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Explainable artificial intelligence holds a great promise for neuroscience and plays an

important role in the hypothesis generation process. We follow-up a recent machine

learning-oriented study that constructed a deep convolutional neural network to

automatically identify biological sex from EEG recordings in healthy individuals and

highlighted the discriminative role of beta-band power. If generalizing, this finding would

be relevant not only theoretically by pointing to some specific neurobiological sexual

dimorphisms, but potentially also as a relevant confound in quantitative EEG diagnostic

practice. To put this finding to test, we assess whether the automatic identification of

biological sex generalizes to another dataset, particularly in the presence of a psychiatric

disease, by testing the hypothesis of higher beta power in women compared to men

on 134 patients suffering from Major Depressive Disorder. Moreover, we construct ROC

curves and compare the performance of the classifiers in determining sex both before and

after the antidepressant treatment. We replicate the observation of a significant difference

in beta-band power between men and women, providing classification accuracy of

nearly 77%. The difference was consistent across the majority of electrodes, however

multivariate classification models did not generally improve the performance. Similar

results were observed also after the antidepressant treatment (classification accuracy

above 70%), further supporting the robustness of the initial finding.

Keywords: explainable artificial intelligence, EEG, sexual dimorsphism, classification, machine learning, major

depressive disorder, biomarkers

1. INTRODUCTION

The use of machine learning (ML) in neuroscience has moved the field toward personalized
medicine (Sejnowski et al., 2014). Indeed, the potential of advanced machine learning
approaches, including deep learning algorithms, to construct complex predictive models is
substantial and widely acknowledged, as is evident from the rapid growth of neuroscientific
publications (Marblestone et al., 2016; Vogt, 2018; Glaser et al., 2019). The methods are applied
to a broad spectrum of tasks, including but not limited to automatic alignment of neuroimages,
segmentation and parcellation of the brain, improvement of the predictive performance of models,
or benchmarking simple models by capturing complex nonlinear relationships between measured
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variables (Jenkinson and Smith, 2001; Fischl et al., 2004; Glaser
et al., 2019). However, the rising complexity of the models
considerably decreases our understanding of the architecture
within, thus limiting the practical implementation of the
findings. This particular constraint led to a concept of
explainable neuroscience—shifting the focus purely from the
quality of prediction to the data-driven hypothesis generation
and ML inference (Samek et al., 2017; Vu et al., 2018). The
framework outlines the use of ML in neuroscience, promising
the potential to generate models unifying brain function
and behavior, emphasizing interpretability and generalizability.
An important part of this framework is the development
of novel biomarkers (Woo et al., 2017; Langlotz et al.,
2019). A biomarker is a characteristic that is objectively
measured and evaluated as an indicator of normal biologic
processes, pathogenic processes, or pharmacologic responses to
a therapeutic intervention (De Gruttola et al., 2001). Biomarkers
thus carry a considerable power to discriminate between groups
they are derived from.

In 2018, van Putten et al. constructed a deep convolutional
neural network to predict biological sex, analyzing 1,308 clinical
EEG recordings of healthy patients, with the reported accuracy
of 81% (van Putten et al., 2018). To provide more insight,
on top of the classification itself, the authors performed a
visualization and analysis of the filters of all six convolutional
layers of the network, discovering that the algorithm classified
preferably using the beta-band-derived features. In a subsequent
step, they performed multivariate logistic regression using only
the beta power from all channels and reached the accuracy
of 70%. To the best of our knowledge, the report of Putten
et al. remains the only successful attempt to automatically
discriminate biological sex from clinical quality EEG data. As
the poor reproducibility and generalizability of ML models
have been denoted as the most significant pitfalls of machine
learning (Sejnowski et al., 2014; Carlson et al., 2018), we decided
to follow-up these findings by validation on an independent
dataset. Moreover, if the beta activity is in fact a biomarker
of biological sex, one may expect this difference to hold also
in patients with neurological or psychiatric disorder. While
of course, the prediction of biological sex from EEG is per
se not a very efficient tool, if reproducible, it would point
to potentially relevant biological sex-related differences in the
processes generating the EEG signal, and understanding the
existence of sex-related differences in EEG would be important
for the practice of quantitative EEG assessment in both research
and clinical practice.

We consequently decided to examine this finding on patients
suffering from Major Depressive Disorder (MDD). MDD is a
psychiatric condition that has been known for the alteration
of the wake as well as sleep EEG patterns (Thibodeau et al.,
2006; Olbrich et al., 2015). The alterations of EEG in MDD
are comprehensively summarized by Olbrich et al. (2015), and
include relatively inconsistent reports of the presence of alpha
asymmetry, elevated absolute and relative alpha activity, and
further changes in the slow-wave activity.While the EEG changes
in depression could in principle affect the accuracy of sex
classification, the reports of alteration of the beta activity are

relatively sparse, although some authors indicated increased beta
activity (Lieber and Prichep, 1988; Knott et al., 2001).

Broader research has been done on the identification of
EEG activity alterations following the MDD treatment. There is
evidence that antidepressant treatment changes the EEG patterns
to an extent, making the outcome of the treatment partially
predictable (Widge et al., 2018). As a change of pattern could
negatively affect the performance of a biomarker, we decided to
assess the performance of the beta-power independently for the
EEG data acquired before and after antidepressant treatment.

In this article, we present an independent validation of the
interpretable hypothesis formed by van Putten et al. (2018)
based on their deep network analysis of EEG data. Moreover,
we construct uni-variate and multivariate families of classifiers
based on the EEG beta-band power to assess the discriminative
power of beta-power in EEG as a sex biomarker in a sample of
MDD patients. In order to control for the effect of treatment,
we investigate the classification accuracy before and after
the intervention.

2. MATERIALS AND METHODS

2.1. Participants
A total of 144 participants with MDD were recruited. For
details of the sample and recruitment criteria, see previous full
reports of the clinical analysis (Bares et al., 2010, 2015a,b). The
patients received 4 weeks of antidepressant treatment based on
the decision of the psychiatrist. The distribution of treatments
in the study was as follows: serotonin-norepinephrine reuptake
inhibitors (53 patients); transcranial direct current stimulation
(21 patients); repetitive transcranial magnetic stimulation (16
patients); selective serotonin reuptake inhibitors (16 patients);
norepinephrine-dopamine reuptake inhibitors (11 patients); and
other treatment (17 patients). Upon the initial preprocessing,
we excluded 10 patients due to the technical difficulties with
the EEG recordings, namely in six subjects the recordings were
distorted and not readable, in four subjects, the recordings of
three or more channels were silent. This resulted in the dataset
consisting of 134 patients (93 women) with the mean age of 46
years (std = 11.7; min = 18; max = 65). Every participant was
recorded twice, before and after the treatment. Prior to the study,
the patients were informed about the design of the study, and
each participant provided his/her informed consent. The study
was approved by the ethical committee of the Prague Psychiatric
Centre/National Institute of Mental Health. The design and all
procedures adhered to the latest version of the Declaration of
Helsinki and ICH/Good Clinical Practice guidelines.

2.2. EEG Recordings
We worked with 19 standard electrode positions that were
common in all patients (while discarding from analysis any
additional contacts available only in a subset of patients): Fp1,
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz,
and Pz. The EEG was recorded for 10 min in a sound attenuated
room with subdued lighting, with patients in a semirecumbent
position and eyes closed in a maximally alert state. During
the recording, the alertness was controlled. If the patterns of
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FIGURE 1 | The initial assessment of the beta-power difference between men and women. (A) Depicts the histogram of the mean beta power in men and women

before the antidepressant treatment and (B) after the treatment. (C) Shows the Bonferroni corrected p-values of the relative beta power differences across all

electrodes before and after the treatment.

FIGURE 2 | The ROC curves of one-dimensional logistic regression. Differences between men and women in the mean relative beta power; before as well as after the

treatment. (A) The model was fitted on the whole dataset using the mean relative beta power. The black pointers indicate the position on the ROC curve, for which the

overall accuracy is reported in Table 1. (B) The model was fitted 100-times on a random balanced subsample of 80 patients, and the resulting ROC-curves were

averaged.

drowsiness appeared in the EEG, the subjects were aroused by
acoustic stimuli.

2.3. Data Processing
We adopted the EEGLab MATLAB toolbox for data
processing. The cleaning process was inspired by the PREP
pipeline (Delorme and Makeig, 2004; Bigdely-Shamlo et al.,
2015). At first, the EEG was downsampled to 250 Hz. The initial
and last 30 s of the recording were removed. Subsequently,
the clean rawdata function was used. The function performs
multiple operations: (1) Removes channels that have been flat

for more than 5 s. (2) Applies a high-pass filter with 0.5 Hz
cutoff frequency (transition width of the IIR filter: 0.25, 0.75).
(3) Rejects the channels that are correlated with the neighboring
channels less than a threshold (correlation threshold = 0.75).
(4) Removes the bursts via Artifact Subspace Reconstruction—
applies PCA decomposition to the channels in sliding window
and rejects and reconstructs the components for which the
standard deviation differs from the most representative part
of the signal. The standard deviation threshold was set at
5 (Mullen et al., 2013; Plechawska-Wojcik et al., 2018). (5)
Removes the unrepaired windows—a sliding window of 1 s and
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Bučková et al. Predicting Sex From EEG

66% overlap deletes the windows that contain more than four
“bad channels.” The removed channels were interpolated using
spherical interpolation. Finally, the data were re-referenced to
average reference and a low-pass FIR filter was applied with a
40 Hz threshold. For each channel, the relative β band power
was computed by dividing the power in the β frequency range
[12–25 Hz] by the sum of the power in the four key frequency
bands used in the original study (δ [0.5–4 Hz], θ [4–8 Hz], α

[8–12 Hz], and β [12–25 Hz]).

2.4. Data Analysis
In order to test the presence of global beta power differences,
we conducted a non-parametric Wilcoxon two-sample test
on the mean relative beta-band power (i.e., averaged across
all electrodes). We subsequently repeated the test to assess
the differences in each individual electrode and corrected
for multiple testing using Bonferroni correction. To assess
the classification power of the mean relative beta power, we
performed logistic regression on this feature and constructed
the Receiver Operator Characteristic (ROC) curve. To rule out
any potential bias due to the inequality of the sex ratio in
our data (although plain logistic regression is generally robust
again this), for all main analyses conducted in this study,
we constructed additional models adhering to the following
approach: (1) Randomly sample 40 males and 40 females. (2)
Perform the logistic regression. (3) Construct the ROC curve. (4)
Repeat the subsampling 100-times. As a result of this approach,
we present the mean ROC curve over all the iterations.

As a further step toward potentially optimized classifier,
multivariate logistic regression was applied in order to take
advantage of the additional information that may have been
present across the channels but could have been suppressed by
using the average in the initial task. As in the univariate analysis,
we constructed a full model including the relative beta power of
all 19 channels and a separate averaged model for the sex-ratio
balanced data. In order to evaluate and minimize the possibility
of overfitting, the same procedure was repeated while applying a
leave-one-out validation scheme.

We report the Area Under the Curve (AUC) and the highest
overall accuracy across all thresholds that provided true positive
rate above and false positive rate beneath 50%. The true and false
positive rates are reported with respect to the prediction of the
minor class in the data—men.

Moreover, for additional validation, the computations were
performed twice, once for the data acquired before and once
after the antidepressant treatment. All statistical analyses were
run using Matlab (MATLAB, 2018).

3. RESULTS

The initial test of the global differences between men and women
in relative beta power showed a significantly higher relative beta
power in women both before as well as after the antidepressant
treatment (p < 0.001). The difference was apparent across all 19
electrodes when investigating the individual channels (Figure 1).

The use of one-dimensional logistic regression allowed
powerful statistical evaluation of the full dataset without

TABLE 1 | Main results of the fitted models: In non-balanced models, the overall

accuracy is reported as the highest accuracy reached (assessed across all

thresholds providing true positive rate above 50% and false positive rate below

50%); for the position of the points on the ROC curves see Figures 2, 3.

Area under

the curve

Overall accuracy for

the chosen threshold

Before After Before (%) After (%)

Mean across the channels 0.7246 0.7425 76.87 70.15

Mean across the channels; balanced 0.7257 0.7257 69.14 72.01

All channels 0.8146 0.8652 77.61 79.85

All channels; balanced 0.8542 0.8941 79.09 83.45

All channels; leave-one-out 0.6420 0.7236 66.42 68.66

All channels; balanced; leave-one-out 0.5942 0.6481 61.47 66.55

For balanced models, the average of overall accuracies across 100 subsamples

is reported.

undergoing the risk of overfitting. The mean beta power feature
generates the ROC curve with the AUC of 0.72 and 0.74 for
the model before and after the treatment, respectively (Figure 2,
Table 1). The highest accuracy (across thresholds for which the
true positive rate was above and false positive rate beneath 50%)
was 77 and 70% for the treatment before and after, respectively.

The adoption of multivariate logistic models did not
provide higher accuracy. Furthermore, the resulting AUC and
accuracy substantially decreased after applying the leave-one-
out validation, showing that the concern of overfitting was
justified. Figure 3A shows the overfitted models where all data
were used in order to build the model. In both cases (before
and after the treatment), the AUC is above 0.8. However, after
applying the out-of-sample prediction (Figure 3C), the AUC
decreased to 0.64 and 0.72 for the results before and after the
treatment, respectively, which is inferior to the initial grandmean
approach. The subsampling procedure showed that the results on
the whole dataset are not systematically biased by the majority
class (Figures 3B,D).

4. DISCUSSION

Most authors agree that the ML approach to neuroscience has
potential to bring substantial advances to the field (Sejnowski
et al., 2014; Samek et al., 2017; Vogt, 2018; Langlotz et al.,
2019). Nevertheless, it has been rightly pointed out that the
problematic reproducibility and interpretability of results limits
their practical use (Carlson et al., 2018). Indeed, searching
within black boxes allows us to identify features with high
classification or prediction potential, but our understanding of
them is limited, unless they are used in simpler, hypothesis-
drivenmodels (Glaser et al., 2019). Such simpler models are more
comprehensible and often more neuroscientifically valid (Woo
et al., 2017). Although inferior in accuracy, they tend to be
more robust, as they are less prone to overfitting due to the
lower dimensionality (Whelan and Garavan, 2014). To ensure
the validity of simpler models, we need to conduct confirmatory
studies that would investigate the findings reported by the ML on
independent data (Yahata et al., 2017).
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FIGURE 3 | The ROC curves of multivariate logistic regression. Differences between men and women in relative beta power across electrodes; before as well as after

the treatment. (A) The model was fitted on the whole dataset using the relative beta power across all 19 electrodes. (B) The model was fitted 100-times on a balanced

random subset of 80 patients, and the resulting ROC-curves were averaged. (C) The model was fitted and evaluated using leave-one-out validation scheme. (D) The

average of ROC created by using random sex-balanced subsets of the data and using leave-one-out scheme in fitting and evaluating the logistic regression. The

black pointers in (A,C) indicate the position on the ROC curve, for which the overall accuracy is reported in the Table 1.

In this study, we used the conclusions drawn by van Putten
et al. (2018) from a deep learning study in a large sample
of EEG data and decided to test for the relative beta-band
power classification property with respect to biological sex.
Working with the pre-defined hypothesis, we addressed two
issues associated with the definition of biomarkers, namely
testing the results on an independent dataset and examining
the robustness of the biomarker even in the presence of a
psychiatric disease.

In the statistical analysis, we focused solely on the
confirmation of presence of the difference in the specific
feature of relative beta-band power between men and women.
This approach allowed us to minimize the amount of statistical
testing, thus decreasing the probability of the occurrence of
false positive findings. For this purpose, we have selected the
logistic regression model as it is the model used in the original
paper. The models containing only the mean relative beta-band
power provided AUC above 0.72 and accuracy above 70% both
before and after the treatment. Enhancing the models by using
the relative beta-band powers from all individual channels did
not significantly improve the diagnostic accuracy. In fact, due to
the necessity to control for overfitting by out-of-sample testing,
the resulting multivariate models gained complexity without
significantly improving the predictions. Note that the AUC of
the model using the mean beta power across channels is not
prone to overfitting, as the only free parameter corresponds

to the threshold that is varied across to provide the summary
AUC measure.

Concerning the classification accuracy, only the maximum
across a range of thresholds is reported, while in practice a
specific working point is to be selected. However, the precise
accuracy reached is meant to illustrate the strength of the
differences rather than to aim toward devising a tool for
diagnosing biological sex based on EEG. Rather, it suggests a
substantial quantitative difference in the EEG signals between
sexes that could point to some underlying differences in cognitive
neurodynamics (see van Putten et al., 2018 for discussion of beta
band differences to cognitive and emotional processing), or at
the very least inform the EEG analysis practice of a potential
confound of inter-subject analysis. Last but not least, it provides a
proof of principle and a springboard for classification of clinically
more relevant differences in EEG.

An interesting issue is that of using the multivariate or
univariate model. In general, the accuracy reached by our
one-dimensional model was consistent with the 70% accuracy
reported by van Putten. Note that we have used the same
definition of beta band as the authors of the original study (12–
25 Hz), however, we decided to use relative spectral power that
should be robust with respect to interindividual and inter-session
variability in the signal amplitude. To assess the robustness of
the result, we also computed the logistic regression model on
the averaged absolute beta power, which resulted in just a slight
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decrease in the overall accuracy of the classifier: 68 and 66% for
the conditions before and after the treatment, respectively.

In principle, the multivariate model can potentially more
sensitively fit more complex, spatially dependent patterns of
sexual dimorphism. On the other side, it is more prone to
overfitting. The observed accuracy of the multivariate model is
thus higher than for the univariate model, reaching up to 84%
accuracy. On the other side, with a proper leave-one-out cross-
validation, the accuracy falls to 61–69%. While in general the
performance is thus comparable to that reported in the original
work by van Putten et al. (2018), our results suggest that the use
of simpler and more robust univariate model based on the single
feature of mean relative beta power is more accurate.

Of course, steps could be taken to improve multivariate
models’ accuracy, such as using dimensionality reduction
methods or changing the modeling strategy to algorithms more
suitable for high-dimensional data. In the case of dimensionality
reduction, a prior decision on the method and number of
variables that ought to be present in the model is necessary.
Furthermore, the method must be implemented correctly inside
the cross-validation cycle to avoid double-dipping and prevent
overoptimistic results (Maggipinto et al., 2017). To assess the
role of the potential advantage of dimensionality reduction
methods, we implemented a non-parametric Mann–Whitney
test into leave-one-out cross-validation and compared maximum
accuracy reached across the number of channels used in
the model (the full results on all models are available in
Supplementary Table 1). Overall, the condition of Bonferroni
significance was not restrictive enough, due to the widespread
differences between males and females (see Figure 1), which
resulted in the accuracy inferior to the one-dimensional mean
of all features. However, the reduction of the number of
variables to four or less improved the performance and
for the unbalanced dataset even marginally outperformed
the one-dimensional mean model. Additionally, the support
vector machines algorithm was used in order to compare the
performance of full multivariate logistic regression models.
Again, implemented in the cross-validation cycle, the support
vector machines outperformed the mean logistic regression
model on the data acquired after the treatment, but the
classification accuracy on the data before the treatment was
suboptimal, leading us to the conclusion that the logistic
regression, used in the original study, was a suitable method
to be used in our experiment setting. Of course, while our
results provided additional support concerning the validity of
the original hypothesis, further re-validation and generalization
using independent datasets from both clinical groups as
well as healthy subjects is warranted before widely utilized
in practice.

We did not identify differences in the classification accuracy
of the relative beta-band on data acquired before and after the
subjects were given antidepressant treatment. In fact, the relative
beta powers before and after the therapeutic intervention did not
systematically change (paired t-test: p = 0.1997), and moreover
they were significantly correlated across subjects both in the
mean (r = 0.8824, p < 0.001) as well as for all channels (mean
correlation = 0.7798, std. = 0.1018), supporting the existence of
individually specific EEG signatures. Additionally, over a half of

the patients that were incorrectly classified before the treatment,
were also misclassified based on the data after the treatment
(19 out of 31). Our observation of a negligible effect of the
antidepressant treatment on beta power is in line with the current
literature. Wade and Iosifescu (2016) described over 45 articles
that derived quantitative EEG features in order to predict the
depression treatment outcome. The most prevalent band-specific
features were alpha-band activity, frontal theta activity, and theta
cordance, whereas only one study reported decreased pre-frontal
delta and beta cordance in non-responders (Arns et al., 2012),
which indicates that this band is not affected by treatment and
thus does not play a role in treatment outcome prediction.
Furthermore, to rule out any possible confounding effect of the
different treatments on the relative beta power, we have tested for
differences between groups using two-way ANOVA (accounting
for sex and group and controlled for age) and observed no effect
of group, both prior (p= 0.53) and after (p= 0.62) the treatment.

To summarize, in agreement with the explainable
neuroscience framework, we followed-up a previous deep-
learning EEG study by testing for the presence of the inferred
significant differences in the relative EEG beta-band power
between men and women in an independent dataset. In order
to test for the validity of this potential biomarker, we cautiously
employed robust statistical approaches, which supported our
hypothesis and provided classification accuracy of up to 77% in
one-dimensional models. This illustrates the utility of explainable
artificial intelligence approaches and independently supports a
recent result concerning sexual dimorphism of EEG signals.
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