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Type 2 diabetes mellitus (T2DM) leads to a higher risk of brain damage and adversely
affects cognition. The underlying neural mechanism of T2DM-induced cognitive
impairment (T2DM-CI) remains unclear. This study proposes to identify a small number
of dysfunctional brain connections as imaging biomarkers, distinguishing between
T2DM-CI, T2DM with normal cognition (T2DM-NC), and healthy controls (HC). We have
recruited 22 T2DM-CI patients, 31 T2DM-NC patients, and 39 HCs. The structural
Magnetic Resonance Imaging (MRI) and resting state fMRI images are acquired, and
neuropsychological tests are carried out. Amplitude of low frequency fluctuations (ALFF)
is analyzed to identify impaired brain regions implicated with T2DM and T2DM-CI. The
functional network is built and all connections connected to impaired brain regions are
selected. Subsequently, L1-norm regularized sparse canonical correlation analysis and
sparse logistic regression are used to identify discriminative connections and Support
Vector Machine is trained to realize three two-category classifications. It is found that
single-digit dysfunctional connections predict T2DM and T2DM-CI. For T2DM-CI versus
HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC, the number of connections
is 6, 7, and 5 and the area under curve (AUC) can reach 0.912, 0.901, and 0.861,
respectively. The dysfunctional connection is mainly related to Default Model Network
(DMN) and long-distance links. The strength of identified connections is significantly
different among groups and correlated with cognitive assessment score (p < 0.05). Via
ALFF analysis and further feature selection algorithms, a small number of dysfunctional
brain connections can be identified to predict T2DM and T2DM-CI. These connections
might be the imaging biomarkers of T2DM-CI and targets of intervention.

Keywords: resting state fMRI, type 2 diabetes mellitus, cognitive impairment, functional connectivity, machine
learning
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INTRODUCTION

Diabetes mellitus is a common metabolic disorder characterized
by hyperglycemia (McCrimmon, et al., 2012). Currently, there
are an estimated 463 million adults with diabetes worldwide,
of which Type 2 diabetes mellitus (T2DM) accounts for
more than 90% (International Diabetes Federation, 2019). The
chronic hyperglycemia of T2DM patients may cause systemic
damage to nerves, eyes, kidneys, and blood vessels, which may
bring many complications, such as cognitive impairment (CI),
microvascular complications (Valencia and Florez, 2017),and
olfactory dysfunction (Yazla et al., 2018).

T2DM-induced cognitive impairment (T2DM-CI), also
known as diabetic encephalopathy, mainly manifests through
learning, judgment, and memory deficits, a decline in executive
function, and decreased information processing speed (Mijnhout
et al., 2006; McCrimmon, et al., 2012; Biessels and Despa,
2018). Many longitudinal studies have found that T2DM is an
independent risk factor for Alzheimer’s disease (AD) (Vagelatos
and Eslick, 2013) and vascular dementia (VD) (Biessels et al.,
2008), and some patients may even deteriorate to severe
dementia (Cukierman et al., 2005). However, due to the diversity
of clinical manifestations of T2DM-CI and its relatively slow
onset, there is no gold standard for diagnosis, which is likely to
cause misdiagnosis or missed diagnosis and delay the treatment
of patients (Srikanth et al., 2020).

Resting state functional MRI (rs-fMRI) and the subsequent
computational analysis have presented the potential of precisely
characterizing and inferring neurological diseases, including
T2DM-CI (Cohen et al., 2017; Rosenberg et al., 2019). Measures
of brain regions and connections are two main aspects of the
computational analysis. Amplitude of low frequency fluctuations
(ALFF) can reflect the intensity of spontaneous neural activity
of each voxel from an energy perspective, thereby reflecting
the regularity and physiological state of neuron autonomous
activity in different brain regions (Pan et al., 2017). It has been
demonstrated that T2DM shows the decreased ALFF in frontal
lobe, parietal lobe, and posterior cerebellar lobe (Xia et al., 2013;
Cui et al., 2014). ALFF disturbances in the occipital lobe may
play an important role in T2DM-related cognitive dysfunction
(Wang et al., 2014). Most previous studies have only compared
T2DM patients with healthy controls (HC), however, T2DM-CI
is not well-studied.

Through various brain atlases [e.g., the recently established
human Brainnetome Atlas of 246 brain subregions (Fan et al.,
2016)], a whole brain functional network can be constructed
from rs-fMRI data to study the brain connections. This method
can fully utilize the rich information from the viewpoint of
connectomics, find potential neuroimaging biomarkers, and help
people understand the neural mechanism of neurological and
psychiatric disorders (Craddock et al., 2013; Fornito et al., 2015;
Qi et al., 2015; Bassett and Sporns, 2017). Previous studies have
shown that T2DM is of aberrant brain functional connectivity
(Musen et al., 2012; Chen et al., 2014).

Through machine learning, the integrated models of
characteristics across multiple brain connections and regions can
be constructed to predict clinical statuses and outcomes (Iniesta

et al., 2016; Woo et al., 2017; Dwyer et al., 2018). Remarkable
progress has been made for autism, schizophrenia, depression,
and AD (Yahata et al., 2016; Sui et al., 2018; Zhu et al., 2019; Jin
et al., 2020). Specifically, Liu et al. (2019) selected 23 connections
to identify 38 T2DM-CI from 84 T2DM patients and the resulted
area under the receiver operating characteristic (ROC) curve
(AUC) reached 0.9737.

Better predictive biomarkers of T2DM-CI rest on the effective
identification of the discriminative features (or connections).
Meanwhile, the number of identified connections must be small
to avoid the over-fitting problem in which the fitting errors
are artificially smaller than inherent data variance (Whelan and
Garavan, 2014; Woo et al., 2017). The resulted model with
over-fitting inevitably presents catastrophic generalizability for
external data. According to a rule of thumb, 10 samples (patients)
are usually required for each feature (or connection) in a binary
classifier (Gillies et al., 2016).

Therefore, we propose one effective method of identifying
a small number of dysfunctional brain connections and use
them as imaging biomarkers to distinguish among T2DM-CI,
T2DM with normal cognition (T2DM-NC), and healthy controls
(HC). There are three contributary aspects. First, one ALFF-
based way is proposed to identify dysfunctional connections
through the impaired Brainnetome regions, integrating the
information of both brain regions and connections. Second,
6, 7, and 5 dysfunctional connections have been identified as
biomarkers distinguishing between T2DM-CI and HC, T2DM-
NC and HC, and T2DM-CI and T2DM-NC. The strength of
identified connections are significantly different among groups
and correlated with cognitive assessment score (p < 0.05). Third,
the constructed three models can predict T2DM and T2DM-CI
with the AUC higher than 0.90. These identified dysfunctional
brain connections might direct the underlying neural mechanism
of T2DM-CI and the potential targets of intervention of T2DM
care. The ALLF-based method can be expanded to study other
neurological disorders.

MATERIALS AND METHODS

Participants
A total of 53 T2DM patients who met the diagnostic criteria
were recruited from Affiliated Zhongshan Hospital of Dalian
University from January 2015 to January 2017. Inclusion criteria
for T2DM patients were that they must: (1) meet the diagnostic
criteria for diabetes, (2) be 45 to 75 years old, (3) have a
history of diagnosis of 5 to 10 years, and (4) be right-handed.
Meanwhile 39 healthy people who were examined at Affiliated
Zhongshan Hospital of Dalian University at the same time were
recruited as the HC group. The sex, age, and education level
of the HC group were matched with T2DM patients. Exclusion
criteria for all participants were: (1) patients with vision, hearing,
language communication, or physical activity difficulties; (2)
patients with psychiatric disorders or head trauma; (3) alcoholics,
smoking addicts, or drug abusers; (4) MRI contraindications;
and (5) patients with brain injury, cerebral hemorrhage, cerebral
infarction, and other brain diseases, and patients with brain
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white matter demyelination (Age-Related White Matter Changes
(ARWMC) score >1). The detailed demographic information
of the enrolled subjects is shown in Table 1. This study was
approved by the ethics committee of Affiliated Zhongshan
Hospital of Dalian University and was in accordance with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. All the subjects were informed
about the examination, expressed their knowledge of the study,
and signed their informed consent.

We used neuropsychological tests, including the Chinese
version of the Montreal Cognitive Assessment (MoCA)
(Nasreddine et al., 2005), clock drawing test (CDT) (Shulman,
2000), auditory verbal learning test (AVLT) (Powell et al., 1991),
digit span test (DST) (Melikyan et al., 2019), trail making test
(TMT) (Llinàs-Reglà et al., 2017), and verbal fluency test (VFT)
(Weiss et al., 2003), to determine the cognitive status of T2DM
patients. The same trained physicians judged whether T2DM
patients have cognitive impairment and divided them into
T2DM-CI (MoCA score < 26, n = 22) and T2DM-NC (MoCA
score ≥ 26, n = 31). The details are given in Table 1.

Rs-fMRI Data Acquisition
MRI scanning was performed using one Magnetom 3.0 Tesla
scanner (Siemens, Germany) with a 12-channel head phased
array surface coil. The gradient field is 45 mT/m, and the gradient
switching rate is 200 mT/ms. The subject’s head was fixed with
a sponge pad before scanning and was informed to keep their
head still during the scan. Structural images were acquired using
the standard 3D magnetization prepared rapid gradient echo
(MPRAGE) sequence: repetition time (TR) = 2530 ms, echo time
(TE) = 2.22 ms, slice thickness = 1.0 mm, flip angle (FA) = 7◦,
field of view (FOV) = 224 × 224 mm, matrix = 224 × 224,
layers = 192. Rs-fMRI images were collected by the echo planar
imaging (EPI) pulse sequence: TR = 2000 ms, TE = 30 ms,
slice thickness = 3.5 mm, FA = 90◦, FOV = 224 × 224 mm,

TABLE 1 | Demographic, clinical, and neuropsychological information of
the participants.

Characteristics T2DM-CI T2DM-NC HC p-value

Gender (male/female) 12/10 18/13 23/16 0.138

Age 62.64 ± 4.94 59.56 ± 7.56 58.34 ± 6.69 0.092

BMI (kg/m2) 25.99 ± 3.03 25.78 ± 3.16 25.10 ± 2.49 0.458

Education duration 10.23 ± 2.89 11.35 ± 3.09 10.86 ± 2.73 0.387

T2DM duration 10.14 ± 4.66 9.15 ± 6.74 − 0.406

FPG (mmol/L) 14.13 ± 7.31 11.08 ± 7.93 5.24 ± 0.29 0.013*

MoCA 21.91 ± 2.77 27.16 ± 1.15 27.24 ± 1.15 < 0.001*

CDT 2.45 ± 0.59 2.77 ± 0.61 3.03 ± 0.57 0.003*

VFT 20.55 ± 6.44 23.63 ± 5.92 22.85 ± 6.42 0.205

AVLT 21.38 ± 5.69 24.94 ± 4.64 25.65 ± 3.33 0.003*

DST 10.59 ± 1.89 12.19 ± 2.62 12.09 ± 2.12 0.025*

TMT(s) 69.95 ± 27.57 51.77 ± 26.83 51.90 ± 21.14 0.019*

Data are presented as mean ± SD. BMI, body mass index; FPG, fasting plasma
glucose; MoCA, Montreal Cognitive Assessment; CDT, clock drawing test; VFT,
verbal fluency test; AVLT, auditory verbal learning test; DST, digit span test; TMT,
trail making test. * indicates a difference of p < 0.05, which is statistically significant.

matrix = 64 × 64, layers = 31. 240 time phases were collected
and 240 images were obtained. The MRI images will be available
upon reasonable request after approval by the Ethic Committee
of Affiliated Zhongshan Hospital of Dalian University.

Overview of the Study Procedure
As shown in Figure 1, there are seven steps in our study.
(1) Image processing is performed according to the standard
procedures. (2) ALFF analysis is done to identify the impaired
regions for three two-group comparisons. (3) Functional brain
network is constructed for each participant. (4) Impaired
Brainnetome regions are identified. (5) Dysfunctional
connections connected with the impaired Brainnetome are
selected. (6) Discriminative connections are identified by
L1-norm regularized sparse canonical correlation analysis (L1-
SCCA) and sparse logistic regression (SLR). (7) Classifiers are
trained, and their performance is evaluated.

It is noted that, to avoid category information leakage, steps
from (2) to (7) in Figure 1 are carried out in a procedure
of leaving-one-out cross validation (LOOCV). It means that
steps from (2) to (7) have be conducted for n1, n2, and n3
times for T2DM-CI versus HC, T2DM-NC versus HC, and
T2DM-CI versus T2DM-NC, where n1, n2, and n3 are the
number of participants in three classifications after step (1) of
imaging preprocessing.

Image Preprocessing
In this study, resting state fMRI data are preprocessed using
Data Processing and Analysis for Brain Imaging (DPABI) toolkit1

in MATLAB 2018b software. As shown in Figure 1B, at first,
the initial 10 time points of fMRI data are removed to exclude
the influence of the instability of equipment initialization and
subjects’ adaptation to the environment. Second, slice-timing
correction and realignment for head motion correction are
carried out. Three participants with head motion exceeding
2.0 mm maximum translation or 2◦ rotation are excluded.
Third, detrending and nuisance covariates regression, including
Friston 24-parameter model, and mean time series of global,
white matter, and cerebrospinal fluid signals as regressors, are
conducted to remove the influence of physiological factors.
Fourth, spatial normalization is carried out, and the brain
structure of each subject is normalized to the standard
template by the Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra (DARTEL) tool (Ashburner, 2007).
Finally, images are smoothed by Gaussian of full-width at half-
maximum 4 mm. Because ALFF analysis is then needed, we have
skipped filtering during the preprocessing. It is noted that 89
subjects (19 T2DM-CI, 31 T2DM-NC, and 39 HC) took part in
the following study since three subjects were removed during
image preprocessing.

ALFF Calculation and Statistical Analysis
We used the modules in the DPABI toolkit to calculate ALFF.
First, time series of each voxel are transformed into frequency
domain by Fourier transform and then the power spectrum is

1http://www.restfmri.net
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FIGURE 1 | Overview of study procedure. (A) Main steps in this study [It is noted that steps from (2) to (7) are carried out many times since they are included in a
procedure of leaving-one-out cross validation (LOOCV) to avoid the leakage of category information]; (B) Image preprocessing; (C) Construction of functional brain
network; (D) Identification of impaired Brainnetome subregions by ALFF analysis; (E) Identification of discriminative connections by L1-SCCA and spare logistic
regression (SLR).

obtained. Subsequently, the square root of each frequency power
spectrum is calculated according to the frequency band (usually
0.01–0.08 Hz), and the mean value is ALFF. Finally, the ALFF
values are standardized to reduce the errors caused by individual
differences. The standardized ALFF value is the ALFF value of
each voxel divided by the whole brain ALFF mean value.

We have performed statistical analysis on the standardized
ALFF values of T2DM-CI, T2DM-NC, and HC. The ALFF values
among the three groups are compared by one-way ANOVA
test and the statistical map with significant difference is used
to create a mask. Then two-sample t-tests are performed as

post hoc tests to identify regions with significant differences in
the mask above. The significance level of two-sample t-tests
are set at p < 0.05 with 1000 permutations corrected with
the threshold-free cluster enhancement (TFCE) correction. It is
found that permutations corrected with the TFCE correction
can best balance the family-wise error (FWE) rate and test-retest
reliability (Chen et al., 2018).

To avoid the category information leakage, ANOVA test and
two-sample t-test are carried out after leaving one out, not for all
subjects. Specifically, in each fold of the leave-one-out procedure,
we have conducted the above ANOVA test and two-sample t-test
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on all subjects except the one who is taken out, then we get
the regions with significantly different ALFF of this fold. They
are named the impaired regions. In summary, this step of ALFF
calculation and statistical analysis has been conducted 58 times
for T2DM-CI versus HC, 70 times for T2DM-NC versus HC, and
50 times for T2DM-CI versus T2DM-NC.

Construction of Functional Brain
Networks
The network consists of many nodes and edges between those
nodes. In the functional brain network, nodes represent brain
regions and edges represent the degree of statistical dependence
of blood oxygen level dependent (BOLD) imaging between
different brain regions. As shown in Figure 1C, the present
study has used the Human Brainnetome Atlas (Fan et al., 2016),
which parcellates the whole human brain into 246 subregions,
and each subregion represents a node in the brain network. With
the progress of MRI scanning, changes in activity of different
brain regions can be reflected as time courses. For each subject,
we obtain the average time courses of the 246 brain subregions
and then we calculate the Pearson correlation coefficient between
the average time courses of any two subregions as a functional
connectivity indicator between them, which can be used as the
edge of the brain network. After that, we can get one 246 × 246
adjacency matrix of each subject, which is called the weighted
functional connectivity matrix.

Identification of Impaired Brainnetome
Subregions
After using two-sample t-test of ALFF to determine voxels
with significant differences between two groups, we excluded
clusters with less than 20 voxels. Spatially matching the impaired
regions identified by ALFF analysis with Brainnetome Atlas
can determine the volume of the impaired region in each
Brainnetome subregions. We sort the Brainnetome subregions by
volume of impaired region from large to small. Finally, two lists
of subregions with increased and decreased ALFF are obtained
for each two-group comparison.

Previous studies have reported that, compared with HCs,
T2DM patients have decreased ALFF values in brain regions
which are related to cognitive impairment. There are 15
Brainnetome subregions with decreased ALFF for both T2DM-
CI versus HC and T2DM-NC versus HC, which are named as the
impaired Brainnetome subregions. For T2DM-CI versus T2DM-
NC, there are only 10 subregions with decreased ALFF. In order
to get the same number of subregions for the three groups, we
have added five subregions with increased ALFF.

Identification of Connections With High
Discriminative Power
In constructed adjacency matrix, all functional connections
connected to the 15 impaired Brainnetome subregions are
considered to be potentially discriminative.

The number of features is still too large for classification. We
utilize a combination of L1-SCCA and SLR to further perform
dimension reduction (Yahata et al., 2016). At first, we have two

data matrices: the first data matrix of X1 = [x1
1, x2

1, . . . , xN1 ]
T

and the second matrix of X2 = [x1
2, x2

2, . . . , xN2 ]
T . X1 lists the

attributes all subjects with a dimension of N × p1 (N is the
number of subjects, p1 is 3 here). The first column of X1 is the
“Diagnosis” label (either 0 or 1), while the second and third
columns are the age and gender (1 for male, 0 for female). X2
lists the connections connected with 15 impaired Brainnetome
subregions with a dimension of N×p2 (p2 is 3570 here). L1-SCCA
is applied to get the sparse projection matrices V1 and V1 from
X1 and X2. As the equation given in references (Witten et al.,
2009; Yahata et al., 2016), for a canonical variable, L1-SCCA is
formulated as,

max
v1,v2

vT
1 XT

1X2v2 subject to | |v1| |
2
1 ≤ λ1, | |v2| |

2
1 ≤ λ2, ||v1||

2
2

≤ 1, ||v2||
2
2 ≤ 1

(1)

where v1 and v2 are the projection vectors and λ1 and λ2 are their
sparseness, respectively. Subsequently, the canonical variable
only associated with the “Diagnosis” label is determined, the
connections corresponding to the diagnostic canonical variable
is chosen, and the effect of nuisance variables of age and
gender is reduced.

Sparse logistic regression is further used to reduce the
dimension of features and identify the connections with high
discriminative power. Given N feature-label data samples{(
x1, y1

)
, . . . ,

(
xN, yN

)}
, LR aims to find the parameter vector

θ such that the likelihood function l (θ) is maximized.

l (θ) =
N∑

n=1

[
ynlogpn +

(
1− yn

)
log

(
1− pn

)]
(2)

where,

pn =
1

1+ exp
(
−f (xn; θ)

) (3)

here f (xn; θ) =
D∑

d=1
θdxd + θ0, D is the dimension of features and

θ0 is the bias.
Sparse logistic regression combines the automatic relevance

determination (ARD) with LR (Yamashita et al., 2008). Imposing
the constraint on the weight parameter, ARD assumes that each
parameter θd has a Gaussian prior with mean 0.

P (θd|αd) = N
(
0, α−1

d
)

d = 1, . . . , D (4)

here αd is the inverse variance of the normal distribution and it is
treated as a hyper-parameter, named “the relevance parameter.”
αd regulates the range of θd. It is known that most αd diverges
to infinity and the corresponding θd is pruned. Finally, the
connections related to the label are automatically selected by SLR.

After this reduction, an average of 15.47 connections remain.
However, these surviving connections are still too many for
the sample in this study and result in over-fitting. Therefore,
we instigate the influence of surviving connections on the
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classification performance and determine the final discriminative
connections when the highest performance reaches this point.

Classification and Performance
Evaluation
Support vector machine (SVM) is used to build prediction
models. This study has used the library for support vector
machines (LIBSVM) toolkit2, which integrates functions such as
SVM kernel selection, parameter adjustment, and prediction. We
chose the radial basis function (RBF) as the kernel function of
the SVM, and the values of the optimal penalty coefficient C and
the kernel function parameter Gamma are determined by the grid
search method through 5-fold cross validation.

Due to the limited number of samples in this study, we have
used LOOCV to estimate the generalization of the classifier. The
receiver operating characteristic (ROC) curve, the area under
ROC curve (AUC), and the confusion matrix are used to quantify
the performance of the classifier. Moreover, using the fixed
discriminative connections identified in this study as the features,
three SVM models are trained and evaluated by LOOCV.

RESULTS

Impaired Brainnetome Subregions
Determined by ALFF
Through ALFF analysis and subsequent matching, 15 impaired
subregions have been identified for T2DM-CI versus HC, T2DM-
NC versus HC, and T2DM-CI versus T2DM-NC (Figure 2 and
Table 2). In Figure 2, the abbreviation of brain subregion is
used, and one can refer to the original paper for the full names
(Fan et al., 2016).

Using T2DM-CI versus HC as an example, we have conducted
the group comparison (or ALFF analysis) 58 times in LOOCV
loop. During these 58 comparisons, only one sample (or patient)
is different between any two comparisons. Some clusters of voxels
with significantly different ALFF will be obtained and there is
only a slight difference (a several of voxels) between the “impaired
regions” of any two comparisons. However, this slight difference
has been eliminated in the impaired Brainnetome subregions. It is
because these Brainnetome subregions are selected if they overlap
with the “impaired regions” and the overlap status does not
change with the slight variation of “impaired regions.” We have
compared the identified subregions in 58 experiments of LOOCV
loop for T2DM-CI versus HC and found they are completely the
same. It is also true for the other two comparisons.

For T2DM-CI versus HC, two impaired subregions are in
the frontal lobe, four in the inferior parietal lobule, three in
the precuneus, four in the cingulate gyrus, and two in the
occipital lobe. For T2DM-NC versus HC, there is the same spatial
distribution as for T2DM-CI versus HC.

Two subregions in the middle frontal gyrus belong to the
executive control network (ECN), four in the inferior parietal,
four in the cingulate gyrus, and three in the precuneus are in

2https://www.csie.ntu.edu.tw/~cjlin/libsvm/

the default model network (DMN). Two in the occipital lobe
belong to the visual network (VN). Among 15 subregions, 13 are
overlapped between T2DM-CI versus HC and T2DM-NC versus
HC, indicating that T2DM-CI and T2DM-NC have a common
neuropathological basis.

For T2DM-CI versus T2DM-NC, three subregions are in the
frontal lobe, one in the superior parietal lobule, four in the
inferior parietal lobule, one in the postcentral gyrus, four in the
precuneus, one in the cingulate gyrus, and one in the occipital
lobe. Among 15 subregions, seven have appeared in the above two
comparisons and they belong to DMN and ECN. One subregion
in the superior parietal lobule and one in the postcentral gyrus
are the new ones which do not appear in the other comparisons.
From the viewpoint of intrinsic brain network, three subregions
(ID: 16, 17, 18) are in ECN, nine in DMN (ID: 136, 138, 142, 144,
151, 152, 153, 154, 183), one in FPN (ID: 132), 1 in DAN (ID:
161), and one in VN (ID: 210).

Dysfunctional Connections With High
Discriminative Power
The effect of the number of discriminative connections on
prediction accuracy is given in Figure 3. It is shown that the SVM
model has the highest accuracy of 93.1%, while six discriminative
connections remain for T2DM-CI versus HC. For T2DM-NC
versus HC and T2DM-CI versus T2DM-NC, the optimal number
of discriminative connections is seven and five. The feature
selection method of L1-SCCA and SLR is much better than the
dimension reduction of principal component analysis (PCA).

Because LOOCV is used to divide the dataset, the surviving
connections for each fold are slightly different. Sorting the
connections by repeat times, the top six, top seven, and top
five connections are listed in Tables 3–5 for T2DM-CI versus
HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC,
respectively. The spatial locations of the identified connections
are given in Figure 4. The straight-line distance between two
endpoints of each connection is also calculated according to the
MNI coordinates of the subregions and presented in Tables 3–5.

It is found that for T2DM-CI versus HC, among the six
selected connections (Table 3, Figure 4A), two are between
regions within DMN (left and right subregions in cingulate
gyrus; two subregions in cingulate gyrus and inferior frontal
gyrus), two between DMN and frontoparietal network (FPN),
one between DMN and ECN, and one between DMN and salience
network (SAN). DMN appears in all six connections. All six
connections are long-distance links across different lobes; three
of the six are inter-hemispheric, and the other three are right
intra-hemispheric. Though the straight-line distance between
subregions of 181 and 182 is only 19.29 mm, it has been treated
as a “long-distance” link as it is inter-hemispheric. No left
intra-hemispheric connection is observed. For the three inter-
hemispheric connections, one subregion in the precuneus (ID:
154, Pcun_R_4_4) appears twice.

For T2DM-NC versus HC, among the seven selected
connections (Table 4 and Figure 4B), there were two
between regions of DMN, two between DMN and ECN,
one between ECN and dorsal attention network (DAN),

Frontiers in Neuroscience | www.frontiersin.org 6 January 2021 | Volume 14 | Article 588684

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-588684 December 31, 2020 Time: 11:8 # 7

Qian et al. Connections Predicting T2DM-Induced Cognitive Impairment

TABLE 2 | Impaired brain subregions identified through ALFF analysis in T2DM-CI versus HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC.

ID Brain subregion Anatomical and cyto-architectonic descriptions MNI coordinate Selected or not

X Y Z CI vs. HC NC vs. HC CI vs. NC

15 MFG_L_7_1 A9/46d, dorsal area 9/46 −27 43 31
√

16 MFG_R_7_1 A9/46d, dorsal area 9/46 30 37 36
√

17 MFG_L_7_2 IFJ, inferior frontal junction −42 13 36
√ √

18 MFG_R_7_2 IFJ, inferior frontal junction 42 11 39
√

23 MFG_L_7_5 A8vl, ventrolateral area 8 −33 23 45
√

26 MFG_R_7_6 A6vl, ventrolateral area 6 34 8 54
√

132 SPL_R_5_4 A7pc, postcentral area 7 23 −43 67
√

136 IPL_R_6_1 A39c, caudal area 39 (PGp) 45 −71 20
√

138 IPL_R_6_2 A39rd, rostrodorsal area 39 (Hip3) 39 −65 44
√ √ √

142 IPL_R_6_4 A40c, caudal area 40 (PFm) 57 −44 38
√ √ √

143 IPL_L_6_5 A40c, caudal area 40 (PFm) −47 −65 26
√ √

144 IPL_R_6_5 A39rv, rostroventral area 39 (PGa) 53 −54 25
√ √ √

151 Pcun_L_4_3 dmPOS, dorsomedial parietooccipital sulcus −12 −67 25
√

152 Pcun_R_4_3 dmPOS, dorsomedial parietooccipital sulcus 16 −64 25
√ √ √

153 Pcun_L_4_4 A31, area 31 (Lc1) −6 −55 34
√ √ √

154 Pcun_R_4_4 A31, area 31 (Lc1) 6 −54 35
√ √ √

161 PoG_L_4_4 A1/2/3tru, area 1/2/3 (trunk region) −21 −35 68
√

175 CG_L_7_1 A23d, dorsal area 23 −4 −39 31
√ √

176 CG_R_7_1 A23d, dorsal area 23 4 −37 32
√ √

181 CG_L_7_4 A23v, ventral area 23 −8 −47 10
√ √

182 CG_R_7_4 A23v, ventral area 23 9 −44 11
√ √

183 CG_L_7_5 A24cd, caudodorsal area 24 −45 7 37
√

209 sOcG_L_2_2 lsOccG, lateral superior occipital gyrus −22 −77 36
√ √

210 sOcG_R_2_2 lsOccG, lateral superior occipital gyrus 29 −75 36
√ √ √

ID, the ID of the note (brain subregion) in the Human Brainnetome Atlas; MFG, middle frontal gyrus; SPL, superior parietal lobule; IPL, inferior parietal lobule; Pcun,
precuneus; PoG, postcentral gyrus; CG, cingulate gyrus; sOcG, superior occipital gyrus.

√
indicates the brain region which is selected as the impaired brain subregions.

FIGURE 2 | Impaired Brainnetome subregions determined by ALFF. (A) T2DM-CI versus HC; (B) T2DM-NC versus HC; (C) T2DM-CI versus T2DM-NC.

one between DMN and FPN, and one between DMN and
SAN. Among the seven connections, two are left intra-
hemispheric, two are inter-hemispheric, and three are right
intra-hemispheric. All seven connections are long-distance
links. The connection between subregions of 175 and 176
is inter-hemispheric, though the straight-line distance is
only 8.31 mm.

When comparing T2DM-CI versus HC and T2DM-NC
versus HC, it is surprising to find that no overlap exists
between the six and seven connections although DMN, FPN,
ECN, and SAN are involved in both cases. It indicates that
the neuropathological substrate for T2DM-CI and T2DM-
NC might be different from the viewpoint of functional
connections, though they have almost the same impaired
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FIGURE 3 | The effect of the number of discriminative connections on prediction accuracy and comparison of our method with feature reduction of principle
component analysis (PCA). (A) T2DM-CI versus HC; (B) T2DM-NC versus HC; (C) T2DM-CI versus T2DM-NC.

TABLE 3 | Six discriminative functional connections for T2DM-CI versus HC.

Connected nodes ID Connected brain subregions Repeat times Distance (mm) Resting state network Correlation with MoCA p-value

181-182 (A23v-A23v) CG_L_7_4, CG_R_7_4 58 17.29 DMN 0.3247 0.0129

133-144 (A7ip-A39rv) SPL_L_5_5, IPL_R_6_5 58 85.24 FPN-DMN −0.3465 0.0077

8-154 (A6dl-A31) SFG_R_7_4, Pcun_R_4_4 57 69.86 FPN-DMN −0.4403 0.0005

138-188 (A39rd-A32sg) IPL_R_6_2, CG_R_7_7 56 117.63 DMN −0.3506 0.0070

30-154 (A44d-A31) IFG_R_6_1, Pcun_R_4_4 55 80.75 ECN-DMN −0.3482 0.0074

143-170 (A39rv-vId/vIg) IPL_L_6_5, INS_R_6_4 37 112.21 DMN-SAN −0.3746 0.0038

CG, cingulate gyrus; SPL, superior parietal lobule; IPL, inferior parietal lobule; SFG, superior frontal gyrus; Pcun, precuneus; IFG, inferior frontal gyrus; INS, caudodorsal
posterior insula; DMN, default mode network; FPN, frontoparietal network; ECN, executive control network; SAN, salience network.

subregions (Table 2). This finding may emphasize that the
information of brain regions and connections are intrinsically
different and complementary.

For T2DM-CI versus T2DM-NC, among the five selected
connections (Table 5, Figure 4C), there are three between
DMN and ECN, one between subregions within the DMN,

and one between DMN and FPN. Three connections are with
the subregion of IPL_R_6_5 in the inferior parietals lobule.
Three are inter-hemispheric connections. All five connections
are long-distance links across different lobes, suggesting that the
global integration of information, not the local communication,
might be abnormal in T2DM-induced cognitive impairment. The
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TABLE 4 | Seven discriminative functional connections for T2DM-NC versus HC.

Connected nodes ID Connected brain subregions Repeat times Distance (mm) Resting state network Correlation with MoCA p-value

154-166 (A31-vIa) Pcun_R_4_4, INS_R_6_2 70 87.50 DMN-SAN −0.0712 0.5581

26-110 (A6vl-A35/36r) MFG_R_7_6, PhG_R_6_1 70 88.66 ECN-DMN −0.0858 0.4800

71-181 (A41/42-A23v) STG_L_6_2, CG_L_7_4 70 48.43 FPN-DMN 0.0316 0.7950

175-176 (A23d-A23d) CG_L_7_1, CG_R_7_1 70 8.31 DMN 0.0081 0.9472

32-144 (IFS-A39rv) IFG_R_6_2, IPL_R_6_5 70 89.94 ECN-DMN 0.0108 0.9296

15-160 (A9/46d-A2) MFG_L_7_1, PoG_R_4_3 66 102.00 ECN-DAN 0.0354 0.7709

115-153 (A28/34-A31) PhG_L_6_4, Pcun_L_4_4 64 78.19 DMN −0.1040 0.3915

Pcun, precuneus; INS, caudodorsal posterior insula; MFG, middle frontal gyrus; PhG, parahippocampal gyrus; STG, superior temporal gyrus; CG, cingulate gyrus; IFG,
inferior frontal gyrus; IPL, inferior parietal lobule; PoG, postcentral gyrus; DMN, default mode network; SAN, salience network; ECN, executive control network; FPN,
frontoparietal network.

TABLE 5 | Five discriminative functional connections for T2DM-CI versus T2DM-NC.

Connected nodes ID Connected brain subregions Repeat times Distance (mm) Resting state network Correlation with MoCA p-value

32-144 (IFS-A39rv) IFG_R_6_2, IPL_R_6_5 50 89.94 ECN-DMN −0.4273 0.0020

18-237 (IFJ-rTtha) MFG_R_7_2, Tha_L_8_4 50 63.64 ECN-DMN 0.3831 0.0060

37-151 (A44op-dmPOS) IFG_L_6_5, Pcun_L_4_3 50 96.28 ECN-DMN 0.3862 0.0056

144-217 (A39rv-cHipp) IPL_R_6_5, Hipp_L_2_2 48 91.44 DMN 0.3555 0.0113

133-144 (A7ip-A39rv) SPL_L_5_5, IPL_R_6_5 37 85.24 FPN-DMN −0.3527 0.0120

IFG, inferior frontal gyrus; IPL, inferior parietal lobule; MFG, middle frontal gyrus; Tha, Thalamus; Pcun, precuneus; Hipp, hippocampus; SPL, superior parietal lobule; IPL,
inferior parietal lobule; ECN, executive control network; DMN, default mode network; FPN, frontoparietal network.

hippocampus and thalamus are new regions which do not appear
in T2DM-CI versus HC and T2DM-NC versus HC.

Altered Strength of Discriminative
Connections
The strength of discriminative connections is compared between
different groups (Figure 5). All discriminative connections have
significantly different strengths (p < 0.05). Here we define that
the smaller connectivity indicates a more negative strength of
connection and the greater connectivity indicates a more positive.
As shown in Figure 5A, T2DM-CI shows the smaller connectivity
in one connection (181-182) but the greater connectivity in
five connections than HC. Most discriminative connections are
“weak.” Specifically, only one connection has a strength higher
than 0.6 and the other five have strength less than 0.4.

For T2DM-NC versus HC, one connection has strength
higher than 0.8 and the other six have strength less than 0.3.
Three connections have greater connectivity in T2DM-NC than
HC (26-110; 71-181; 15-160) and the other four show the
opposite results.

For T2DM-CI versus T2DM-NC, all five discriminative
connections are “weak” and with an absolute strength less than
0.3. Three connections in T2DM-CI show smaller connectivity
than T2DM-NC (18-237; 37-151; 144-217), but two show the
greater connectivity.

Strength of Discriminative Connections
and MoCA Score
The correlations between the real value of five discriminative
connections and MoCA score are analyzed and the correlation
coefficients (r) and p-values are listed in Tables 3–5 for three

comparisons. For T2DM-CI versus HC, the strength of all six
connections is significantly correlated with MoCA score. The first
connection (181-182) has positive r of 0.3247, corresponding to
the one with the smaller connectivity in T2DM-CI, and the others
have negative r. As expected, there are no significant correlations
between the strength of discriminative connections and MoCA
score for T2DM-NC versus HC because they have a similar
MoCA score >26.

For T2DM-CI versus T2DM-NC, the correlations between the
real value of five discriminative connections and MoCA score
are given in Figure 6. It is found that they are significantly
correlated (p < 0.05) and the correlation coefficient (r) is
−0.4273, 0.3831, 0.3862, 0.3555, and−0.3527. For the connection
between the inferior frontal gyrus and inferior parietal lobule,
the value is positive in T2DM-CI but negative in T2DM-NC
(ID: 32 and 144). The same trend occurs for the connection
between the superior temporal gyrus and inferior parietal
lobule (ID: 133 and 144). The opposite trend appears for the
other three connections: middle frontal gyrus and Thalamus
(ID: 18 and 237); inferior frontal gyrus and precuneus (ID:
37 and 151); and inferior parietal lobule and hippocampus
(ID: 144 and 217).

We have analyzed the correlations between the strength of
five discriminative connections in T2DM-CI versus T2DM-NC
and CDT, AVLT, DST, TMT, VFT, respectively. The Pearson
correlation coefficient (r) and the p-values are calculated. Only
three cases are significant (p < 0.05): Connection 32-144 and
CDT (r = −0.3137); Connection 18-237 and DST (r = 0.3191);
and Connection 144-217 and CDT (r = 0.2894). Since the
five discriminative connections are determined according to
the classification label given by the MoCA threshold, their
strength is significantly correlated with MoCA (Table 5).
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FIGURE 4 | Dysfunctional connections with high discriminative power. (A) Six connections for T2DM-CI versus HC; (B) Seven connections for T2DM-NC versus HC;
(C) Five connections for T2DM-CI versus T2DM-NC. The blue lines represent connections used for classification. Dots represent brain subregion nodes connected
to these connections. Different colored dots represent subregions from different resting state network. The green dots indicate subregions of DMN, the red dots
indicate subregions of FPN, yellow dots indicate subregions of ECN, purple dots indicate subregions of SAN and black dots indicate subregions of DAN.
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FIGURE 5 | Strength comparison of dysfunctional discriminative connections. (A) Six connections for T2DM-CI versus HC; (B) Seven connections for T2DM-NC
versus HC; (C) Five connections for T2DM-CI versus T2DM-NC. * indicates a difference of p < 0.05, which is statistically significant.

However, only three of 25 cases are significant for the five
neuropsychological test scales of CDT, AVLT, DST, TMT,
and VFT. A possible reason might be that these scales
measure different aspects of the neuropsychology or cognition
of T2DM patients.

Performance of Predictive Models
As shown in Figure 7A, for T2DM-CI versus HC, the optimal
SVM models achieve an average accuracy of 93.1% and an AUC
of 0.912 in the LOOCV loop. The precision, F1-score, recall, and
specificity are 94.1, 88.9, 84.2, and 97.4%, respectively (Figure 7B.

For T2DM-NC versus HC (Figures 7A,C), the optimal SVM
models achieve an average accuracy of 88.6% and an AUC of
0.901. The precision, F1-score, recall, and specificity are 84.8,
87.5, 90.3, and 87.2%, respectively. The performance is slightly
lower than the models for T2DM-CI versus HC.

For T2DM-CI versus T2DM-NC (Figures 7A,D), the optimal
SVM models achieve an average accuracy of 76.0% and an AUC
of 0.861. However, the recall and F1-score are lower and only
reach 62.5 and 52.6%, respectively. Of the nineteen patients with
T2DM-CI, nine are wrongly predicted as T2DM-NC.

When using the fixed discriminative connection as input
features, the performance of SVM models can be improved. As
shown in Figure 8, the AUC can be increased to 0.977, 0.929,
and 0.927 for T2DM-CI versus HC, T2DM-NC versus HC, and
T2DM-CI versus T2DM-NC, respectively. Especially for T2DM-
CI versus T2DM-NC, the recall and F1-score can reach 78.9 and
83.3%, respectively, although four patients with T2DM-CI are
still predicted wrongly.

DISCUSSION

To the best of our knowledge, this is the first study to
identify a small number of dysfunctional brain connections as
imaging biomarkers distinguishing among T2DM-CI, T2DM-
NC, and HC simultaneously. As small as six, seven, and five
identified connections can lead to reliable SVM classifiers and
the prediction accuracy can reach 96.6, 90.0, and 88.0% for
T2DM-CI (n = 19) versus HC (n = 39), T2DM-NC (n = 31)
versus HC (n = 39), and T2DM-CI (n = 19) versus T2DM-
NC (n = 31), respectively. The small number of connections
alleviates the over-fitting problem. The proposed new way
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FIGURE 6 | Correlations between the dysfunctional discriminative connections and MoCA scores for T2DM-CI and T2DM-NC groups. (A) Connection 32-144;
(B) Connection 18-237; (C) Connection 37-151; (D) Connection 144-217; (E) Connection 133-144.

of identifying connections starts from ALFF analysis to find
impaired Brainnetome subregions, further selects discriminative
connections from ones linked with impaired subregions by L1-
SCCA and SLR, and determines the final connections through
investigating the effect of the number of connections on
prediction accuracy.

Impaired Brainnetome Subregions
for ALFF
Compared with the HC group, the 15 impaired Brainnetome
subregions with decreased ALFF in the two T2DM groups
(T2DM-CI and T2DM-NC) are mostly the same, located in
the frontal lobe, inferior parietal lobule, precuneus, posterior
cingulate gyrus, and occipital lobe. This finding is in line
with previous studies. The frontal lobe is involved in cognitive
functions such as execution function, attention, memory, and
language (Chayer and Freedman, 2001); the precuneus is related
to many high-level cognitive functions, such as episodic memory,
self-related information processing, and self-awareness (Cavanna
and Trimble, 2006). The decreased activity in the occipital
lobe is significantly correlated with visual memory decline,
information processing speed loss, and attention loss. In addition,
a relevant study has reported that the hypometabolism and neural
degeneration in the posterior cingulate cortex are related to
cognitive decline in AD, schizophrenia, and other brain diseases
(Dan et al., 2019). Zhou et al. concluded that the inferior parietal
lobule, including the angular gyrus and the supramarginal gyrus,

is involved in higher cognitive function activities, especially
executive control functions (Zhou et al., 2019). The decreased
ALFF reflects the inhibition of neurons in related brain regions
and the decrease of activity (Wang et al., 2011).

For T2DM-CI versus T2DM-NC, 12 subregions belong
to DMN and ECN and the other three belong to FPN,
DAN, and VN. These regions appear in AD, mild cognitive
impairment, and schizophrenia, and are thought be implicated
with cognition (Sui et al., 2018; Jin et al., 2020). In summary,
the identified Brainnetome subregions are impaired from the
viewpoint of ALFF (i.e., the intensity of spontaneous neural
activity) and might help understand the neuropathological basis
of T2DM and T2DM-CI.

Discriminative Connections Are
DMN-Related and Long-Distance
For three classifications, the identified brain connections with
high discriminative power are mainly between subregions within
DMN and between DMN and other resting state networks
including ECN, FPN, and SAN. It is no wonder that DMN
are implicated with T2DM and T2DM-CI (Yang et al., 2016;
Macphersona et al., 2017). DMN is related to continuous
thinking, imagination, and internal mental activities such as
memory, theory of mind, and self-thinking (Brewer et al., 2011).
In addition, DMN is considered to be related to human cognitive
function (Broyd et al., 2009), and some studies have also found
that abnormal activity in the DMN is closely related to some
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FIGURE 7 | The ROC curve and confusion matrix obtained by LOOCV procedure. (A) The ROC curves for three classifications; (B) The confusion matrix of T2DM-CI
versus HC; (B) The confusion matrix of T2DM-NC versus HC; (D) The confusion matrix of T2DM-CI versus T2DM-NC.

psychiatric disorders, such as MCI (Wang et al., 2019), AD
(Agosta et al., 2012) and schizophrenia (Jing et al., 2019).

In T2DM-CI versus T2DM-NC, it is found that most of the
discriminative connections are between DMN and other resting
state networks. ECN is involved in goal-oriented advanced
cognitive tasks and plays an important role in adaptive cognitive
control (Seeley et al., 2007). FPN is related to interoceptive
awareness, working memory, and emotional regulation (Salas
et al., 2014), and studies have found that the destruction of FPN
and DMN is the basis of metacognitive deficits (Jia et al., 2020).
Combining the functions of these networks, previous research,

and the findings found in this study, we speculated that the
cognitive impairment caused by T2DM may be mainly related
to the abnormal connectivity patterns between DMN and ECN,
FPN, or other resting state networks.

Another finding is that all discriminative connections for
three classifications are long-distance. It is in agreement with
the report of T2DM-CI (Liu et al., 2019). One possible reason is
that the impaired subregions are hub nodes in the brain network
and they mediate the long-distance connections between brain
modules (Crossley et al., 2014). The hubs are generally implicated
in different brain disorders. These long-distance connections
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FIGURE 8 | The ROC curve and confusion matrix obtained by fixed discriminative connections. (A) The ROC curves for three classifications; (B) The confusion
matrix of T2DM-CI versus HC; (C) The confusion matrix of T2DM-NC versus HC; (D) The confusion matrix of T2DM-CI versus T2DM-NC.

are functionally valuable for information integration and are
closely related with cognition (van den Heuvel et al., 2012;
Crossley et al., 2013).

The Methodology From Brain Regions to
Connections
Here we have proposed one way of identifying discriminative
connection for the diagnosis prediction of T2DM and T2DM-CI.
It belongs to the category of “From brain regions to connections”
and the measure of brain regions is ALFF. Our previous
study used prior knowledge to localize the etiological origin
of depression (lateral habenula, LHb), selected discriminate

connections linked with LHb, and realized an accurate prediction
of subclinical depression (Zhu et al., 2019). This method is also in
the category of “From brain regions to connections.” Moreover,
the measure of brain regions can be certainly expanded to other
fMRI measures, including regional homogeneity (ReHo) and
Voxel-mirrored Homotopic Connectivity (VMHC).

The identified Brainnetome subregions help narrow the search
range of discriminative connections. More importantly, the
impaired Brainnetome subregions will leave “ALFF memory” to
the discriminative connections so that the final classification has
used valuable information of both brain region and connections.
We observed that among 15 impaired subregions, 13 are
overlapped between T2DM-CI versus HC and T2DM-NC versus
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HC. However, no overlap exists between the six and seven
discriminative connections. This observation suggests that the
information of brain regions and connections are intrinsically
different and complementary.

Another category of identifying discriminative connections
is “Select connections from network directly.” The selection
method can be L1-SCCA, SLR, elastic net, and so on (Yahata
et al., 2016; Liu et al., 2019). These methods emphasize the
role of connections and believe the hypothesis of “the node is
determined by its connections.” The third category is “Select
brain regions and connections simultaneously.” The measures
of brain regions and connections are treated equally, and the
selection or reduction of measures rely on powerful machine
leaning algorithms or multiple variable analysis (Jin et al., 2020).

Less Is Better for Reliable Biomarkers
Over-fitting is one of the main issues for neuroimaging-based
classifiers of neurological disorders. We have 30135 connection
candidates (246∗245/2 = 30135), and more if necessary. However,
the sample size is only 92 in this study due to the difficulty of
recruiting patients. An effective way of identifying discriminative
features (or connections) is the key to generating better
predictive biomarkers.

Less is better for the reliable biomarkers. In this study,
single-digit brain functional connections have been identified
and enable prediction of T2DM and T2DM-IC. Specifically,
six, seven, and five dysfunctional connections can distinguish
between T2DM-CI and HC, T2DM-NC and HC, and T2DM-
CI and T2DM-NC, respectively. Each feature (or connection)
corresponds to 10 samples (patients) in a binary classifier (Gillies
et al., 2016). Fewer connections can alleviate the problem of over-
fitting and increase the generalizability of prediction models.
Fewer connections means that the etiological origin of T2DM
and T2DM-CI is more specific and potential intervention will be
targeted and precise.

It should be noted that our study aims to identify a
small number of dysfunctional brain connections as imaging
biomarkers distinguishing between T2DM-CI, T2DM-NC, and
HC. These identified dysfunctional brain connections may help
to understand the underlying neural mechanism of T2DM-
CI and even find targets of intervention. However, for real
clinical diagnosis and intervention, more studies are required.
For clinical diagnosis of T2DM-CI, a reasonable way might be
to conduct the cognitive assessment from the clinic at first to find
the high-risk group and then to do an fMRI scan.

Limitations and Future Directions
There are many limitations in the current study. The sample
size is still small, although the total number has reached 92.
Moreover, the generalizability of the classifier is not tested on an
independent validation cohort since all participants are recruited
from one single center. However, the results of this study have
confirmed the potential of functional connectivity patterns based
on ALFF results to predict cognitive impairment in T2DM
patients. In the future, more effective prediction models may be
obtained through larger sample data combined with data from
different sources.

In terms of the construction of the prediction model, for
the time being, only the combination of L1-SCCA and sparse
logistic regression are used to reduce the dimension of selected
features. In the future, we can use elastic net model, minimum-
redundancy maximum relevancy, recursive feature elimination,
and other feature selection and dimension reduction methods to
obtain a better classification model (Liu et al., 2019).

In this study, T2DM patients have been divided into
T2DM-CI and T2DM-NC according to neuropsychological tests.
However, because T2DM patients may suffer from diabetic
microangiopathy, diabetic retinopathy, and other complications,
these diseases may also affect ALFF and functional connectivity.
In future research, it may be necessary to consider the impact of
other T2DM complications and analyze the potential impact of
factors such as the course of T2DM patients and the degree of
cognitive impairment (Rosenberg et al., 2019).

Finally, this study mainly analyzed from the perspective of
brain functional connection network through fMRI data. In the
future research, we can combine more neuroimaging data to find
abnormalities caused by T2DM-induced cognitive impairment
from structural abnormalities as a comprehensive biomarker, so
as to make a more reliable analysis and diagnosis of the disease
(Woo et al., 2017; Jin et al., 2020).

CONCLUSION

In this study, via ALFF analysis and effective algorithms of
feature selection, single-digit dysfunctional brain connections
have been identified to predict T2DM and T2DM-induced CI.
Only using six, seven, and five discriminative connections,
the trained SVM models can realize the classification between
T2DM-CI and HC, T2DM-NC and HC, and T2DM-CI and
T2DM-NC, with an AUC of 0.912, 0.901, and 0.861, respectively.
The strength of identified connections were significantly
different among groups and correlated with cognitive assessment
(MoCA) score. The impaired Connectome subregions and
dysfunctional connections might serve as the imaging biomarkers
of T2DM-CI and as potential targets of intervention of
T2DM care. The developed method leaves "ALFF memory" to
the discriminative connections so that the final classification
has used valuable information from both brain regions and
connections, which can be expanded to studies of other
neurological disorders.
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