al., 2017). However, many
studies have shown that AMPK is involved in triggering toxicity
in ischemic brain injury (McCullough et al., 2005; Li et al.,
2007; Ronnett et al., 2009). Neuronal death or brain injury is
reduced by a chemical inhibitor of AMPK such as compound C
or C75, and increased by another AMPK activator, metformin
(McCullough et al., 2005; Li et al., 2007, 2010). As discussed
above, these discrepant results may occur possibly because
cell death mechanisms in these models encompass different
mechanisms. Hence, the role of AMPK in a specific condition
should be carefully examined.

A POSSIBLE THERAPEUTIC APPROACH
AGAINST ISCHEMIC STROKE WITH THE
FOCUS ON AMPK

Since McCullough et al. (2005) found that AMPK plays a role
in ischemic brain injury, they proposed C75 and compound C
as candidates for stroke treatment (Li et al., 2007). Since we also
confirmed that AMPK inhibitors could reduce zinc excitotoxicity,
we tried to find noble AMPK inhibitors as therapeutic candidates
for ischemic brain injury. Using the virtual screening method, we
searched for a chemical library to find chemicals likely to bind to
the active sites of AMPK alpha 2. As a result of the screening, 118
chemicals were selected. Subsequently, after selecting 40 inhibitor
substances through AMPK enzyme assay, we observed whether
these 40 chemicals reduce zinc excitotoxicity comparing with
compound C, a well-known chemical inhibitor for AMPK. Seven
chemicals significantly inhibited zinc toxicity, but there was no
discernable structural similarity (Eom et al., 2019).

Research on the development of a drug for stroke has
been actively conducted for the past 30 years. Many research
groups tried to develop glutamate antagonists or antioxidants
as therapeutic agents (Lalkovicova and Danielisova, 2016).
However, all of these clinical trials have failed. The cause of the
failure is that ischemic brain injury is not a simple phenomenon
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FIGURE 2 | A diagram for the role of lysosomes in zinc-related cell survival and death. Under physiological conditions, a modest increase in cytosolic free zinc
translates into a modest increase in lysosomal free zinc due to the function of zinc transporters (Lichten and Cousins, 2009). In addition, endocytosis of zinc-binding
proteins also increases lysosomal zinc levels (Rowe and Bobilya, 2000). AMPK contributes to the activation of lysosome via the autophagy pathway (Young et al.,
2016; Jang et al., 2018). An increase of free zinc in the lysosome induces lysosomal acidification and activates lysosomal enzymes such as cathepsins. In most
cases, these changes promote cell survival (Park et al., 2011; Seo et al., 2015; Lee et al., 2017). However, a high concentration of extracellular zinc enters the
cytosol through voltage-gated calcium channel (VGCC), calcium-permeable AMPA receptor (AMPA-R), or NMDA-R, and then lysosomes or mitochondria likely via
zinc transporters (Sensi and Jeng, 2004). Excessive zinc in lysosome or mitochondria leads to LMP (Hwang et al., 2008) and mPTP (Wudarczyk et al., 1999; Jiang
et al., 2001), which releases cathepsins and other lysosomal enzymes or cytochrome C to causes cell death (Hwang et al., 2008; Mrschtik and Ryan, 2015).

FIGURE 3 | Schematic diagrams of the mode of action of novel candidate neuroprotectants against ischemic brain injury. Both 2G11 and 1H10, but not compound
C, the gold-standard AMPK inhibitor, significantly reduced brain damage after middle cerebral artery occlusion in an animal model of stroke (Modified from Eom
et al., 2019). Based on the data in vitro cortical cultures, the attenuation of zinc excitotoxicity, oxidative stress, or apoptosis by compound C was much lower than
that by 2G11 or 1H10. Furthermore, calcium-overload excitotoxicity was not reduced by compound C.

caused by a single mechanism. It likely involves various toxic
mechanisms, including zinc excitotoxicity, calcium-overload
excitotoxicity, ROS-mediated oxidative stress, apoptosis, and
LMP. Even if a drug successfully controls a single mechanism,
patients may fail to benefit with a meaningful neuroprotective
effect since other toxic mechanisms are still active. Therefore,
we tried to select chemicals that can suppress various types
of neuronal cell death, including zinc toxicity, glutamate
excitotoxicity, oxidative stress, and apoptosis to find the chemical
candidates for stroke. Therefore, we examined seven chemicals,
whether it can attenuate glutamate- or NMDA-induced

excitotoxicity, H2O2-, or Fe3+-induced oxidative stress,
staurosporine-, or etoposide-induced apoptosis. We finally chose
two compounds, 2G11 and 1H10, that exhibited protective
effects in all these neurotoxicity paradigms (Eom et al., 2019).

To assess the neuroprotective effects of these chemicals,
following focal cerebral ischemia, we used a permanent middle
cerebral artery occlusion (MCAO) rat model. We observed that
these two chemicals noticeably attenuated ischemic brain injury
in the permanent MCAO animal model. Here, we did not see
any protective effect of compound C, which may be because
the animal model we used experienced quite severe ischemic
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insults compared with those in other models (Eom et al., 2019;
Figure 3). Since based on our results with compound C, the
role of AMPK in cortical neuronal cultures was not related
to NMDA excitotoxicity. On the other hand, the two lead
compounds we selected as above have shown excellent protection
in animal models, because they have suppressed not only zinc
excitotoxicity, ROS-mediated oxidative stress, and apoptosis but
also calcium excitotoxicity (Eom et al., 2019; Figure 3).

Hence, our novel candidates seem to work much better than
compound C in a real-world animal model of brain ischemia,
likely because they were able to block multiple cascades of cell
death. Of note, compared to calcium-overload excitotoxicity or
pure apoptosis, zinc excitotoxicity involves more diverse cell
death mechanisms (Park and Koh, 1999; Park et al., 2000;
Sheline et al., 2000; McLaughlin et al., 2001), and hence may be
more useful for neuroprotective drug development as a culture
model simulating compound cell death mechanism relevant in
acute brain injury.

CONCLUSION

We reviewed the role of various kinases and intracellular
organelles, including mitochondria and lysosomes in zinc
excitotoxicity. In particular, we discussed newly found roles
of AMPK in zinc toxicity. Like Zinc, AMPK functions as a
double-edged sword in the axis of cell survival-death (Ronnett
et al., 2009). In case of chronic neurodegenerative diseases such
as Alzheimer’s or Parkinson’s disease, physiological levels of
zinc or AMPK activity may promote cell survival through the
enhancement of lysosomal function and the resultant reduction
of protein aggregates accumulation (Park et al., 2011; Lee et al.,
2017; Jang et al., 2018). However, in cases of acute brain injury,

excessive zinc influx, and the resultant pathological AMPK
activation may trigger cell death (Eom et al., 2016). Thus, in the
latter case, alleviating free zinc and inhibiting AMPK may protect
against neuronal cell death. Based on these findings, we attempted
to discover new AMPK inhibitors as candidate neuroprotective
agents in stroke. To find candidates with broad-spectrum efficacy
against diverse cell death mechanisms in brain ischemia, we
examined the protective effects of chemicals against not only zinc
excitotoxicity but also calcium-overload excitotoxicity, oxidative
free radical damage, and apoptosis. Two selected compounds
showed substantial protective effects in a permanent MCAO
model in rats (Eom et al., 2019). The success of our approach
may highlight the importance of finding chemicals that can block
diverse cell death mechanisms, which are likely involved in acute
brain injury such as stroke.
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