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Multimodal medical images provide significant amounts of complementary semantic

information. Therefore, multimodal medical imaging has been widely used in the

segmentation of gliomas through computational neural networks. However, inputting

images from different sources directly to the network does not achieve the best

segmentation effect. This paper describes a convolutional neural network called F-S-Net

that fuses the information from multimodal medical images and uses the semantic

information contained within these images for glioma segmentation. The architecture

of F-S-Net is formed by cascading two sub-networks. The first sub-network projects the

multimodal medical images into the same semantic space, which ensures they have the

same semantic metric. The second sub-network uses a dual encoder structure (DES) and

a channel spatial attention block (CSAB) to extract more detailed information and focus

on the lesion area. DES and CSAB are integrated into U-Net architectures. A multimodal

glioma dataset collected by Yijishan Hospital of Wannan Medical College is used to train

and evaluate the network. F-S-Net is found to achieve a dice coefficient of 0.9052 and

Jaccard similarity of 0.8280, outperforming several previous segmentation methods.

Keywords: medical image fusion, glioma segmentation, fully convolutional neural networks, DES, CSAB, F-S-Net

1. INTRODUCTION

Gliomas, which arise from the canceration of gliocyte in the brain and myelon, are the most
common form of cancer in the skull, accounting for 80% of malignant brain tumors (Ostrom
et al., 2014). The incidence ranges from 3 to 8 per 100,000 people and the fatality rate is high.
Hence, the early diagnosis and treatment of gliomas are very important. The presence of gliomas
can also cause complications such as increased intracranial pressure, brain edema, brain hernia, and
psychosis. The size, location, and type of a glioma are determined by segmenting the affected region
from other normal brain tissue. Accurate segmentation plays an important role in the diagnosis
and treatment of gliomas. However, manual delineation practices not only require significant
anatomical knowledge, but are also expensive, time consuming, and inaccurate. The automatic
segmentation of gliomas would allow doctors to detect the growth of brain tumors earlier and
provide additional information for the generation of treatment plans. Bi et al. (2019) believed that
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artificial intelligence could improve the role of current standard
diagnostic imaging technology by refining the preoperative
classification of brain tumors above the level achievable by
experts. Automatic segmentation based on computer-assisted
intervention provides a steady solution for the treatment of
gliomas, and is an effective tool in reducing the time required
for the accurate detection, location, and delineation of tumor
regions. Hence, it is necessary to automatically segment gliomas
from medical images.

In recent years, methods based on deep learning (LeCun
et al., 2015) have made significant breakthroughs in image
classification (Krizhevsky et al., 2012; Rawat and Wang, 2017),
image segmentation (Badrinarayanan et al., 2017; Garcia-Garcia
et al., 2017), object detection (Ren et al., 2015; Zhao et al.,
2019), object tracking (Li et al., 2018; Ristani and Tomasi, 2018),
image captioning (Anderson et al., 2018; Hossain et al., 2019),
and other fields (Hu et al., 2020). These breakthroughs have
promoted the development of deep learning methods in the
field of medical image analysis (Litjens et al., 2017; Altaf et al.,
2019; Esteva et al., 2019). One of the best-known architectures
for medical image segmentation is U-Net, initially proposed by
Ronneberger et al. (2015), in which the backbone is a fully
convolutional network (FCN) (Long et al., 2015). U-Net has
received widespread attention from researchers in the field of
medical image segmentation, and many improvements to U-Net
have since been proposed (Alom et al., 2018; Oktay et al., 2018;
Zhou et al., 2018). For example, Milletari et al. (2016) proposed
V-Net for processing 3D medical images, whereby residual
learning is employed to improve the convergence speed of the
network and random nonlinear transformation and histogram
matching are used for data augmentation. Milletari et al. also
proposed the dice loss technique based on dice coefficients.
Cheng et al. (2019) obtained a multilevel glioma segmentation
network by combining an attention mechanism and atrous
convolution with 3D U-Net. Chen et al. (2018b) used 3D U-Net
and separable 3D convolution to build a separable 3D U-Net
architecture. A multiscale masked 3D U-Net was proposed by
Xu et al. (2018). The input to their network is a superimposed
multiscale map, and multiscale information is obtained from the
3D ASPP layer.

Although methods based on deep learning have been
widely used in this field, the current approaches have some
disadvantages. Usually, researchers combine multimodal or
multisequence medical images to obtain better segmentation
accuracy (Kamnitsas et al., 2017b; Chen et al., 2018b; Xu et al.,
2018; Zhao et al., 2018; Cheng et al., 2019). The multimodal
medical images are input directly into the network for learning.
However, the semantic conflicts between multimodal medical
images cannot be completely avoided, and these may have a
certain impact on the segmentation results. The method of image
fusion can integrate valuable information from multimodal
medical images, and the fusion results are typically more
comprehensive than the original images (Liu et al., 2017). To
date, there have been few reports on the segmentation of gliomas
based on multimodal medical image fusion.

Another disadvantage of existing methods is that U-Net
variants do not improve the basic architecture of U-Net. In

particular, the features of the medical images are extracted by
a single encoder. This means there may be a loss of feature
information. Therefore, it is necessary for networks to obtain and
retain more useful features.

In this paper, we propose F-S-Net, which combines image
fusion technology to obtain images with richer semantic
information. F-S-Net consists of two sub-networks: a fusion
sub-network and a segmentation sub-network. The fusion sub-
network projects images obtained from computed tomography
(CT) and magnetic resonance imaging (MRI) into the same
semantic space for fusion. Compared with the original images,
the fused image contains more semantic information for
segmentation. To improve the segmentation performance, the
segmentation sub-network uses a dual encoder structure (DES)
and a channel spatial attention block (CSAB) to perform
image segmentation. Based on the U-Net architecture, DES and
CSAB use different sizes of convolution kernel to extract more
effective features and focus on the lesion area. In the process
of skip-connection, a 1×1 convolution and a concatenation
operation are used to achieve better feature fusion. This method
is conducive to feature extraction and utilization, and can
achieve good performance. DES and CSAB are integrated into
the networks based on the U-Net framework, and are found
to improve the segmentation result. Experiments show that
the cascaded networks proposed in this paper achieve better
performance than existing approaches.

The contributions of this study are as follows:

1. A DES is constructed by increasing the width of the
encoder. The proposed structure uses convolution
kernels of different sizes to extract more effective features
from images.

2. Our CSAB is constructed by combining channel attention and
spatial attention mechanisms in the U-Net architecture. The
proposed attention mechanism can be easily integrated into
other networks that use the U-Net framework.

3. The proposed F-S-Net is formed by combining two sub-
networks. One sub-network fuses CT and MRI images to
enhance the semantic information of the images, while
the other is used to segment gliomas accurately from the
fused image.

4. Clinical glioma imaging data were collected from Yijishan
Hospital of WannanMedical College. The labels of each image
were annotated by professional medical staff. The collected
dataset provides a valuable tool for further research.

5. Extensive comparison experiments were conducted based on
the collected dataset to demonstrate that the proposed method
obtains the best segmentation performance among several
deep segmentation methods.

2. RELATED WORK

Convolutional neural networks (CNNs) are a common
architecture for glioma segmentation, especially the
encoder–decoder model.

Wang et al. (2017) trained each tumor sub-region by
using networks with similar architectures and cascading these
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networks. The input to each network was the output from the
previous network. However, some loss of global information
might be caused by the way the gliomas are progressively
segmented. Kamnitsas et al. (2017a) reported better results
using ensembles of multiple models and architectures (EMMA).
In particular, EMMA combined the DeepMedic (Kamnitsas
et al., 2017b), FCN, and U-Net models and synthesized their
segmentation results. The strong performance of EMMA helped
Kamnitsa et al. to win the BraTS Challenge in 2017. However,
EMMA does not offer end-to-end training, and the final
result is affected by the accumulation of errors. Unlike most
researchers, Isensee et al. (2018) demonstrated that competitive
performance could be achieved with a few minor modifications
to a generic U-Net. They reduced the number of feature
maps before sampling from the decoder, and used additional
training data to produce some improvements in terms of
tumor enhancement. Myronenko (2018) won the BraTS 2018
challenge with a segmentation network based on the encoder–
decoder architecture. An asymmetric encoder is used to extract
features, and then two decoders segment the brain tumor and
reconstruct the input image, respectively. The first decoder
outputs the segmentation results from three tumor sub-regions,
while the second uses a variational auto-encoder (VAE) to
reconstruct the input image. The VAE branch only reconstructs
the input images during the training stage. Jiang et al. (2019)
achieved the best results in the 2019 BraTS challenge. They
proposed a U-Net-based cascade network that is divided into
two stages. In the first stage, a variant of U-Net produces an
unshaped result. In the second stage, improved performance
is obtained by increasing the width of the decoder. In fact,
their network uses two decoders that are structurally similar,
but have some differences in their up-sampling procedures:
one decoder uses deconvolution while the other uses trilinear
interpolation. Although multimodal medical imaging has been
widely used in glioma segmentation, few researchers have
considered the processing of multimodal medical images. This
is a clear gap in the research, as the results might be affected
by the different semantic information contained in multimodal
medical images.

3. METHODS

This section describes the proposed F-S-Net architecture in
detail. F-S-Net consists of two sub-networks, a fusion sub-
network and a segmentation sub-network. The fusion sub-
network uses multimodal images to obtain more detailed
medical images with a wealth of semantic information. After
processing the corresponding CT and MRI images, the fusion
results are input to the segmentation sub-network. The
segmentation sub-network uses a dual encoder architecture
to extract detailed features from the lesion area. Different
sizes of convolutional kernel are used to process images on
parallel paths. At the same time, an attention mechanism is
integrated into the CSAB module among the skip-connection
processing. The final result is obtained by segmenting the
fused results.

3.1. F-S-Net
Multimodal medical images have been widely used in medical
image analysis tasks. As multimodal images contain different
semantic information, image fusion technology is used to map
the semantic information from the multimodal images to the
same semantic space, including image structure information
and edge information. Therefore, F-S-Net incorporates medical
image fusion technology. The proposed network architecture is
shown in Figure 1.

F-S-Net is divided into two stages. In the first stage, the
fusion sub-network is used to fuse CT and MRI images. As
the semantic information from various multimodal images is
combined, this process provides more detailed medical images
for segmentation networks. In the second stage, the fused image
is input into the segmentation sub-network. The CSAB and
DES modules are used in the segmentation sub-network based
on the U-Net architecture. Figure 2 shows the structure of the
fusion sub-network (Fan et al., 2019). The Eθ and Dφ of fusion
sub-network are follows the structure of U-Net. Eθ is used
to generate the fusion results. Dφ is used to reconstruct the
input. The loss value is determined by the input, fusion results,
and reconstruction results. The loss function of the fusion sub-
network has been modified by us. The details of the loss function
are described in section 3.4. Dφ is used during the training stage.
The segmentation sub-network architecture is a typical encoder–
decoder structure, as shown in Figure 3. The segmentation sub-
network consists of two encoders (left side) and a decoder (right
side). The two encoders use convolution kernels of different sizes.
In the skip-connection process, the attention mechanism is used
to enable the network to extract the features of a specific area
and perform feature fusion. The decoder is the same as in U-
Net. The network takes input images of 256×256 pixels, and
outputs images of the same size. The network can obtain more
comprehensive and consistent medical images, and perform
better segmentation tasks, after multimodal image fusion. The
results are generated by minimizing the loss value.

3.2. Channel Spatial Attention Block
The attention mechanism is derived from the study of human
vision. In computer vision, the attention mechanism allows the
system to ignore irrelevant information and focus on important
information. Combining channel attention, spatial attention, and
the structural features of U-Net gives the CSAB module. This
module enhances the salient features of the up-sampling process
by applying an attention weight to the high- and low-dimensional
features. The proposed structure is shown in Figure 4. The input
featuremaps x and g are scaled using the attention coefficient (α3)
computed in CSAB. Areas of concern are selected by analyzing
the different types of attention weights provided by x and g.

Given an intermediate feature map x, g ∈ RC×H×W as input,
CSAB obtains two intermediate 1D channel attention weights α1,
α2 ∈ RC×1×1 and an intermediate 2D spatial attention weight α3
∈ R1×H×W . Figure 4 describes the calculation for each attention
module. The overall attention process can be summarized as:

gl = α1(g)⊗ g (1)
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FIGURE 1 | Architecture of the proposed F-S-Net for glioma segmentation. The corresponding CT and MRI images are processed by the fusion sub-network. The

fusion images are copied into the segmentation sub-network, which uses convolution kernels of different sizes to process images on parallel paths. The final results of

segmentation are output by the decoder.

FIGURE 2 | Architecture of fusion sub-network for glioma segmentation. The input size of the network is 256×256. The Eθ and Dφ are follows the structure of U-Net.

The Dφ is used only during training to reconstruct the input.

xl = α2(x)⊗ x (2)

f = α3(g
l, xl)⊗ xl ⊗ gl (3)

F = w(Cat[f , x])+ b (4)

where ⊗ denotes element-wise multiplication. F is the final
output obtained by 1×1 convolution after fusing f and
feature x.

3.2.1. Channel Attention Block

The channel attention weight is produced from high- and low-
dimensional features using the relationship among the features.

Four different spatial context descriptions, gmax, gavg , xmax,

and xavg , are obtained using average pooling and maximum
pooling operations on the feature map. These four characteristics
are entered into a small network for further processing. The
output feature vectors of the small network are merged using a
concatenation operation. Finally, the channel attention weights
α1(g) and α2(x) are obtained after the dimension has been
reduced by 1×1 convolution. The channel attention is calculated
as follows:

gmax = MaxPool(g) (5)

gavg = AvgPool(g) (6)
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FIGURE 3 | Architecture of segmentation sub-network for glioma segmentation. The input size of the network is 256×256. Each different box denotes the different

operations. The number of channels is denoted on the boxes. The parallel pathways process each feature using different sizes of convolution kernel, which are

combined at the end of the encoder.

FIGURE 4 | Schematic of the proposed CSAB. CSAB is composed of Channel Attention Block (CAB) and Spatial Attention Block (SAB). CAB applies channel

attention weight to x from encoder part and g from upsampled, respectively. xl and gl are the feature maps of CAB output. xl and gl are fused in the spatial attention

block. Spatial attention weights are applied to the result of feature fusion. f is the feature maps of SAB output. F is the feature map by CSAB output.

xmax = MaxPool(x) (7)

xavg = AvgPool(x) (8)

g1 = wfc3(wfc2(wfc1(gmax)+ bfc1)+ bfc2)+ bfc3 (9)

g2 = wfc3(wfc2(wfc1(gavg)+ bfc1)+ bfc2)+ bfc3 (10)

x1 = wfc3(wfc2(wfc1(xmax)+ bfc1)+ bfc2)+ bfc3 (11)

x2 = wfc3(wfc2(wfc1(xavg)+ bfc1)+ bfc2)+ bfc3 (12)

α1(g) = σg(wz(Cat[g1, g2])+ bz) (13)

α2(x) = σx(wz(Cat[x1, x2])+ bz) (14)
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where σg and σx denote the sigmoid function, Wfc1 ∈ RC/8×1×1,

Wfc2 ∈ RC/8×1×1, Wfc3 ∈ RC×1×1, and Wz ∈ RC×1×1. Wfc1,
Wfc2, Wfc3, and Wz denote the weight of each convolution. The
rectified linear units (ReLU) activation function is followed by
Wfc1,Wfc2, andWfc3.

3.2.2. Spatial Attention Block

The spatial attentionmap is generated from α1(g) and α2(x) using
the relationship among the features. The attention coefficient,
α3 ∈ [0, 1], suppresses the expression of irrelevant regions in the
input. In addition, the attention coefficient can highlight features
that are useful for the task.

In the spatial attention block, the high- and low-dimensional
features are subjected to 1×1 convolution to obtain two features:
FWg ∈ RC×H×W and FWx ∈ RC×H×W . The concatenation
operation then performs feature fusion. Finally, the spatial
attentionmap of α3 ∈ R1×H×W is generated by 1×1 convolution.
The output of the spatial attention block (SAB) is the element-
wise multiplication of the input feature graph and the attention
coefficient. The spatial attention is calculated as follows:

FWg = wg(g
l)+ bg (15)

FWx = wx(x
l)+ bx (16)

f = α3(g
l, xl)⊗xl⊗gl = σ (ψ(Cat[FWg , FWx ])+b)⊗xl⊗gl (17)

where σ denotes the sigmoid function.Wg ,Wx, and ψ represent
the convolution kernel weights, and bg , bx, and b are the
bias terms.

3.3. Dual Encoder Structure
The DES is developed by extending the encoder of U-Net. Two
different encoders are used to extract features from images, and
the convolution kernel size of the two encoders is different. One
encoder has a convolution kernel size of 3×3, while the other has
a convolution kernel size of 2×2. The encoder with a convolution
kernel size of 3×3 is consistent with U-Net. Each layer consists
of two 3×3 convolutions, followed by batch normalization (BN)
and ReLU activation. The encoder with a convolution kernel of
2×2 is different from that of U-Net. Each layer consists of four
2×2 convolutions, each followed by BN and ReLU activation.
The padding of the four 2×2 convolutions is 0101. The number
of initial filters is 32. More feature information is obtained from
images that use convolution kernels of different sizes. In addition,
more significant information will be input to the decoder through
the parallel paths design.

As the encoder has been expanded, it is necessary to fuse
the features of each path when the features are input into
the decoder. The output of CSAB is fused with the features
obtained by up-sampling. Then, 1×1 convolution is used to
reduce the dimension of the fused features. Finally, the processed
features are input into the decoder. The two features from the
encoder are processed separately. This approach is conducive to
the integration of low- and high-dimensional information. The
experimental results of the optimization procedure demonstrate

the effectiveness of our structure. The structure designed in this
study is shown in Figure 5.

Let X1 and X2 be features extracted by the encoder. F1 and F2
are the features output by CSAB, respectively, and g is the feature
obtained after up-sampling. F1 and F2 are fused with g, and
the features connected by skip-connection are subjected to 1×1
convolution for dimension reduction, resulting in x13 and x23.
These two features are fused after dimensionality reduction to
obtain X, which is input to the decoder. X is computed as follows:

X = Cat[x13, x23] (18)

where F1, F2, x13, and x23 are given by:

F1 = Att(g, x1) (19)

F2 = Att(g, x2) (20)

x13 = Wx1 (Cat[F1, g])+ b1 (21)

x23 = Wx2 (Cat[F2, g])+ b2 (22)

DES has two advantages. First, the convolution kernels of
the two encoders are 3×3 and 2×2, respectively. This strategy
can extract more different features, which is beneficial to the
segmentation task. Secondly, the features processed during the
skip-connection ensure more complete information fusion. We
have not made any major changes to the U-Net architecture.
Therefore, our DES can be extended to most networks that are
based on the U-Net architecture.

3.4. Loss Function
The loss function consists of three terms:

Ltotal = 0.02 ∗ (LMSE + LSSIM)+ LBCE (23)

LMSE is the mean squared error (MSE) loss between the
reconstructed output Ii and the input image Oi:

LMSE =
1

N

N∑

i=1

(Ii − Oi)
2 (24)

where N is the number of epochs.
LSSIM is calculated as:

LSSIM =
1

N

N∑

i=1

(1− SSIM(Oi, Fi)) (25)

where SSIM(·) represents the structural similarity between two
images (Wang et al., 2004). Fi represents the fused image.

LBCE is the binary cross-entropy (BCE) loss applied to the
segmentation output Pi and the segmentation mask Ti:
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FIGURE 5 | Method of skip-connection. First, the attention weight is applied by CSAB to the output characteristics of the encoder. The features obtained from the

up-sampling are then fused with the features after applying the attention weight. Subsequently, 1×1 convolution is used to reduce the dimension of the fused features.

The final output is obtained by concatenating the two features.

LBCE = −
1

N

N∑

i=1

(Ti log(Pi)+ (1− Ti) log(1− Pi)) (26)

LMSE and LSSIM are the loss functions of the fusion sub-network,
and LBCE is the loss function for the segmentation sub-network.
Since calculations of loss function is different, the loss functions
must be balanced. The proposed model is trained with η = 1 and
γ = 1. η represents the loss weight of the fusion sub-network.
γ represents the loss weight of the segmentation sub-network.
The loss curves are shown in Figure 6, from which we can learn
that fusion loss is bigger than segmentation. To balance the loss
weights between fusion and segmentation sub-networks, the loss
weight in Equation (23) are set to η = 0.02 and γ = 1.

4. RESULTS

4.1. Experimental Environment
A 12 GB NVIDIA Titan X (Pascal) was used for training
and evaluation. The system was running Windows 10
with an Intel Xeon CPU with 64 GB RAM. The program
was written on Pycharm and is based on the Pytorch
(Paszke et al., 2019) framework.

4.2. Dataset
The dataset contains clinical imaging data from 26 patients with
brain gliomas examined at Yijishan Hospital of Wannan Medical
College. The clinical image data consist of CT and T2-weighted
MRI scans from glioma patients, of which nine images were
acquired from low-grade glioma patients and 17 images were
obtained from high-grade glioma patients. These are brain scans
before treatment. After slicing the data, 860 pieces of CT and
MRI images were obtained. Registration was completed after
slicing. In addition, an expert was invited from the First Affiliated
Hospital of the University of Science and Technology of China to
manual delineate the whole tumor area. The data are shown in
Figure 7.

Data augmentation was used to improve the generalization
ability and robustness of the models. As the image size may

FIGURE 6 | Loss curve of different sub-network. The blue line represents the

loss function curve of the fusion sub-network. The orange line represents the

loss function curve of the segmentation sub-network. Fusion loss is bigger

than segmentation loss. Therefore, weights must be applied to balance the

two sub-networks.

change after data augmentation, the images were resampled
to 256×256 pixels. Finally, the dataset was randomly divided
into a training dataset (60%), validation dataset (20%), and test
dataset (20%).

4.3. Evaluation Measures
The accuracy rate (ACC), positive predictive value (PPV), Jaccard
similarity (JS), and dice coefficient (DC) were used as evaluation
indexes. These metrics were calculated as follows:

ACC =
TP + TN

TP + FP + TN + FN
(27)

PPV =
TP

TP + FP
(28)

JS =
TP

FP + TP + FN
(29)
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FIGURE 7 | Example of image modalities and ground truth in the multimodal glioma dataset. (A) Shows a head scan CT. (B) Shows a T2-weighted MRI. (C) Shows

the ground truth. (D) Shows the mergence result of (B,C).

TABLE 1 | JS and DC for F-S-Net with different numbers of kernels and

optimizers.

Number of convolution kernels JS DC

Adam + (32) 0.8070 0.8922

Adabound + (32) 0.8172 0.8975

SGD + (32) 0.7936 0.8839

Adabound + (16) 0.8040 0.8902

DC =
2 ∗ TP

2 ∗ TP + FP + FN
(30)

where TP (true positive) represents the number of foreground
pixels that are correctly classified as foreground (tumor region),
TN (true negative) represents the number of background pixels
that are correctly classified as background (non-tumor region),
FP (false positive) represents the number of background pixels
that are correctly identified as foreground, and FN (false
negative) represents the number of foreground pixels that are
incorrectly classified as background.

ACC is used to represent the classification accuracy of the
classifier. PPV represents the proportion of true positives in all
positive cases. JS reflects the ratio of the common area of the
matched element to the split result. Any imprecise segmentation,
whether under- or over-segmentation, will cause the JS to
decrease. DC calculates the similarity between the prediction
results and the ground truth to evaluate the performance of
the model.

FIGURE 8 | Loss curve for F-S-Net with different optimizers. The red line

represents loss function curve of the SGD optimizer. The blue line represents

the loss function curve of the Adam optimizer. The orange line represents the

loss function curve of the Adabound optimizer. The optimizer of Adabound has

the fastest rate of convergence.

4.4. Training Optimization
First, the appropriate numbers of optimizers and convolution
kernels were determined. Stochastic gradient descent (SGD)
(Robbins and Monro, 1951) has been widely applied in the field
of deep learning, while adaptive moment estimation (Kingma
and Ba, 2014) offers better optimization performance. Adabound
(Luo et al., 2019) dynamically crops the learning rate so that
the algorithm is closer to Adam in the early stages of training
and closer to SGD at the end. For CNNs, the receptive field
and number of channels on the receptive field determine the
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performance of the network. The convolution kernels considered
in the experiments had the following structures: (16) 1-16-
32-64-128-256-128-64-32-16-1; (32) 1-32-64-128-256-512-256-
128-64-32-1. Four experimental groups were examined in the
experiments: (1) Adam + (32), (2) Adabound + (32), (3) SGD +
(32), and (4) Adabound + (16). The number of training epochs
was set to 150, the batch size was set to 4, the weight decay was set
to 5×10−8, and the learning rate decreased by 0.1 after the 100th
epoch. The experimental results are presented in Table 1. The
loss curve is shown in Figure 8. In Figure 8, Adabound converges
faster than the other optimizers. On the independent test dataset,
the DCs of SGD, Adabound, and Adam are 0.8839, 0.8975,
and 0.8922, respectively. Based on these results, Adabound and
structure (32) were used in subsequent experiments.

Convolution kernels of different sizes have different receptive
fields. The convolution kernel size of one encoder was kept the
same as that in U-Net, while the convolution kernel size of the
other encoder was modified as follows: (1) The 3×3 convolution
of the amplified path was replaced by 5×5 convolution. (2)
The two 3×3 convolutions were kept unchanged. (3) The 3×3
convolution of the amplified path was replaced by two 2×2
convolutions. Note that the padding is different when using
2×2 convolution. The experimental results presented in Table 2

show that replacing a set of 3×3 convolutions with a set of 2×2
convolutions produces a better effect.

TABLE 2 | DC and JS for F-S-Net with different sizes of kernels and optimizers in

the encoder–decoder for test dataset.

Sizes of convolution kernel JS DC

3×3-3×3 0.8172 0.8975

3×3-5×5 0.8226 0.9019

3×3-2×2(0101) 0.8234 0.9023

3×3-2×2(1010) 0.8226 0.9014

0101 and 1010 are the settings for the padding in each 2×2 convolution block.

It is necessary to modify the skip-connection to adapt to
the inputs of the two encoders. An increase in skip-connection
input would inevitably require feature fusion and dimensionality
reduction. The order of 1×1 convolution and feature fusion
may affect the performance of the network. Therefore, the four
different structures shown in Figure 9 were constructed.

Experiments were performed using the above four structures.
The final experimental results are presented in Table 3, showing
that better results are obtained by the skip-connection and
dimension reduction of the two paths, respectively.

4.5. Ablation Analysis of Proposed Methods
The experimental results of the proposed structures with non-
fusion and fusion were compared. It is clear that the improved
structure and combination of modules are effective in enhancing
the glioma segmentation results. The hyperparameters were set
according to the previous optimization experiment. The training
and testing samples for the experiment were taken from the
glioma dataset. The fusion results in Figure 10 clearly represent
the overall area of the tumor, which makes the image features
more obvious. The glioma can be accurately segmented and the
network captures the specific outline and edge details of the
lesion area in the image.Table 4 presents the experimental results
from using the proposed architecture.

DECSAU-Net is the segmentation sub-network in F-S-
Net. When the proposed modules are removed, the network

TABLE 3 | DC and JS for F-S-Net with different types of skip-connection.

Skip-connection type JS DC

a 0.8234 0.9023

b 0.8019 0.8883

c 0.8109 0.8947

d 0.8280 0.9052

FIGURE 9 | Different types of skip-connection. The skip-connection of F-S-Net is divided into three parts: (Cu) CSAB and up-sampling. (1×1) 1×1 convolution. (Cat)

concatenation. (A) (1×1) + (Cat) + (Cu). (B) (Cat) + (1×1) + (Cu). (C) (Cu) + (Cat) + (1×1). (D) (Cu) + (1×1) + (Cat).
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FIGURE 10 | Comparison of segmentation results between F-S-Net and other networks. (a,b) source images before fusion, (c) fusion result. Compared with (a,b),

the features in (c) are more obvious. The ground-truth glioma segmentation (e) is highlighted in (d). Similarly, other model predictions are compared with those of

F-S-Net (f). (g–l) Are the results given by FCN8s, SegNet, DeeplabV3+, U-Net, R2U-Net, and AttU-Net, respectively. The missed dense predictions by other models

are highlighted with red arrows.

TABLE 4 | Evaluation metric for ablation analysis of our methods with test dataset.

Model ACC PPV JS DC

U-Net (Ronneberger et al., 2015) 0.9916 0.8001 0.7656 0.8656

DECSAU-Net (Ours) 0.9938 0.8624 0.8193 0.8994

F-S-Net (Ours) 0.9943 0.9054 0.8280 0.9052

TABLE 5 | Evaluation metrics for different network architectures.

Model ACC PPV JS DC

FCN8s (Long et al., 2015) 0.9885 0.7714 0.6980 0.8197

SegNet (Badrinarayanan et al., 2017) 0.9931 0.8428 0.8039 0.8890

DeeplabV3+ (Chen et al., 2018a) 0.9931 0.8328 0.8066 0.8914

U-Net (Ronneberger et al., 2015) 0.9916 0.8001 0.7656 0.8656

R2U-Net (Alom et al., 2018) 0.9932 0.8472 0.8040 0.8905

AttU-Net (Oktay et al., 2018) 0.9934 0.8586 0.8087 0.8932

DECSAU-Net (Ours) 0.9938 0.8624 0.8193 0.8994

F-S-Net (Ours) 0.9943 0.9054 0.8280 0.9052

architecture is the same as the standard U-Net. Comparing
the network models with and without DES and CSAB, it can
be seen that the inclusion of DES and CSAB results in better
performance. The PPV of DECSAU-Net is about 0.0623 higher
than that of U-Net. The JS and DC values are about 0.0537 and
0.0338 higher, respectively. A comparison with U-Net shows that
DES and CSAB improve the results of U-Net.

The results achieved with non-fusion and fusion approaches
are now compared. The DC of the fused image is about 0.0058
higher than that of the image before fusion. The PPV of glioma
segmentation after fusion is also higher at 0.9054. The difference
in JS values shows that the result obtained after fusion is more
similar to the ground truth. In general, the higher DC and

JS values demonstrate that the segmentation is more accurate
after fusion.

4.6. Comparison With Other Methods
Table 5 compares the performance of different network
architectures with that of the proposed F-S-Net after normalizing
and enhancing the glioma data on the same test dataset.
Figure 10 shows the glioma segmentation results, which can be
used to compare F-S-Net with other networks.

Several medical image segmentation architectures
(Ronneberger et al., 2015; Badrinarayanan et al., 2017;
Alom et al., 2018; Chen et al., 2018a; Oktay et al., 2018) are
outperformed by F-S-Net in both evaluations. The results in
Table 5 indicate that F-S-Net is more effective for performing
accurate glioma segmentation. Compared with other network
architectures, our method is more conducive to the segmentation
of lesions as it maps multimodal medical images into the same
semantic space. The advantage of F-S-Net is that the fusion
of multimodal images makes the semantic information more
conspicuous, and DES and CSAB allow the network to achieve a
better segmentation effect.

5. DISCUSSION

Segmenting gliomas directly from CT or MRI images is a
challenging task. In addition, the blurred edges of adjacent bones,
blood vessels, or surgical packaging materials greatly increase the
difficulty of segmentation.

Currently, most researchers directly input multimodal
images into a network for learning. To the best of our
knowledge, there are few reports on the segmentation of
gliomas based on multimodal medical image fusion. To
bridge this gap, F-S-Net has been proposed based on medical
image fusion technology. Fusion and segmentation sub-
networks are cascaded for end-to-end training, and two
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new structures, DES and CSAB, are proposed based on the
structural characteristics of U-Net. The basic idea of F-S-Net
is to use fusion technology to produce images with more
semantic information for the segmentation network, so as to
obtain better segmentation results. DES and CSAB extract
more detailed features and force the network to focus on
the lesion area. Our work builds on existing techniques,
such as CT and MRI image fusion. Medical image fusion
techniques are not specifically designed for the segmentation
task, but can provide images with richer semantic information
for segmentation.

The most important innovation described in this paper
is the ability to perform the task of glioma segmentation
using image fusion. In the field of medical image analysis,
better performance is often achieved by combining different
technologies. The results in Table 4 demonstrate the effectiveness
of DES and CSAB, while those in Tables 4, 5 demonstrate
the improvement offered by using fusion technology for
segmentation. Our network has the following advantages.
First, image fusion can enrich the information available by
integrating information between multimodal medical images.
This method improves the quality of the image and facilitates
the segmentation task. Second, the convolution kernels of
different sizes in DES allow the network to obtain richer
features. This helps to focus attention on the area of interest,
and then obtains a better segmentation effect. Third, CSAB
makes the network focus on the lesion area by applying
different attention weights to the features. Our method not
only integrates the complementary information from different
modalities, but also extracts more detailed features. The
experimental results show that F-S-Net outperforms several
existing methods.

In summary, our proposed method will be helpful in
allowing clinicians to diagnose and treat gliomas. More detailed
segmentation results provide doctors with more complete
boundary information of the tumor, and can better guide
the resulting operations. In addition, better segmentation
contributes to the reconstruction of the image data, which
can provide more information for future monitoring and
treatment planning. Our method overcomes the problem
of incomplete semantic information and achieves good
performance. The combination of segmentation and other
medical imaging technologies will be explored in the future. This
may improve clinical guidance in the diagnosis and treatment of
glioma patients.

6. CONCLUSION

Glioma segmentation is a challenging and significant task in
medical image segmentation. Based on medical image fusion
technology, a cascade network was proposed to automatically
segment gliomas from CT and MRI images. Our network
obtained a DC of 0.9052 on the test dataset. Experimental
results show that the combination of image fusion and image
segmentation is effective. Our model provides a new method and
a new idea for glioma segmentation based on deep learning, and
is beneficial to the clinical diagnosis and treatment of patients.
The proposed network is not only applicable to the segmentation
of gliomas, but could also be easily applied to othermedical image
segmentation tasks.
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