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This work presents the design, implementation, and evaluation of a P300-based

brain-machine interface (BMI) developed to control a robotic hand-orthosis. The purpose

of this system is to assist patients with amyotrophic lateral sclerosis (ALS) who cannot

open and close their hands by themselves. The user of this interface can select one

of six targets, which represent the flexion-extension of one finger independently or the

movement of the five fingers simultaneously. We tested offline and online our BMI on

eighteen healthy subjects (HS) and eight ALS patients. In the offline test, we used the

calibration data of each participant recorded in the experimental sessions to estimate

the accuracy of the BMI to classify correctly single epochs as target or non-target

trials. On average, the system accuracy was 78.7% for target epochs and 85.7% for

non-target trials. Additionally, we observed significant P300 responses in the calibration

recordings of all the participants, including the ALS patients. For the BMI online test,

each subject performed from 6 to 36 attempts of target selections using the interface. In

this case, around 46% of the participants obtained 100% of accuracy, and the average

online accuracy was 89.83%. The maximum information transfer rate (ITR) observed in

the experiments was 52.83 bit/min, whereas that the average ITR was 18.13 bit/min.

The contributions of this work are the following. First, we report the development and

evaluation of a mind-controlled robotic hand-orthosis for patients with ALS. To our

knowledge, this BMI is one of the first P300-based assistive robotic devices with multiple

targets evaluated on people with ALS. Second, we provide a database with calibration

data and online EEG recordings obtained in the evaluation of our BMI. This data is

useful to develop and compare other BMI systems and test the processing pipelines

of similar applications.

Keywords: brain-machine interface, electroencephalography, evoked potentials, P300, amyotrophic lateral

sclerosis, signal processing, artificial intelligence, hand-orthosis

1. INTRODUCTION

Since the early developments of BMIs, one of the most promising applications of this technology
is the use of neuroprosthetic devices to assist people with reduced mobility. There is a consensus
among researchers of this area that BMIs may significantly improve the lives of patients who suffer
neuromuscular disorders such as ALS. Even so, despite all the efforts in the last three decades to
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design and implement reliable BMI systems, the goal of
developing functional neuroprostheses has not been reached
yet. Researchers and engineers must solve many technical and
practical problems before bringing this technology into everyday
life. Some open issues concerning the development of robust
brain-controlled applications are the ability of the system to
interpret the user’s intentions accurately, the time to process and
analyze brain signals, and the stability of performance over time
(Murphy et al., 2016).

A BMI is a system that translates cerebral activity into
commands to communicate with an external device, bypassing
the normal neuromuscular pathways (Wolpaw et al., 2002; Aydin
et al., 2018). There are various techniques to register brain signals,
but the non-invasive neuroimage modality most widely used
in BMI applications is electroencephalography (EEG) because
of its high temporal resolution, low cost, and mobility (Flores
et al., 2018; Xiao et al., 2019). Among EEG-based BMIs, the
P300 paradigm is one of the most popular techniques for
building applications with multiple options because it allows
achieving high accuracies without the need for long calibration
sessions (Hwang et al., 2013; De Venuto et al., 2018). Compared
with other paradigms, P300-based BMIs have higher bit rates
than motor imagery interfaces, while the stimulation technique
for evoking P300 potentials is less visually fatiguing than the
method used to elicit steady-state visually evoked potentials
(Cattan et al., 2019).

The P300 signal is an event-related potential (ERP)
component observed in the electroencephalogram elicited
about 300 ms after the perception of an oddball or relevant
auditory, visual, or somatosensory stimulus (Cattan et al., 2019).
Typically, in a P300-based BMI, characters, syllables, or icons
presented on a computer screen flash randomly one at a time
while the user focuses attention on one particular graphical
element (target stimulus). Each flashing stimulus represents
an option, action, or command that the system can execute.
The user selects one option of the interface by counting or
performing a cognitive task every time the target stimulus is
highlighted. Because the target option flashes randomly, this
stimulus produces a P300 evoked potential synchronized with
the flickering event in the timeline. In this way, a P300-based
BMI identifies which option is evoking an ERP to decode the
user’s intentions and perform the desired action.

Numerous published works have reported examples of P300-
based BMIs for communication and control, including spellers
(Kleih et al., 2016; Poletti et al., 2016; Okahara et al., 2017; Flores
et al., 2018; Guy et al., 2018; Deligani et al., 2019; Shahriari
et al., 2019), authentication systems (Yu et al., 2016; Gondesen
et al., 2019), assistive robots (Arrichiello et al., 2017), smart
home environments (Achanccaray et al., 2017; Masud et al.,
2017; Aydin et al., 2018), neurogames (Venuto et al., 2016),
remote vehicles (De Venuto et al., 2017; Nurseitov et al., 2017),
wheelchairs (De Venuto et al., 2018), and robotic arms (Tang
et al., 2017; Garakani et al., 2019). Because the development of
assistive technologies for motor-impaired people is one of the
major purposes of BMI research, some groups have evaluated
similar applications in clinical environments on people with
neurological disorders or reduced mobility. Regarding medical

applications, we can find P300-based BMIs for ALS (Liberati
et al., 2015; Schettini et al., 2015; Poletti et al., 2016; Guy et al.,
2018; Deligani et al., 2019; Shahriari et al., 2019; McFarland,
2020), Alzheimer’s (Venuto et al., 2016), spinocerebellar ataxia
(Okahara et al., 2017), and post-stroke paralysis (Kleih et al.,
2016; Achanccaray et al., 2017; Flores et al., 2018). Recently,
P300-based BMIs have also been proposed for rehabilitation
contexts (Kleih et al., 2016), and diagnosis/evaluation purposes
(Poletti et al., 2016; Venuto et al., 2016; Deligani et al., 2019;
Shahriari et al., 2019).

Some studies have stated the benefits of orthoses for ALS
patients (Tanaka et al., 2013; Ivy et al., 2014); however, the
implementation of BMI-controlled robotic hand-orthoses for
this target population remains underexplored in comparison
to the application of these systems for other neuromotor
disorders. Moreover, most of the recent published BMIs for
ALS are designed for communication purposes (Vaughan, 2020).
Similarly, while the employment of BMI-controlled hand-
orthoses is well-known in other neuromotor conditions (e.g.,
stroke recovery), the effect of the use of these systems in ALS
patients remains poorly investigated. A critical step toward the
development of practical robotic neuroprostheses for people with
ALS is the evaluation of this technology in different scenarios. It is
essential to determine if ALS patients can operate this particular
mind-controlled application and evaluate the possible effect of a
hand-orthosis on the user’s experience and performance.

This work presents the development and evaluation of a
P300-based BMI coupled with a robotic hand-orthosis device.
The purpose of this system is to assist people with ALS to
perform movements of individual fingers of one hand, or more
complex tasks that involve a sequence of actions of one or more
fingers. Eighteen healthy participants and eight ALS patients
conducted an experiment in which they tested the proposed BMI
selecting a sequence of actions that the robotic hand-orthosis
executed. In the evaluation of this BMI, we considered six types
of operations: the flexion-extension of individual fingers, and the
flexion-extension of the five fingers simultaneously.

In the experiments, we recorded the data used in the training
phase of the BMI, and the EEG signals measured during the
online tests. The training data was used to evaluate offline
the performance of the classification model implemented in
the BMI to discriminate between target and non-target epochs.
Additionally, we analyzed the P300 responses of the participants
to determine if there are subjects without clear evoked potentials.
In the online tests, we calculated the classification accuracy and
the selection times of the BMI. It is important to say that some
selections were made without connecting the hand-orthosis to
the system to evaluate the effect of the robotic device in the online
accuracy of the BMI.

To our knowledge, our system is the first P300-based BMI
that allows ALS patients to perform sequences of movements of
individual or two or more digits simultaneously; it is important
to consider the advantage of our system to allow the individual
movement of the digits since ALS is associated with the
degeneration of the corticospinal tract (Sarica et al., 2017) that
allows to perform the fine finger motor tasks (Levine et al., 2012).
Besides, being a P300-based system, the calibration precises a
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FIGURE 1 | Hardware components of the BMI: (1) EEG recording system (EEG cap, active electrodes, and amplifier), (2) Hand of Hope orthosis, (3) monitor to display

the GUI, and (4) computer to process EEG signals, synchronize the stimuli, and send control commands. (A) System elements in direct contact with users. (B) Setup

of the BMI elements.

minimum time consuming calibration, reducing the fatigue of
patients in comparison with other systems.

Another contribution of this work is the dataset obtained
in the experimental sessions of the proposed BMI. This dataset
contains the training data and the online recordings of 26
participants. The calibration samples are useful to evaluate
different machine learning models of P300-based BMIs, whereas
the online signals can be used to test practical systems without the
need for real participants. The relevance of this database resides
in the importance of providing high-quality EEG observations
that represent both control and ALS groups. Any researcher may
evaluate other P300-based BMIs and verify if their proposals can
correctly identify the user’s intentions in online conditions.

The remainder of this paper is divided into three sections.
Section 2 describes the hardware and software components of
the mind-controlled hand-orthosis, and the experimental setup
under which we tested the BMI. Section 3 shows the results
obtained from the system evaluation, while section 4 discusses
the implications of the results and the conclusions derived from
this work.

2. MATERIALS AND METHODS

2.1. Brain-Machine Interface
The proposed system consists of a P300-based BMI coupled
with a Hand Of Hope robotic arm (Rehab-Robotics Company,
China). This hand-orthosis is a therapeutic device with five
DC linear motors designed initially for the rehabilitation of
post-stroke patients (Aggogeri et al., 2019). There is a detailed
description of the Hand of Hope and its functionality in Ho et al.
(2011). To communicate the orthosis with the BMI, we enabled
a wireless communication channel to send the position of each
motor during the execution of one movement or sequence of
movements. In this way, the user selects one action to perform
with the hand-orthosis using the P300-based interface.

Figure 1 sketches the components of the mind-controlled
hand-orthosis, and how the users interact with them. The main
hardware components of the interface are:

• An EEG recording system (a g.GAMMASYS active wet
electrode arrangement and a g.USBamp amplifier provided
by g.tec medical engineering GmbH, Austria). For this study,
the sampling rate was 256 Hz, and we used eight monopolar
electrodes, placed according to the 10–20 international system
at positions Fz, Cz, P3, Pz, P4, PO7, PO8, and Oz. The ground
electrode was located at AFz, and the reference electrode on
the right earlobe.

• A Hand of Hope robotic arm. The users can wear the robotic
device on any hand.

• A monitor that displays the graphical user interface (GUI) of
the BMI.

• A computer that processes the EEG signals, synchronizes the
stimulus presentation, and sends the control commands to the
hand-orthosis.

The software elements of this system, including the GUI, were
implemented in-house using C++.

The GUI of the BMI (shown in Figure 2) provides the
instructions to operate the system, presents the flashing elements,
and displays visual feedback. In this GUI, gray circles positioned
on a graphical illustration of the hand-orthosis represent the
available options (i.e., actions or movements of the robotic
device). Since the orthosis can be used on any hand, the GUI can
display the image of a left or right hand, according to the side
where the robotic device would be placed.

It is possible to program different movements or actions
for the hand-orthosis. The system can move each finger
independently or perform multiple movements at the same time.
For this study, we evaluated the BMI using six options: the
individual flexion-extension of each finger, and the simultaneous
flexion-extension of the five fingers. The five gray circles placed
over the fingers represent the individual movements, whereas the
circle over the palm corresponds to the hand opening and closing.

In this system, the stimulation method used to elicit evoked
responses is the dummy face pattern (Chen et al., 2015, 2016),
which consists of a yellow happy face icon that replaces for
a short time a gray circle selected randomly. In one flashing
cycle, the happy face icon is shown for 75 ms, and then all

Frontiers in Neuroscience | www.frontiersin.org 3 November 2020 | Volume 14 | Article 589659

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Delijorge et al. BMI for Hand-Orthosis Control

the gray circles appear for 75 ms (see Figure 3). The users
are instructed to choose freely one movement or action of the
robotic device by counting how many times the happy face is
displayed on the desired option. If the system detects a P300
response for one action, the flashing stops for 4 s, while the
hand-orthosis performs the corresponding movement. Then, the
interface restarts the random flashing and waits for another
evoked response. The same routine is repeated continuously
during the regular operation of the BMI.

The detection of evoked responses consists of a sequence
of processing steps necessary to extract relevant information
from the measured EEG signals. Figure 4 summarizes the

FIGURE 2 | View of the GUI. The screen shows six flashing gray circles

(possible options) placed over the image of a left or right hand wearing the

orthosis. The bar located at the lower part of the GUI presents the instructions

to operate the BMI and feedback.

different stages implemented in our BMI to analyze and classify
electrophysiological data. Firstly, when one option flashes, the
system extracts the EEG epoch (or trial) around this event and
applies some pre-processing and feature extraction techniques
on this data segment. Then, a classification model evaluates the
computed characteristics to obtain the label that represents the
class of the processed epoch (target or non-target). A third class
is also considered in this design (artifact) to indicate if a trial
is contaminated by noise or muscle artifacts. Finally, the BMI
processes this label to determine whether the flashing stimulus
is eliciting evoked responses. If there is a P300 evoked potential,
the BMI sends the respective control signals to the robotic device.
This processing pipeline is based on the classification approach
described in Mendoza-Montoya (2017).

The following describes the processing stages of the BMI, and
the component of the interface that interacts with the robotic
device. Also, we present the calibration routine implemented to
train the system.

2.1.1. EEG Pre-processing
In the pre-processing stage, the BMI extracts three band-limited
components using FIR filters with cut-off frequencies between 4
and 14, 20–40, and 4–40 Hz. Then, when one flashing occurs, the
samples around the time-window of the event are separated so
that the epoched signals contain 800ms of post-stimulus samples,
starting from the stimulus onset. The result of this processing
step are signals X4−14 =

[
x4−14
e (t)

]
∈ R

ne×nt , X20−40 =[
x20−40
e (t)

]
∈ R

ne×nt , and X4−40 =
[
x4−40
e (t)

]
∈ R

ne×nt ,
where e represents the electrode position (e = 1, 2, 3, . . . , ne),
ne is the number of electrodes or channels, t is the time index
(t = 1, 2, 3, . . . , nt), and nt is the number of samples.

The next step is the epoch validation, which is necessary to
determine if the EEG trial is not contaminated bymuscle artifacts
or other sources of noise. Here, the BMI calculates the peak-to-
peak voltage v

pp
e , the standard deviation σe, and the power ratio

re of each channel as follows:

FIGURE 3 | Representation of the dummy face pattern method for visual stimulation. The visual stimulus remain active during 75 ms on one option selected randomly

(A). Between each stimulus, there is a period of 75 ms where all circles remain gray colored (B).
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FIGURE 4 | Processing stages of the BMI. Once acquired the EEG signals, they go through the pre-processing, feature extraction, and classification stages. Based

on the results of the classifier, the interface controller synchronizes the visual stimuli and sends control commands via WiFi to the orthosis. If the BMI detects a target

option, the GUI provides visual feedback to the user, and the orthosis provides tactile feedback.

v
pp
e = maxt

(
x4−40
e (t)

)
−mint

(
x4−40
e (t)

)
, (1)

σe =

√
1

nt − 1

∑nt

t=1

(
x4−40
e (t)− µe

)2
, (2)

re =

∑nt
t=1

(
x20−40
e (t)

)2
∑nt

t=1

(
x4−40
e (t)

)2 , (3)

where

µe =
1

nt

nt∑

t=1

x4−40
e (t). (4)

The system classifies as “artifact” any epoch with one or more
channels for which v

pp
e > 200 µV, σe > 50 µV, or re > 0.7.

In this case, the trial is not processed and evaluated by the
machine learning model of the BMI. On the other hand, if the
epoch passes the validation, i.e., the calculated metrics for all
channels are below the threshold levels, the system downsamples
X4−14 using a decimation factor of four to obtain signal Y =[
ye (t)

]
∈ R

ne×n̂t , where n̂t is the number of time points after
the downsampling.

2.1.2. Feature Extraction
The system implements an algorithm of spatial filtering based
on canonical correlation analysis (CCA) for feature extraction.
This approach is effective in reducing the data dimensionality
and increasing the classification accuracy (Spüler et al., 2014;
Mendoza-Montoya, 2017). Spatial filtering is a technique that
finds linear combinations or projections of a set of signals in

such a way that the new signals in the projected space have better
separability between classes or another improved property. Given
column vector w = [we] ∈ R

ne with ne spatial weights, the
projected signal ỹ (t) is obtained as follows:

ỹ (t) =

ne∑

e=1

weye(t). (5)

In our BMI, the spatial weights increases the correlation between
epochs of the target option and the expected ERP response of
this class. Let Y target =

{
Y1,Y2,Y3, . . . ,Yntarget

}
be a set with

ntarget pre-processed observations free of artifacts of the target
class obtained from raw calibration data (Yk =

[
ye,k (t)

]
∈

R
ne×n̂t ). The average ERP waveform Y

target
∈ R

ne×n̂t of these
observations is:

y
target
e (t) =

1

ntarget

ntarget∑

k=1

ye,k (t). (6)

The training epochs of the target class and their average
ERP waveform are concatenated to build matrices U =

[Y1,Y2, . . . ,Yntarget ]
T and V = [Y

target
,Y

target
, . . . ,Y

target
]T of

dimensions
(
n̂t · ntarget

)
× ne, where T denotes transpose. CCA

is applied to calculate vectors w and w̃ that maximize the
correlation between Uw and Vw̃. Here, the system uses w as
spatial filter to transform the pre-processed epoch.

Because CCA produces ne spatial filters, the system selects the
best nw projections which correspond to the highest correlation

Frontiers in Neuroscience | www.frontiersin.org 5 November 2020 | Volume 14 | Article 589659

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Delijorge et al. BMI for Hand-Orthosis Control

values (1 6 nw 6 ne). To evaluate the system performance, we
set nw = 4. In this way, after the spatial filtering, the BMI obtains
the projected signal Ỹ ∈ R

nw×n̂t .

2.1.3. Classification
To classify one flashing event, the machine learning model of
the BMI evaluates the corresponding signal Ỹ and returns a
label or category L ∈

{
target, non-target

}
, indicating whether

the flickering option is a target stimulus. This operation is only
applied to trials free of noise or artifacts. For non-valid epochs,
the assigned label is “artifact.”

The system uses the regularized version of the linear
discriminant analysis (RLDA) (Lotte and Guan, 2009) to
distinguish between the target and non-target epochs. This binary
model has been employed previously to detect P300 potentials
(Zhumadilova et al., 2017) and classify other electrophysiological
responses (Cho et al., 2018). In this stage, the classifier evaluates

only a small subset Z =

{
z1, z2, . . . , znf

}
of nf features, selected

from the nw × n̂t spatially filtered variables (zi ∈
{
ỹe (t)

}
).

This dimensionality reduction is necessary to prevent over-
fitting and reduce the complexity of the machine learning model
(Tyagi and Nehra, 2017).

During the system calibration, the BMI chooses the
characteristics to evaluate in the classification stage using
the forward-backward stepwise (SW) method for variable
selection (James et al., 2015). This algorithm starts with an empty
classification model without variables and incorporates the one
that contributes best to the model performance according to
a scoring criterion. Then, the best feature that is not in the
model and improves the performance criterion significantly is
incorporated. If none of the candidate variables help to enhance
the classifier, the model is not modified. In the next step, the
variable that is in the model that may be excluded without
reducing the actual scoring significantly is removed. Again, the
feature set is not altered when it is not possible to discard one
feature without worsening the model. These steps are repeated
until no more changes in the feature set are possible. In this
framework, the features selection and the model training are
performed simultaneously.

2.1.4. Interface Controller
The label obtained in the classification stage might be used
directly to determine the action or movement to produce with
the robotic device. However, because the accuracy of the machine
learning model is typically below 90%, the risk of executing an
incorrect action is high. It is essential to consider that there is
only one target stimulus and multiple non-target options so that
before evaluating an epoch of the desired option, the model must
detect correctlymultiple instances of the non-target class. For this
reason, the system processes the history of labels to determine
if there is enough evidence that the user wants to select one
particular option.

The interface controller is the element of the BMI that receives
the labels of the flashing events and determines which action
must perform the hand-orthosis. Additionally, it generates the
control signals necessary to perform the selected movements or

actions and synchronizes the state of the GUI to produce visual
feedback. This component decides when the hand-orthosis must
be activated and which movement or sequence of movements it
must execute.

When the system processes one flashing event, the interface
controller evaluates the number of times that each option has
been classified as target and non-target responses. Only the
last ten flashing events of each flashing symbol free of artifacts
are considered in this counting. One option is selected if the
following conditions are satisfied:

• The corresponding gray circle of the analyzed option
has flashed at least five times (minimum number of
processed epochs).

• At least 70% of the flashing events of this option has been
classified as target stimuli (target class threshold).

• The responses of each of the other flashing circles have
been classified 60% of the time as non-target (non-target
class threshold).

If the controller detects a P300 response for one particular option,
the flashing sequence is interrupted, providing visual feedback
to the user about the selection. Subsequently, the hand-orthosis
executes the chosen routine, and the flashing sequence restarts
for another selection.

2.1.5. Calibration Routine
The operation of the BMI requires a set of spatial filters and a
classification model to process and evaluate the epochs of the
flashing events. To find these components, the system provides
a calibration routine in which the user focuses attention on
target options while the BMI records the subject’s brain signals.
This routine replicates the operational conditions of the BMI
without activating the hand-orthosis. It uses the same GUI with
six options, the stimulation method is the dummy face pattern,
and the happy face icon appears for 75 ms alternating with 75 ms
of no visual stimulus. Because the hand-orthosis is not necessary
to train the interface, this device is disabled, and the user is not
instructed to wear it.

The calibration routine is divided into eight training
sequences or runs. A run (shown in Figure 5) starts with a
fixation cross to indicate that a training sequence has begun.
Then, the interface presents a target option (selected randomly
by the interface), followed by short preparation time. Next, the
options flash randomly one after another for 30 s. Here, the
user must count mentally how many times the happy smile icon
appears on the specified target option. Finally, the user rests for a
few seconds before the next run. At the end, the training dataset
contains 264 epochs of the target class and 1,320 trials of the
non-target class.

After completing the calibration routine, the system processes
and validates the dataset to train the machine learning model
of the BMI (see Figure 6). Firstly, the system pre-processes the
complete dataset to obtain downsampled epochs free of artifacts
of both classes. Next, the spatial filters are calculated using the
set of observations of the target class. Then, the calculated filters
are applied to the extracted epochs of both classes. Finally, the
spatially filtered observations are used to find the optimal subset
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FIGURE 5 | Steps of a single training sequence (training run). The complete calibration consists of eight runs and lasts 320 s. At the end of the calibration routine, the

training dataset contains 264 epochs of the target class and 1,320 trials of the non-target class.

FIGURE 6 | Processing stages for system calibration. The information contained in a calibration dataset is pre-processed and analyzed to obtain a set of spatial filters

and a classification model. These two components are necessary to operate the BMI and control the hand-orthosis.

of features of the classifier and the parameters of this model. Once
the classification model is trained, the BMI is ready to operate
online and send control commands to the hand-orthosis.

2.2. Participants
To evaluate the proposed mind-controlled hand-orthosis, we
conducted an experiment in which HS and people with ALS
tested the brain-machine interface. In this study, we included
eighteen healthy participants (10 females and eight males, aged
between 19 and 63 years old, mean age 32.7) and eight ALS
patients (three females and five males, aged between 49 and
72 years old, mean age 59.6), all with normal or corrected
vision. Table 1 shows the age range of each participant, and
the characteristics of the ALS patients. Study subjects had no
previous experience with any brain-machine interface.

ALS participants were selected from the patients attending
the TecSalud ALS Multidisciplinary Clinic (Martínez et al., 2020)
considering the disease duration and disability level as inclusion
criteria. According to this criterion, the eight participants had,
at the time of the tests, a disease duration from 2 to 3 years,
and a general disability level ranged from mild to moderate
(according to the ALSFRS-R scores). Both, HS and ALS groups
volunteered for the study and provided informed consent
before the experimental sessions. This study followed the ethical
principles of theWorldMedical Association (WMA) Declaration
of Helsinki (WMA, 2013).

2.3. Experimental Design
The experiments were carried out in a dedicated medical room
at Zambrano-Hellion Medical Center. HS and patients who
could walk without help or a wheelchair were asked to sit in
a comfortable chair approximately one meter apart from the
22 inch LCD monitor of the BMI. For patients that needed
assistance, the room space was adapted to accommodate a
wheelchair close to the robotic device in front of the monitor.

Before starting the experiments, participants were informed
about the general instructions of the different tasks and were
asked to avoid unnecessary movements when they had to focus
attention on the interface.

Figure 7 summarizes the different stages of one experimental
session. After placing the EEG cap and preparing the wet
electrodes, the experimenter instructed the participants to
calibrate the BMI and perform a short free validation. In this
test, subjects selected freely any option of the interface and
notified if the system detected the desired action correctly. The
purpose of the free selections was to obtain information about
the detection times and demonstrate the users that the BMI is
effectively responding to their intentions. Participants repeated at
least three times the free target selection before continuing with
the experiment.

In the next stages of the experiment (online tests), subjects
were indicated to focus attention on the specified target option
until the BMI recognized a P300 response for one of the flashing
elements. All online attempts (shown in Figure 8) are similar to
the calibration runs. The interface presented a fixation cross to
indicate the beginning of a test run, followed by the presentation
of the target option and preparation time. Then, the random
flashing started, and the BMI tried to recognize an evoked
response. If the system detected in <30 s the correct option,
the hand-orthosis performed the selected movement; otherwise,
nothing happened. Finally, there were 5 s of resting time before
starting another attempt.

Some online runs were performed with the robotic device
disabled. In these cases, subjects did not wear the hand-orthosis,
and the system did not send the control signals to the device.
Table 1 indicates the number of online attempts performed by
each participant with and without the Hand of Hope. In this way,
we collected three datasets for each participant, the calibration
data, the online test data without the robotic device, and the EEG
recordings with the hand-orthosis.
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TABLE 1 | Characteristics of the participants.

Target detection attempts

Subject Age range

(years)

Without

orthosis

With

orthosis

Total

HS1 21-25 12 18 30

HS2 61-65 18 18 36

HS3 21-25 12 18 30

HS4 16-20 12 12 24

HS5 16-20 12 12 24

HS6 51-55 18 18 36

HS7 46-50 12 12 24

HS8 51-55 18 18 36

HS9 26-30 18 12 30

HS10 26-30 12 12 24

HS11 21-25 18 18 36

HS12 61-65 18 18 36

HS13 16-20 18 6 24

HS14 16-20 18 18 36

HS15 21-25 18 18 36

HS16 26-30 18 12 30

HS17 21-25 18 18 36

HS18 21-25 18 6 24

ALSFRS-R Years from

symptoms

onset

Hand

motor

impairment

ALS1 46-50 0 12 12 44 2 mild

ALS2 56-60 0 12 12 35 2 moderate

ALS3 61-65 0 6 6 40 2 moderate

ALS4 56-60 0 12 12 33 2 advanced

ALS5 46-50 18 12 30 26 2 advanced

ALS6 71-75 18 18 36 35 2 moderate

ALS7 61-65 18 18 36 42 2 moderate

ALS8 61-65 12 12 24 39 3 moderate

This table specifies the age range of each participant and the number of online validation runs performed for each condition of orthosis usage. The column “Total” indicates the total

number of validation runs performed among both conditions. For patients, the last three columns indicate the ALS Functional Rating Scale Score (ALSFRS-R) score, the years from the

onset of the ALS symptoms, and the level of motor impairment of the hands measured as mild (no observable to sporadic symptoms), moderate (visible symptoms), or advanced (no

residual movement).

FIGURE 7 | Different stages of the experiment designed for evaluating the mind-controlled hand-orthosis. An experimental session started with the subject

preparation and system setup. Then, the participant trained the BMI and tested the interface freely. Finally, the experiment concluded with the online tests. A complete

experiment lasted approximately from 30 to 55min.

2.4. Data Analysis
2.4.1. ERP Analysis
The calibration data recorded in our experiments was used to
analyze the ERP responses of each participant. In this study, we
pre-processed and validated the training epochs of the target and
non-target classes to calculate the average waveforms of both

conditions. To determine the ERPs, we used the filtered signals
obtained with the bandpass filter of 4–40 Hz. We considered
200 ms of pre-stimulus samples and 800 ms of post-stimulus
time points.

Significant ERP peaks were identified through a statistical test
of the ERP amplitude at each time point and channel with the
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FIGURE 8 | Graphical representation of a single test run. During the random flashing, the BMI tried to detect an evoked potential while the participant focused

attention on the specified target option. If the system detected the correct option, the robotic device performed the selected action. If the target was not detected

within 30 s during the random flashing, the system went directly to the rest period before starting a new test run with the fixation cross.

corresponding probability density function (PDF) of the pre-
stimulus interval. We estimated the PDF of the pre-stimulus
segment of each channel with the non-parametric kernel density
estimation method (Bowman and Azzalini, 1997). The upper and
lower limits of the PDFs were then computed for a significance
level of α = 0.05, i.e., significant ERP responses are those for
which the probability values under the PDF of the corresponding
pre-stimulus are higher than 1− α/2 or smaller than α/2.

Significant ERP responses in the target class indicate that the
interface is eliciting evoked potentials when the subject perceives
a flashing event of a target option. On the other hand, it is
expected not to observe significant evoked potentials in the
non-target class because the subject is not attending these events.

2.4.2. Classification Model Evaluation
In this study, we evaluated the accuracy of the machine learning
model of the BMI for each subject by applying five-fold cross-
validation on the calibration data (Berrar, 2019). This method is
useful to estimate the prediction error and accuracy of a model
when the number of available observations is limited, and it is
not possible to split the complete dataset into training data and
test data. For this assessment, we report the accuracy acci of
each class i ∈

{
target, non-target

}
(the proportion of samples

of class i predicted in this class correctly), and the weighted
model accuracy accw = 0.5 × (acctarget + accnon-target). We
used the weighted accuracy because the training data sets are
highly unbalanced, and we want to avoid a bias toward the
non-target class.

Additionally, the significance levels of the model accuracies
were calculated with a permutation test (Good, 2006). In this
methodology, the null hypothesis indicates that observations of
both classes are exchangeable so that any random permutation of
the class labels produces similar accuracies to the obtained with
the non-permuted data. The alternative hypothesis is accepted
when the model accuracy is an extreme value in the empirical
distribution built with m random permutations. When the

alternative hypothesis is accepted, we can say that the cross-
validated accuracy is above the chance level.

2.4.3. Online Evaluation
We assessed the online BMI performance in terms of selection
accuracies, detection times and ITR. These parameters are
computed through Equations (7)–(9), where acconline is the online
accuracy, nsel is the number of correctly selected targets, natt is
the number of attempts to select a target or test runs, B is the
information-rate transmitted (bits), nc is the number of flashing
circles, and tavg is the average time from target indication to target
selection (detection time in seconds).

acc =
nsel

natt
× 100%. (7)

B = log2nc + (acc)(log2acc)+ (1− acc)log2
1− acc

nc − 1
. (8)

ITR = 60×
B

tavg
. (9)

3. RESULTS

3.1. ERP Responses
Figure 9 shows the results of the ERP analysis for one of the
healthy subjects (HS6) and one of the ALS patients (ALS2). This
analysis is presented for all channels separately for the target
and non-target conditions. For the two participants, significant
positive and negative peaks (p < 0.05, two-tail test) are observed
in the ERP for the target condition (top figures), while no
significant ERP peaks (p > 0.05, two-tail test) are observed in
the non-target condition (bottom figures).

For the healthy subject HS2, the ERP in the target condition
shows (i) a positive peak between 250 and 450 ms in all channels
(the P300 response), (ii) a negative peak between 450 and 550
ms in the frontal Fz and the central Cz channels (possibly a
late negativity), and (iii) an early negativity around 200 and 250
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FIGURE 9 | ERP responses for all channels for the target (upper panels) and non-target (bottom panels) conditions for (A) the healthy participant HS6 and (B) the

patient ALS2. Green and red areas in the ERP for the target condition are the positive and negative peaks that presented significant differences (p < 0.05, two tail test)

with the estimated PDF of the baseline period. No significant peaks are observed in the ERP for the non-target condition.

ms in the parieto-occipital (PO7 and PO8) and occipital (Oz)
channels. Note that none of these features are observed in the
non-target condition.

For the patient ALS2, the ERP in the target condition shows
(i) the positive peak representing the P300 response between 250
and 450 ms in the frontal Fz and the central Cz channels, and (ii)
an early negativity around 200 and 250 ms in the frontal and the
central (Fz and Cz), the parieto-occipital (PO7 and PO8) and the
occipital (Oz) channels. Note that these significant peaks are not
observed in the non-target condition.

Similar observations are also present in the rest of the
participants and indicate the existence of significant task-related
evoked activity that is used by the proposed BMI system to
recognize the stimulus the user is attending.

3.2. Classification Model Accuracy
Table 2 contains the classification accuracies estimated with five-
fold cross-validation for each participant. The mean accuracy for

the target class was 78.7%, for the non-target class was 85.7%, and
the weighted accuracy was 82.2%. Only the model performance
for two participants was below 70% (HS17 and ALS3), whereas
three participants obtained accuracies above 90% (HS6, HS7,
and HS10). The best classifier performance was 95.8%, and
the worst was 66.5%. All these results are similar to those
reported in other similar works (Wang and Chakraborty, 2017;
Won et al., 2018).

In the permutation tests, the classification accuracies for
all participants were significant (p < 0.001, 10,000 random
permutations). These results indicate that the machine learning
model implemented in our BMI can discriminate between EEG
epochs of the target and non-target classes. However, if we want
to avoid selection errors in the online operation, it is important to
consider amulti-trial strategy because the error rates are not zero.
For this reason, the interface controller processes consecutive
labels returned by the classification stage to determine the
desired option.
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TABLE 2 | Classification accuracies (%) estimated with cross-validation for the

target and non-target classes.

Subject Target Non-target Mean

HS1 76.1 85.1 80.6

HS2 76.2 85.3 80.8

HS3 85.3 90.4 87.8

HS4 81.4 88.6 85.0

HS5 78.7 85.3 82.0

HS6 93.3 98.4 95.8

HS7 90.5 95.2 92.8

HS8 86.3 90.5 88.4

HS9 83.8 87.9 85.9

HS10 87.0 94.4 90.7

HS11 77.2 85.5 81.4

HS12 75.7 81.3 78.5

HS13 72.5 78.9 75.7

HS14 87.2 91.2 89.2

HS15 71.9 79.4 75.7

HS16 73.7 80.4 77.1

HS17 61.6 76.1 68.9

HS18 71.2 81.5 76.3

ALS1 80.9 87.6 84.2

ALS2 71.5 76.3 73.9

ALS3 63.2 69.8 66.5

ALS4 79.5 86.7 83.1

ALS5 73.0 83.4 78.2

ALS6 86.5 91.5 89.0

ALS7 84.5 89.9 87.2

ALS8 77.8 86.5 82.2

Mean 78.7 85.7 82.2

Std 7.8 6.5 7.1

The fourth column indicates the model accuracy (mean value).

Finally, we performed a Wilcoxon rank sum test and no
significant differences were observed between the classification
accuracies of the HS group and the ALS group (p = 0.60). We
can say from this result that ALS participants can operate the BMI
just as HS would.

3.3. Online Performance and Detection
Times
Tables 3, 4 summarize the results obtained in the online
evaluation of the proposed BMI. The distribution of the
online accuracies, detection times, and ITRs are represented
in Figure 10. From these results, we can observe that around
46% of the participants achieved an accuracy of 100% in the
online tasks. The mean online accuracy was 89.83%, and only
three participants obtained accuracies below 75% (HS16, HS17,
and ALS5). We can say from this performance evaluation that
the implemented BMI decodes the user’s intentions effectively
in most cases, and users could manipulate the hand-orthosis
without much hassle in more complex tasks. However, it is

TABLE 3 | Online classification performance obtained in the evaluation of the

mind-controlled hand-orthosis.

Accuracy (%)

ID Without

orthosis

With

orthosis

Total

HS1 75.00 83.33 80.00

HS2 100.00 88.89 94.44

HS3 100.00 100.00 100.00

HS4 100.00 100.00 100.00

HS5 100.00 100.00 100.00

HS6 100.00 100.00 100.00

HS7 100.00 100.00 100.00

HS8 100.00 100.00 100.00

HS9 100.00 91.67 96.67

HS10 100.00 100.00 100.00

HS11 88.89 100.00 94.44

HS12 94.44 88.89 91.67

HS13 83.33 83.33 83.33

HS14 100.00 100.00 100.00

HS15 72.22 77.78 75.00

HS16 66.67 58.33 63.33

HS17 50.00 44.44 47.22

HS18 88.89 66.67 83.33

ALS1 NA 83.33 83.33

ALS2 NA 75.00 75.00

ALS3 NA 100.00 100.00

ALS4 NA 100.00 100.00

ALS5 77.78 66.67 73.33

ALS6 100.00 100.00 100.00

ALS7 100.00 88.89 94.44

ALS8 100.00 100.00 100.00

Mean 90.78 88.35 89.83

Std 14.12 15.38 13.87

Results are reported separately for each condition of orthosis usage (with or without

orthosis). The fourth column (total) includes the results for all the test runs regardless

of if the orthosis was used or not. NA indicates absence of validation runs under that

experimental condition. The last two rows show the mean and standard deviation (std) of

the accuracies.

essential to improve the system performance for those users who
can not achieve high detection rates.

One way to increase online accuracy is to modify the detection
criteria of the interface controller. The number of processed
epochs and thresholds for target and non-target classes determine
the balance between detection times and classification errors. For
instance, if we decrease the non-target class threshold, we can
reduce the number of online errors, but it is possible to see higher
detection times. Our BMI can customize these parameters for
each subject, but for this study, we used the same parameters for
all participants.

The average detection time observed in our experiments was
8.54 s, whereas the ITR was 18.13 bit/min. The best and worst
times were 2.98 and 13.15 s, and the minimum and maximum
ITRs were 2.19 and 52 bit/min. Other studies have reported
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TABLE 4 | Average detection times and ITRs obtained in the online evaluation of the proposed BMI.

ID Average selection time (s) ITR (bit/min)

Without

orthosis

With

orthosis

Total Without

orthosis

With

orthosis

Total

HS1 10.22 11.26 10.87 7.01 8.25 7.72

HS2 10.67 12.47 11.52 14.53 8.78 11.18

HS3 5.43 7.62 6.74 28.56 20.37 23.01

HS4 6.35 6.72 6.54 24.43 23.08 23.73

HS5 8.68 13.56 11.12 17.86 11.44 13.95

HS6 2.94 3.03 2.98 52.83 51.20 52.00

HS7 4.18 4.61 4.40 37.08 33.63 35.27

HS8 4.33 6.49 5.41 35.82 23.91 28.67

HS9 10.56 12.21 11.18 14.69 9.72 12.32

HS10 3.10 4.93 4.02 50.01 31.43 38.60

HS11 10.13 11.05 10.62 10.80 14.04 12.13

HS12 7.61 8.50 8.04 16.92 12.87 14.75

HS13 13.41 12.34 13.14 6.93 7.52 7.07

HS14 3.57 5.94 4.76 43.45 26.10 32.61

HS15 9.54 11.19 10.40 6.84 7.00 6.89

HS16 11.28 15.50 12.84 4.75 2.47 3.67

HS17 7.51 12.61 9.91 3.39 1.45 2.19

HS18 13.84 10.40 13.15 7.91 5.15 7.06

ALS1 NA 9.80 9.80 NA 9.48 9.48

ALS2 NA 8.72 8.72 NA 8.21 8.21

ALS3 NA 7.40 7.40 NA 20.96 20.96

ALS4 NA 10.12 10.12 NA 15.33 15.33

ALS5 9.56 14.83 11.47 8.19 3.61 5.91

ALS6 4.39 5.72 5.06 35.31 27.10 30.66

ALS7 4.84 7.19 5.94 32.05 15.23 21.67

ALS8 6.16 5.56 5.86 25.17 27.90 26.46

Mean 7.65 9.22 8.54 22.02 16.39 18.13

Std 3.26 3.30 3.03 15.34 11.69 12.50

NA indicates absence of validation runs under that experimental condition. The last two rows show the mean and standard deviation (std) of the detection times and ITRs.

FIGURE 10 | Boxplots of the (A) accuracy, (B) target detection time, and (C) ITR values of the BMI online test. N indicates the number of participants who performed

the experiment under each condition.
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similar results for P300-based BMIs. If we consider that the target
population of this technology is people with ALS, these response
times are acceptable for many applications such as spellers and
smart houses. In the case of a hand-orthosis, it is clear that
it is not possible to implement an active fine control for the
robotic device. However, users can select complete movements
or sequences of actions using our interface. For this reason,
we consider that the detection times and ITRs of our system
are suitable for the movements or actions contemplated in
our BMI.

Performing a Wilcoxon rank sum test to compare the HS
group and the ALS group, we do not observe significant
differences in any of the three performancemetrics studied in this
work. Online accuracies (p = 0.95), detection times (p = 0.52),
and ITRs (p = 0.93) are similar among groups; consequently, we
cannot say the BMI performance is significantly affected by the
disease, at least for the disability level of the participants included
in this study.

Finally, considering the 22 subjects who performed the
experiment without and with orthosis, we carried out a paired t-
test to analyze the differences in the system performance between
not wearing and wearing the hand-orthosis. While no significant
differences in accuracy were found between these two conditions
(t = 1.69, df = 21, p = 0.1), the study suggests a significant
impact on the detection times (t = −3.67, df = 21, p = 0.001)
and ITRs (t = 3.82, df = 21, p = 0.001) produced by the use
of the orthosis. These differences may be explained by induced
noise mixed with the EEG when the participant wears the hand-
orthosis. The linear motors and the power supply of the robotic
device produce noise components that can be observed in the
electroencephalogram. In this way, the system detects and rejects
contaminated epochs more often when the device is turned on
and in contact with the user’s skin, increasing the detection time.
Fortunately, the penalization in the system performance is only
1.57 s, which is not a problem in a P300-based BMI if we consider
the typical reaction times of these systems.

4. DISCUSSION

In this work, we presented the development and evaluation
of a P300-based BMI coupled with a robotic hand-orthosis.
With this system, ALS patients can manipulate each finger of
a hand mentally or perform a sequence of movements of one
or more fingers. Because the BMI uses the P300 paradigm, the
number of possible movements is not limited, and the BMI can
provide a range of options for different needs. Our system is
able to perform the thumb opposition movement or movements
with any combination of fingers, we can also configure the
orthosis to be initially closed and perform the extension-flexion
of the fingers, the initial position and angular range of the
movements of the orthosis can also be controlled, this allows
to adapt the system to the individual characteristics of the
users (e.g., spasticity, rigidity, level of hand motor impairment),
however, for this initial evaluation, we wanted to test the
general performance of the interface at the most individual
level (single finger movements) and with the most complex

movement (all fingers simultaneously), having a total of six
possible movements.

In the experiments conducted with HS and ALS patients, we
observed event-related activity for the target class in the EEG
recordings of all the participants. Additionally, the classification
accuracies estimated with cross-validation were above the chance
level for all subjects. Finally, in the online tests, both HS and
ALS participants were able to control the hand-orthosis with
the interface. Only three subjects obtained online accuracies
below 75%, and 46% of the study subjects completed all the
test runs without errors. These results indicate that our interface
can discriminate successfully between target and non-target
flashing events, and we can expect that most healthy people
and ALS patients with mild to moderate general disability levels
(according to the ALSFRS-R scale) are potential users of this
assistive technology. After the tests, the users were informally
asked about their experience; being the first experience of
the subjects with a BMI technology, most of them showed
amazement, many of them showed deeply interested and asked
about the details of operation and current state of this technology.
Some users reported mild eyestrain during the BMI training
stage, but all reported feeling physically comfortable during
the test.

In this kind of application, it is essential to achieve high
accuracies to avoid the user’s frustration and increase the chance
of acceptance of this technology for daily life use. Although most
of the participants obtained low error rates in the conducted
experiments, we must find strategies to improve the system
performance for users with low classification accuracies. As long
as the training data contains observable event-related activity for
the target class and the classification model accuracy is above the
chance level, we can modify the detection criteria implemented
in the interface controller to improve the online performance
and adapt the interface to the user’s needs. Another possibility
would be the modification of the stimulus presentation and
the graphical user interface. Some studies have suggested that
variations in the visual stimuli characteristics produce variations
in the ERPs waveforms, and thus an impact on the BMI
performance (Speier et al., 2017; Li et al., 2020).

To our knowledge, this is the first report of a non-invasive
P300-based system with multiple possible selections coupled
with a robotic hand-orthosis that has been tested with ALS
patients. Despite there are previous recent reports of P300-BMIs
to control hand-orthosis or artificial hands (Stan et al., 2015;
Syrov et al., 2019), these systems were tested only with healthy
people, and consider applications mainly for stroke survivors.
Stan et al. (2015) presented a system where a hand-orthosis
is controlled through a P300-based BMI; however, the system
contains only three possible selections (turn on, close, and open
orthosis) that allow the flexion-extension of the five fingers
simultaneously, while our system allows the passive flexion-
extension of a single finger at a time. The evaluation of these
fine motor movements is particularly important in ALS patients
since this disease is directly associated with the degeneration of
the corticospinal tract (Sarica et al., 2017), which is involved
in fine digital movements (Levine et al., 2012). Syrov et al.
(2019) developed a P300-BMI approach to control each finger of
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an wired, artificial phantom hand which does not perform the
passive flexion-extension of the users fingers. In their system,
the visual stimuli are shown through LEDs placed directly on
the fingers of the artificial hand; this configuration, in addition
to the absence of wireless communication to the robotic hand,
could bring additional difficulties to test the system with ALS
patients due to their motor limitations. On the other hand, Gull
et al. (2018) proposed a prototype intended to be used with ALS
patients that includes a BMI and a robotic glove to assist hand
grasping; nevertheless, the robotic glove (Nilsson et al., 2012)
covers only three fingers (thumb, middle, and ring), and the
implementation of the BMI paradigm, glove control, and clinical
tests were reported inconclusive.

The datasets of each participant collected in this study
are publicly available with the idea of contributing to
the development of new processing and classification
methods for BMI systems. The inclusion of datasets
of ALS participants increases the available information
containing EEG recordings for BMI purposes and
facilitates the improvement of BMI-based tools for patients.
Furthermore, the ERPs could be used to investigate
potential electrophysiological biomarkers of ALS (McCane
et al., 2015; Lange et al., 2016), which would help to
understanding the neurodegenerative mechanisms of
the disease.

In conclusion, the results presented in this work show the
capability of our mind-controlled hand-orthosis to be used with
no need of adaptations for ALS patients with moderate level
of disability. Future work will focus on increasing the sample
size of ALS users and investigating the effect of longitudinal
use of the system on patients. We will also modify the available
options of the interface to test more realistic scenarios. Our
system could represent the basis for developing more practical
tools, such as a portable orthosis that responds to other
biosignals in addition to the EEG and that is adaptable to
the degree of disability of the users. Our system could also
be modified to communicate with other wireless systems (e.g.,
smart homes).

For this initial evaluation, we tested our system’s effectiveness
and efficiency in terms of accuracy and ITR, respectively; for
our future work, we will adopt an user-centered design (UCD)
approach (Liberati et al., 2015; Schettini et al., 2015; Riccio
et al., 2016; Kübler et al., 2020) and include the evaluation of
satisfaction by consulting and registering the opinion of primary
(ALS patients) and secondary (caregivers) end-users through
formal interviews. Feedback from patients and their caregivers
will help to develop a more customizable system according to
the individual characteristics and needs of each user. The UCD
approach will also help us to properly identify and correct the
present limitations in order to improve the usability of our system
in daily life.
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