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Brain connectivity plays an important role in determining the brain region’s function.
Previous researchers proposed that the brain region’s function is characterized by
that region’s input and output connectivity profiles. Following this proposal, numerous
studies have investigated the relationship between connectivity and function. However,
this proposal only utilizes direct connectivity profiles and thus is deficient in explaining
individual differences in the brain region’s function. To overcome this problem, we
proposed that a brain region’s function is characterized by that region’s multi-hops
connectivity profile. To test this proposal, we used multi-hops functional connectivity
to predict the individual face activation of the right fusiform face area (rFFA) via a multi-
layer graph neural network and showed that the prediction performance is essentially
improved. Results also indicated that the two-layer graph neural network is the best
in characterizing rFFA’s face activation and revealed a hierarchical network for the face
processing of rFFA.

Keywords: multi-hops connectivity, graph neural network, individual prediction, connectivity–function
relationship, fusiform face function

INTRODUCTION

Brain connectivity acts as the pathway for transferring information between brain regions and
determines the information inflow and outflow of each cortical region. Passingham et al. (2002)
proposed that the function of each cortical region can be determined by the region’s input and
output connectivity profiles. Mars et al. (2018) further tested and extended this proposal via the
neuroimaging of connectivity, and showed that the connectivity space composed by each region’s
connectivity profiles provides a powerful framework in describing a brain region’s function.

The connectivity profile can be defined in terms of the white matter pathway represented by
tractography through diffusion magnetic resonance imaging (MRI), or in terms of the temporal
coupling between spontaneous fluctuations of resting-state functional MRI (rfMRI) signal. Under
the proposal of Passingham et al. (2002), previous studies have utilized structural connectivity
(Johansen-Berg et al., 2004; Tomassini et al., 2007; Beckmann et al., 2009; Saygin et al., 2011a)
or functional connectivity (Cohen et al., 2008; Gordon et al., 2016) to characterize the boundary
of functionally distinct brain regions, or have utilized structural connectivity (Saygin et al., 2011b;
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Osher et al., 2016; Saygin et al., 2016; Wu et al., 2020) or
functional connectivity (Tavor et al., 2016; Parker Jones et al.,
2017) to predict the functional activation information of brain
regions at various task states. Though the proposal that a
brain region’s function is represented by the input and output
connectivity profiles is widely adopted in various studies, this
proposal is deficient in characterizing the individual differences
of a target brain region’s function. Specifically, under this
proposal, a brain region’s function can be represented by a
linear combination of the region’s connectivity profiles. This
representation only utilizes direct connectivity profiles and
neglects the individual differences in the functional information
of neighboring regions. Since these individual differences in
neighboring regions can also transfer to the target brain region
via the direct connections, neglecting these individual differences
is not beneficial for characterizing target brain region’s function.

To overcome this problem, we proposed that more
connectivity features in the brain connectivity network should
be considered. Explicitly, as shown in Figure 1A, functional
information of the region of interest (ROI) is transferred from
1-hop regions (direct neighbors of the ROI) and the information
of 1-hop regions is unknown, however, the information of 1-hop
regions is transferred from 2-hop regions (direct neighbors
of 1-hop regions) through the connections of 1-hop regions.
Therefore, even though 2-hop regions do not connect to the
ROI directly, they can affect the ROI via 1-hop regions. Denote
the direct connections between the ROI and 1-hop regions
as the 1-hop connection. The indirect connections between
the ROI and 2-hop regions via 1-hop regions are defined as
2-hop connections. According to this logic, when the functional
information of all brain regions is unknown, n-hop regions
can affect the ROI indirectly and n-hop connections contain
functional information of the ROI. We then define the ensemble
of 1-hop and 2-hop connections as 2-hops connections. Using
these terms, the previous proposal (Passingham et al., 2002)
is formulated as that a brain region’s function is represented
by the 1-hop connectivity profiles. Separately, based on the
above analyses, we proposed that a brain region’s function is
represented by the multi-hops connectivity profiles.

To further test our proposal, we selected the right fusiform
face area (rFFA) as the ROI, given that this region is the
most selective one in the face processing network (Kanwisher
et al., 1997). It is advantageous to study individual differences
by choosing a region that has a specialized function and is
reliably replicated across studies and participants. We adopted
the FACES-SHAPES (emotion task) and FACE-AVG (working
memory task) contrasts in the human connectome project (HCP)
to define individual subject’s functional face activation, and
utilized the rfMRI data to construct individual brain functional
connectivity network. Inspired by the fact that computations in
the graph neural network are analogous to the propagation of
functional information in the brain connectivity network, we
designed a multi-layer graph neural network (Figure 1B). This
graph neural network is well suited for our proposal because it
includes both direct and indirect, single-step and multiple-step
connectivity features to characterize functional activation of the
ROI. Finally, we applied the graph neural network containing

the multi-hops functional connectivity to predict individual face
activation of the rFFA.

MATERIALS AND METHODS

Human Connectome Project Data
We used the minimally pre-processed data (Glasser et al., 2013)
provided by the HCP S1200 release. We selected all the 997
subjects that have the FACES-SHAPES (emotion task) and FACE-
AVG (working memory task, AVG represents the average of all
other conditions) contrasts, and resting-state fMRI acquisitions.

Task and resting-state fMRI data were projected onto 2 mm
standard CIFTI grayordinates space, and the multimodal surface
matching (MSM) algorithm (Robinson et al., 2014) based on
areal features (MSMAll) was used for accurate inter-subject
registration. Acquisition parameters and processing are described
in detail in several publications (Barch et al., 2013; Smith et al.,
2013). Briefly, resting and task fMRI scans were acquired at 2 mm
isotropic resolution, with a fast TR sampling rate at 0.72 s using
multiband pulse sequences (Ugurbil et al., 2013). Both sets of
functional data had already been registered to the MNI space
(Glasser et al., 2013). Each subject had four 15-min resting fMRI
runs, with a total of 1,200 time points per run. The resting fMRI
data were further pre-processed by ICA-FIX to automatically
remove the effect of structured artifacts (Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014).

Functional Connectivity Profile
We calculated functional connectivity based on the HCP-
MMP1.0 (Human Connectome Project Multi-Modal Parcellation
version 1.0) (Glasser et al., 2016) that contains 360 brain regions.
The functional connectivity was calculated from the resting
fMRI data. The four runs of individual resting-state time series
data were concatenated after being demeaned and variance-
normalized along the time axis. We did not apply global signal
regression before calculating the functional connectivity. The
averaged time series of each brain region was correlated with
the averaged time series of the remaining 359 brain regions.
The diagonal elements of the functional connectivity matrix
were set as ones.

The resulting functional connectivity matrix is dense as there
are many small values between brain regions. We did not set
any thresholds on the functional connectivity matrix, so as to
avoid additional arbitrary choice of parameters. Using a dense
network seems to indicate that all brain regions are 1-hop
regions and directly connect to the ROI. However, if one also
considers the strength factor, many 1-hop connections in the
dense network are weak and can be neglected, but the indirect
n-hop connections between corresponding regions can be strong.
One can understand Figure 1 under the view of connection
strength when using the functional connectivity network without
thresholds, i.e., each node integrates information from its
neighbors with different strengths. Therefore, using a dense
functional connectivity network does not harm the definitions
of n-hop regions and connections. The definitions of hop
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FIGURE 1 | Schematic illustration of the graph neural network. (A) Functional information of the ROI (blue node) is transferred from the 1-hop regions (orange nodes)
via the 1-hop connections (orange edges), and the functional information of the 1-hop regions is transferred from the 2-hop regions (green nodes) via 1-hop regions’
connections (green edges). The 2-hop regions indirectly connect to the ROI via 1-hop regions through the 2-hop connections (only four examples of gray dashed
edges are shown). The dashed line indicates that the connection does not really exist. (B) Node color represents the functional information of brain regions. Edge
width represents the strength of functional connectivity pathways. Edge color represents the coefficient of graph convolution (GC), i.e., the extent to which each
connection participates in the functional information propagation. Initial functional information (a vector of ones) transfers within the functional connectivity network
(FCN) through the graph convolution network. Coefficients of GC are trained by minimizing the error between the predicted output and true functional activation.
(C) Three examples of graph convolution computation are shown. Central nodes (blue) integrate functional information from 1-hop regions (orange) to update its
information. Graph convolution coefficients (edge color) indicate the extent to which each connection (edge width) participates in the functional information
propagation.

in Figure 1 still hold if taking the connection strength
into consideration.

Gaussian-Gamma Mixture Model for
Determining Activation Threshold
We calculated each brain region’s activation for each subject
by averaging all vertices’ activation within each brain region
of HCP-MMP1.0. To prevent some individual differences with
opposite signs from canceling with each other, we also calculated
each brain region’s mean absolute activation across subjects.
Then we used the Gaussian-Gamma mixture distribution
(Gorgolewski et al., 2012) to model the density distribution
of the mean absolute activation for the 360 brain regions.
The density distribution is modeled as a weighted sum of a
Gaussian distribution and a Gamma distribution. The Gaussian
distribution models the null distribution that represents the
noise, and the Gamma distribution models the activation
distribution. The mixture model is fitted using an expectation-
maximization algorithm. We set the activation threshold as the
point where the probability density of Gamma distribution is
higher than that of Gaussian distribution.

Graph Neural Network for Predicting
Functional Face Activation
Graph neural network is widely used to process data with
graph structures (Defferrard et al., 2016; Kipf and Welling, 2017;
Veličković et al., 2018). We developed a graph neural network

that is adapted to process brain connectivity network data
(Figure 1B). The graph convolution computation in Figure 1C
can be realized via a matrix multiplication. The graph neural
network with a single-layer can be represented in a matrix form
as follows:

Xk
n×1 =Wk

n×n � An×nXk−1
n×1 + Bkn×1 (1)

k represents the k-th layer of the network. n Represents the
number of nodes in the graph neural network, i.e., the number
of brain regions in the face processing network, and n equals 76
or 88 for the face processing network (see details in the section
“Functional face activation network selection”). X represents
the functional activation of each brain region and is a vector
with size 76 × 1 or 88 × 1. B represents the bias term of
the model. A represents the adjacency matrix composed of
functional connectivity with size 76 × 76 or 88 × 88. W has
the same size as A and represents the functional information
propagation coefficient of each functional connectivity pathway.
W exerts on A via the operation � that represents the element-
wise multiplication. The matrix W indicates the extent to which
each connectivity pathway in A involves in the propagation
and integration of brain activations. The model realizes the
propagation and integration of brain regions’ activations via
the matrix multiplication between W � A and X. Therefore,
the matrix W is not symmetrical, with the rows representing
integration of information from neighboring regions and
the columns representing propagation of information out to
neighboring regions. A multi-layer computation can be achieved
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by applying formula (1) repetitively. The number of parameters
in each layer is n× n (W) and n× 1 (B). When one trains a
multi-layer graph neural network, the vanishing gradient effect
usually occurs. Inspired by the residual neural network (He et al.,
2016), we added residual connections between neighboring layers
to formula (1) and the resulting model is:

Xk
n×1 =Wk

n×n � An×nXk−1
n×1 + Bkn×1 + Xk−1

n×1 (2)

To make the one-layer graph neural network model consistent
with the linear model adopted by previous studies, the brain
regions’ activation in the 0th layer is initialized as a vector of
all ones: X0

n×1 = [1, 1, . . . , 1]n×1. The actual activation is not
provided to the model and the initial activation X0

n×1 only
serves as a dummy input. The only information we provide
to the model is the functional connectivity network. From this
point, the previous studies viewed the functional information
of neighboring regions identically, but our study estimates the
individual differences in neighboring regions via the information
propagation in early layers of the multi-layer graph neural
network. The rFFA’s functional activation is directly read out from
Xk
n×1 in the final layer and is used as the final output of the model,

with rFFA being one of the n brain regions.
It is worth noting that model (2) does not involve non-

linear activation functions but is non-linear in the sense that the
functional connectivity network A occurs in every computation
layer. For instance, the X1

n×1 =W1
n×n � An×nX0

n×1 contains
linear features in A, but the X2

n×1 =W2
n×n � An×nX1

n×1 involves
the matrix multiplication between A and X1 and contains
second-order features in A. Therefore, the resulting multi-
layer model contains non-linear features in A that represent
functional information passing through multiple-step functional
connectivity pathways.

Multi-Hop Connections Represented in
the Graph Neural Network
In Figure 1A, direct neighbors of the ROI are defined as 1-hop
regions and the direct neighbors of 1-hop regions are defined as
2-hop regions relative to the ROI; 1-hops regions directly connect
to the ROI and can affect the ROI via 1-hop connections, and
2-hop regions do not directly connect to the ROI but can affect
1-hop regions via connections between 1-hop and 2-hop regions.
Therefore, 2-hop regions can indirectly affect the ROI via 1-hop
regions and these indirect effects are defined to transfer via 2-
hop connections. In the multi-layer graph neural network model
(Figure 1B), indirect effects transferred via 2-hop connections
are represented by the multiplication between 1-hop connections
and the connections between 1-hop and 2-hop regions. In
the graph convolution computation (Figure 1C) within each
layer, each region integrates functional information from 1-hop
regions. But in the consecutive propagation of information in an
n-layer graph neural network, the information of n-hop regions
can transfer to the ROI via n-hop connections. Even though
the model is still linear with respect to the initial activation,
the initial activation is only a dummy input that propagates
within the brain network to predict the actual brain activation.
The model parameters determine how the initial activation
propagates within the brain network and the important feature

of the model is the functional connectivity network. Whether the
model is nonlinear or not should be determined on the functional
connectivity rather than the dummy initial activation.

Metrics for Assessing the Model
We used two metrics to assess the individual prediction
performance on testing data. Denote the target value by
y and the prediction value by ŷ. The sum squared error
(SSE) =

∑
i

(
yi − ŷi

)2 is widely used to assess the difference

between the target and prediction values (index i runs over all
testing subjects). But in different divisions of the dataset, the
variance of the target value is different, thus the SSE cannot be
compared across different divisions. We divided the SSE by the
sum squared total (SST) =

∑
i

(
yi −mean(y)

)2 and the resulted

normalized squared error (NSE) was used. The NSE value is 0
when the model achieves perfect individual prediction, and larger
NSE values indicate lower performance. We also adopted the
Pearson correlation to assess the similarity between each testing
subject’s actual and prediction value, denoted by r. Because the
correlation is calculated across subjects, the value of r is 1 when
the model achieves perfect individual prediction, and the value
of r is 0 or negative when the model achieves poor individual
prediction. Under the least squares condition, NSE represents the
error proportion that cannot be explained by the model, and r2

represents the proportion of target data that can be explained by
the model. Since the least squares condition is not satisfied by our
model, these two metrics only serve as approximations.

Prediction similarity assessed by the Pearson correlation
coefficient was Fisher’s z transformed when used for further
statistical tests. Since the evaluation metrics for different
models were paired for each random division of the dataset,
we performed paired-sample t-tests using the custom Matlab
command “ttest.”

Implementation Details
The whole dataset was randomly divided into a training set and a
testing set with a ratio of nine to one. Though the sample size 997
is relatively large in neuroimaging, it is rather small compared
to that of computer vision datasets in machine learning that
usually contain more than 10,000 samples. The random splitting
of a small dataset can introduce random effects into the final
results, i.e., the metrics for assessing the model can vary widely
across different divisions. To remove the random effect as much
as possible, we performed the prediction process 100 times with
different random divisions of the dataset and used the mean of
the two metrics to assess the model.

We implemented the graph neural network with PyTorch1.
The parameters of the model were initialized by the Xavier
normal distribution with a gain of 0.1. The model was trained via
the stochastic gradient descent optimizer to minimize the NSE
with a Nesterov momentum of 0.9 used. The training batch size
was 128 and 500 training epochs were used. The initial learning
rate was 0.01 and a 0.1 multiplicative factor of learning rate decay
was set at 300 and 400 epochs respectively. To further overcome
the problem of overfitting caused by a small sample size, we

1https://pytorch.org/
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added Gaussian random noise to the individual connectivity
features at each training step. The variance of the Gaussian
random noise was set equal to the variance of each connectivity
feature across subjects. This technique can be viewed as a kind
of online data augmentation. The graph neural network models
were trained on an NVIDIA GeForce GTX 1080 Ti graphic
processing unit. The training time for each random separation
lasts about 8 min, and the total training time for 100 random
separations lasts about 13 h.

RESULTS

Functional Face ROI Localization
We identified the rFFA by the right fusiform face complex
(rFFC) region in the HCP-MMP1.0 (Glasser et al., 2016). The
FACES-SHAPES task contrast for the HCP emotion paradigm
and the FACE-AVG task contrast for the HCP working memory
paradigm were separately used to identify the functional face
activation. We showed the group average z-statistics of these two
task contrasts and the boundary of rFFC region in Figure 2A.
The rFFC region was identified in both task contrasts, and the
boundary of rFFC region coincided well with that of the group
average activation. The mean z-statistic within the rFFC region
was used to assess each subject’s face activation.

Functional Face Activation Network
Selection
We next defined the functional face activation network in
preparation for constructing the graph neural network. The

HCP_MMP1.0 contains 360 brain regions. Using a connectivity
matrix with size 360× 360 is likely to overfit the training dataset.
Since some brain regions do not involve in the face recognition
process, removing these brain regions beforehand can reduce the
model complexity in a great deal. Figure 2B shows the density
distribution of the mean absolute activation for the 360 brain
regions. We used a Gaussian-Gamma mixture model (described
in the section “Materials and Methods”) to select the activation
networks. The selection of task-related regions is independent of
the end-to-end training procedure of the graph neural network,
since the dummy input of the network is initialized as a vector
of ones and cannot be used for selecting the activation network.
The number of remaining brain regions for the FACES-SHAPES
contrast is 76, and that for the FACE-AVG contrast is 88, resulting
in connectivity matrices with size 76×76 and 88×88 respectively.
We showed the activation networks of both task contrasts in
Figure 2C. Networks of both task contrasts mainly include
brain regions in the visual cortices, such as the primary and
early visual cortices, dorsal and ventral stream visual cortices,
MT + complex and neighboring visual areas. Both networks
also include medial and lateral temporal cortices, superior
and inferior parietal cortices, temporo-parieto-occipital junction,
and posterior cingulate. In addition, the activation network of
FACES-SHAPES contrast also includes inferior frontal, orbital
and polar frontal, dorsolateral prefrontal, and premotor cortices.
The activation network of FACES-SHAPES contrast is broader
than that of FACE-AVG contrast, because the activation network
of FACE-AVG contrast is mainly for basic face perception, while
the activation network of FACES-SHAPES contrast also includes
emotional processing of faces.

FIGURE 2 | Functional face ROI localization and network selection. (A) Voxel-wise group average z-statistics of both contrasts were shown. The yellow arrow
indicates the area where the rFFC region locates. (B) The purple histogram indicates the density distribution of the mean absolute activation for the 360 brain
regions. A Gaussian (red curve)-Gamma (green curve) mixture (black curve) model was used to fit the data. (C) Mean absolute z-statistics of brain regions in the
functional face activation network were shown.
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Statistical Validation of Graph Neural
Network Prediction Model
After selecting the functional face activation network, we
constructed graph neural networks to predict individual face
activation of the rFFC region. We first compared the two-layer
graph neural network with the random permutation model to
validate the prediction model statistically. Since we intended
to test whether the individual association between functional
connectivity network and the face activation of rFFC region
is significant, the random permutation model was re-trained
with the same structure as the two-layer graph neural network,
except that the pairings between the functional connectivity
network and the activation of rFFC region were shuffled.
We did 1,000 random permutations and calculated whether
the mean prediction accuracy of the two-layer graph neural
network model was better than the 99th percentile of the
prediction accuracy of the random models. We illustrated the
comparison between the two-layer graph neural network and
the random permutation model in Figure 3A. For both the
FACES-SHAPES and FACE-AVG contrast, the mean NSE of

two-layer graph neural network is far below the distribution
of random permutation model, and the mean correlation of
two-layer graph neural network is far above the distribution of
random permutation model. Hence, the two-layer graph neural
network can capture the association between the individual
functional connectivity network and the face activation of rFFC
region above random level.

Comparison of Graph Neural Networks
With Different Layers
After validating the graph neural network statistically, we
further tested our proposed assumption by comparing graph
neural networks with different layers. The one-layer graph
neural network corresponds to the linear prediction model
adopted by previous studies and utilizes the 1-hop (i.e., direct)
functional connectivity of the rFFC region to predict the rFFC
region’s individual functional face activation. In the two-layer
graph neural network, the final layer corresponds to the 1-hop
functional connectivity representation of the rFFC region’s face
activation, and the first layer corresponds to the 2-hop functional

FIGURE 3 | Comparison of prediction metrics for different models. (A) Comparison between the two-layer graph neural network (2-GNN) and the random
permutation model with the same structure. The prediction performance of 2-GNN is better than that of random permutation model in that the mean NSE of 2-GNN
is below the distribution of permutation and the mean correlation of 2-GNN is above the distribution of permutation. (B) Comparison of graph neural networks with
different layers. The 2-GNN has a higher ability to predict better individual differences than both the 1-GNN and 3-GNN.
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connectivity representation of the rFFC region’s face activation.
Thus, the multi-layer graph neural network contains the
representation of the rFFC region’s face activation through multi-
hops functional connectivity. If the proposal that a brain region’s
function is represented by the multi-hops connectivity is rational,
using multi-hops functional connectivity should improve the
prediction of the rFFC region’s face activation. We determined
the rational number of hops based on the generalization ability of
the graph neural networks with different numbers of layers and
showed the comparison results in Figure 3B and Supplementary
Table S1. For the FACES-SHAPES contrast, the NSE of two-
layer graph neural network (mean NSE = 0.857) is significantly
[t(99) =−16.0, p = 3.0× 10−29, paired-sample t-test] lower than
that of one-layer graph neural network (mean NSE = 0.927),
but is not very significantly [t(99) = −2.09, p = 0.039, paired-
sample t-test] lower than that of three-layer graph neural network
(mean NSE = 0.864). The correlation of two-layer graph neural
network (mean correlation = 0.392) is significantly [t(99) = 13.5,
p = 2.8 × 10−24, paired-sample t-test] higher than that of
one-layer graph neural network (mean correlation = 0.296),
but is not significantly [t(99) = 0.269, p = 0.788, paired-
sample t-test] higher than that of three-layer graph neural
network (mean correlation = 0.391). Results for the FACE-AVG
contrast are similar, except that the differences between the two-
layer and three-layer graph neural networks are significant (see
Supplementary Table S1). Since the evaluation metrics stopped
improving and adding more layers leads to worse generalization
performance, we only tested graph neural networks with the
number of layers up to 3. Overall, the multi-layer graph neural
network improves the prediction performance in individual face
activation of the rFFC region, and the two-layer graph neural
network possessed the best prediction performance.

Functional Network Pathways Involving
rFFC’s Face Function
In the previous section, we determined that the two-layer graph
neural network has the best generalization ability, thus the
functional network pathways containing the rFFC region’s 1-
hop and 2-hop functional connectivity best characterize the
individual functional face activation of the rFFC region. We
utilized the functional information propagation coefficient W
in the first layer to analyze the functional network pathways
involving face processing (Figure 4). The propagation coefficient
W in the first layer also contains information about the
W in the second layer, because the output of the first
layer is subsequently used as the input of the second layer.
The propagation coefficient W is not symmetrical. The rows
represent brain regions that integrate functional information
from neighboring regions, and the columns represent brain
regions that send functional information out. The coefficients
are different for the two task contrasts because the two tasks
have different functional activation networks. Nonetheless, in
both task contrasts, coefficients with large absolute values
mainly concentrate in the rows of ventral stream visual cortices
and MT + complex visual areas. This result indicates that
brain regions in these two cortices mainly participate in the

computation of the following layer. Though some brain regions
in other rows do not have large absolute connectivity coefficients,
these regions in the columns have large absolute connectivity
coefficients. This result indicates that some brain regions do
not integrate functional information for the following layer,
but they send functional information out to the regions that
integrate functional information. The whole results suggest
a hierarchical functional face processing mechanism for the
rFFC region. The rFFC region first mainly integrates functional
information from regions in the ventral stream visual cortices and
MT + complex visual areas, then regions in these two cortices
integrate functional information from regions in other cortices.

DISCUSSION

In order to better characterize the brain region’s function of
individuals, our study proposed that a brain region’s function is
represented by the multi-hops connectivity profiles. The multi-
layer graph neural network model was used to incorporate
multi-hops connectivity features in the functional connectivity
network. We tested our proposal by predicting the functional
face activation of the rFFC region via the rFFC region’s multi-
hops functional connectivity. Our results showed that the 2-hops
functional connectivity profile has the best generalization ability
in characterizing the rFFC region’s individual functional face
activation, and revealed a hierarchical network for the rFFC
region’s functional face processing mechanism. The current study
provides new insights into understanding the brain region’s
function from a network perspective.

Previous researchers proposed that a brain region’s function is
represented by the 1-hop connectivity profiles (Passingham et al.,
2002). However, this proposal neglects individual differences in
the functional information of ROIs’ neighboring regions. Under
our proposal that a brain region’s function is represented by
the multi-hops connectivity profiles, individual differences in
the 1-hop brain region’s functional information are taken into
consideration via the 2-hop connectivity profiles. Our proposal
is also consistent with neuroscience findings. Researchers have
suggested that brain functions do not rely on the independent
operation of a single brain region or connectivity pathway,
but derive from the brain network composed of multiple brain
regions and connectivity pathways (McIntosh, 2000; Misic and
Sporns, 2016). In addition, indirect connectivity features among
other brain regions can also affect ROIs via the brain network
(Honey et al., 2009). Brain navigation efficiency is also due to
multi-hop brain connectivity pathways (Seguin et al., 2018). In
a word, since the multi-hop connectivity encodes the topological
and geometrical properties of the brain connectivity network, our
proposal indicates that a brain region’s function is encoded in the
topology of the brain connectivity network.

The multi-layer graph neural network perfectly matches
our proposal, since the multi-layer convolution computations
characterize the propagation of functional information among
the brain connectivity network. Though some kinds of graph
neural network models have been developed to process
brain network data (Ktena et al., 2018; Parisot et al., 2018;
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FIGURE 4 | Visualization of the propagation coefficient involving rFFC’s face function. The propagation coefficient W in the first layer of the network is shown. (A) The
coefficients are shown in a matrix plot. Color represents the coefficient strength of each connection. Brain regions that belong to the same cortex are grouped. Full
names of cortices are included in Supplementary Table S2. (B) The coefficients are plotted on the glass brain. Only the connection with the top 1% coefficient
strength is shown to make the plot clean. Edge color represents the coefficient strength of each connection. Node color represents the cortices that each brain
region belongs to (see Supplementary Figure S1).

Yang et al., 2019; Kim and Ye, 2020), our proposed graph neural
network is novel in the following aspect. As opposed to these
graph neural networks (Ktena et al., 2018; Parisot et al., 2018;
Yang et al., 2019; Kim and Ye, 2020) that either impose
feature transformation parameters on node features or use
graph attentions that utilize node features to construct network
propagation coefficients, our graph neural network directly
imposes parameters on the connectivity network matrix instead.
Imposing parameters on the connectivity network matrix is
especially beneficial when the dimension of node features is
very low, as it is the case that the node feature, i.e., the brain
activation statistic, has only one dimension in our study. Hence,
our graph neural network is well suited for handling connectivity-
driven problems, while the others mainly aim at dealing with
node-driven problems.

The functional connectivity network has also been verified
to transfer functional information across cortical regions
(Cole et al., 2016; Ito et al., 2017). Under this activity flow
mapping, functional activation information is transferred to
neighboring brain regions via functional connectivity pathways.

The activity flow mapping shares certain similarities with our
study in the sense that the functional information propagates
within the functional connectivity network. However, our
study differs from the activity flow framework mainly in
that functional activation information of all brain regions
in our study is unknown, while only the ROI’s functional
activation information is unknown in the activity flow
framework. In this sense, our proposal and study require less
functional information of brain regions and thus has practical
implications in that one does not need to scan functional task
contrasts of unseen subjects beforehand to get the functional
information of some brain regions after training the model that
utilizes the same task.

Our results showed that the two-layer graph neural network
containing 1-hop and 2-hop functional connectivity best
characterizes the rFFC region’s functional face activation,
indicating that 2-hops connectivity information may be enough
to estimate the rFFC region’s function. On the other hand,
from the computation perspective, as the number of layers in a
graph neural network gets large, the parameters and complexity
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of the model also enlarge. Since the sample size is relatively
limited compared to that of datasets in machine learning, models
with large complexity are also likely to overfit the data and
thus have a poor generalization ability. Future work involves
utilizing datasets with a large sample size to test whether graph
neural networks with more layers can further improve the
generalization ability.

We chose the rFFC region that has a specialized function
and is reliably replicated across studies to test our assumption
primarily. However, the rFFC region is specialized in the face
function, which has special meaning in the human evolution
process and has a specific neural mechanism (Tsao et al.,
2006; Freiwald and Tsao, 2014). Whether our proposal can be
generalized to brain regions beyond the rFFC still remains to
be solved, especially to brain regions that are more functionally
variable across individuals and flexible across tasks, i.e., the
heteromodal association cortices (Anderson et al., 2013; Mueller
et al., 2013; Tei et al., 2017). Future work also includes
extension to brain regions involving wide functional domains to
test our proposal.

We used undirected functional connectivity to construct
the brain connectivity network in this study. However,
the propagation of functional information in the brain is
actually directional, and this directional information was
not taken into account. Effective connectivity should be
considered in the future to capture the directionality of
information transfer. In addition, there are also other choices
to construct the brain connectivity network, such as the
structural connectivity representing white matter fiber pathways.
Researchers can also explore the relationship between the multi-
hops structural connectivity network and the individual brain
region’s function.

CONCLUSION

We proposed that the multi-hops connectivity profile can
improve the prediction performance of individual differences
in the brain region’s function. Results revealed that the 2-hops
functional connectivity network best characterizes the rFFC
region’s individual functional face activation. This advancement
contributes to understanding the mechanism of individual brain
region’s function in terms of the brain network and provides a
new perspective on brain functional processing mechanisms at
the network level.
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