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Parkinson’s disease (PD) is the second most common neurodegenerative disorder,
characterized by dopaminergic neurodegeneration, motor impairment and non-motor
symptoms. Epidemiological and experimental investigations into potential risk factors
have firmly established that dietary factor caffeine, the most-widely consumed
psychoactive substance, may exerts not only neuroprotective but a motor and
non-motor (cognitive) benefits in PD. These multi-benefits of caffeine in PD are
supported by convergence of epidemiological and animal evidence. At least six large
prospective epidemiological studies have firmly established a relationship between
increased caffeine consumption and decreased risk of developing PD. In addition,
animal studies have also demonstrated that caffeine confers neuroprotection against
dopaminergic neurodegeneration using PD models of mitochondrial toxins (MPTP,
6-OHDA, and rotenone) and expression of α-synuclein (α-Syn). While caffeine has
complex pharmacological profiles, studies with genetic knockout mice have clearly
revealed that caffeine’s action is largely mediated by the brain adenosine A2A receptor
(A2AR) and confer neuroprotection by modulating neuroinflammation and excitotoxicity
and mitochondrial function. Interestingly, recent studies have highlighted emerging
new mechanisms including caffeine modulation of α-Syn degradation with enhanced
autophagy and caffeine modulation of gut microbiota and gut-brain axis in PD models.
Importantly, since the first clinical trial in 2003, United States FDA has finally approved
clinical use of the A2AR antagonist istradefylline for the treatment of PD with OFF-time in
Sept. 2019. To realize therapeutic potential of caffeine in PD, genetic study of caffeine
and risk genes in human population may identify useful pharmacogenetic markers for
predicting individual responses to caffeine in PD clinical trials and thus offer a unique
opportunity for “personalized medicine” in PD.

Keywords: caffeine, Parkinson’s disease, α-synuclein, adenosine A2A receptor, autophagy, gut microbiota

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disorder characterized
by clinical presentation of motor impairment and non-motor symptoms. The hallmarks of
PD pathology are selective degeneration of dopaminergic neurons in the midbrain and by the
prominent α-Syn-containing proteinaceous inclusions, Lewy body (Dauer and Przedborski, 2003;
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Kalia and Kalia, 2015; Postuma and Berg, 2016; Wong and Krainc,
2017). PD affect 1% of the world population age 65 and older,
but with the aging population and increases in life expectancy
in modern society, the number of PD cases is projected to
double by 2030 (Dorsey et al., 2007; Lees et al., 2009). Dopamine
replacement, such as L-dopa, is the mainstay treatment to control
motor symptoms (Rascol et al., 2002; Lang and Obeso, 2004;
Goetz et al., 2005), but chronic L-dopa treatment is associated
with loss of its efficacy and the onset of debilitating motor
complications (dyskinesia, wearing-off and ON-OFF) (Ahlskog
and Muenter, 2001). Furthermore, with the discovery of α-Syn as
the main pathogenesis gene and the main component of Lewy
body (Lashuel et al., 2013; Kalia and Kalia, 2015; Wong and
Krainc, 2017), wide-spread distribution of α-Syn aggregates in
the brain provide the pathological basis for non-motor symptoms
of PD (e.g., cognitive dysfunction, fatigue, balance impairment,
sleep disturbance, autonomic dysfunction) which are increasingly
recognized as a key component of the disease (Chaudhuri et al.,
2006; Postuma and Berg, 2016). Importantly, despite of the
extensive studies, there are no successful treatments currently
available that can slow or halt this chronic neurodegeneration
(Shoulson, 1998; Mattson, 2004; Olanow, 2004; Lopez-Diego and
Weiner, 2008; Mestre et al., 2009).

In the absence of an effective disease modifying treatment to
slow down or hold PD course, epidemiological and experimental
investigations into potential risk factors (such as dietary factor
caffeine) that may modify PD pathology and confer therapeutic
benefits become compelling. Caffeine is probably the most widely
psychoactive substance and regularly consumed by >50% of the
world’s adult population, largely for its psychostimulant (and
cognitive enhancement) effect, reducing fatigue and enhancing
performance. The regular human consumption of caffeine was
previously estimated to be 70–350 mg/person/day or 5 to
8 mg/kg/day (equivalent to three couples of coffee) which is
absorbed by the small intestine within 45 min of ingestion
and produces peak plasma concentration of 0.25 to 2 mg/l (or
approximately 1 to 10 µM) within 1–2 h, distributes throughout
all bodily tissues and produces overall psychostimulant effects,
plasma caffeine levels are usually in the range of 2–10 mg/L
in coffee drinkers (Nehlig et al., 1992; Fredholm et al., 1999b).
Caffeine-containing drinks, such as coffee, tea, and cola, are very
popular; as of 2014, 85% of American adults consumed some
form of caffeine daily, consuming 164 mg on average (Mitchell
et al., 2014). Caffeine intake doses determined not to be associated
with adverse effects by Health Canada (comparators: 400 mg/day
for adults [10 g for lethality], 300 mg/day for pregnant
women, and 2.5 mg/kg/day for children and adolescents),
2.5 mg caffeine/kg body weight/day remains an appropriate
recommendation (Wikoff et al., 2017). In healthy adults, caffeine’s
half-life is between 3 and 7 h, caffeine is metabolized in the liver
by the cytochrome P450 oxidase enzyme system, in particular,
by the CYP1A2 isozyme, into three dimethylxanthines, including
paraxanthine, theobromine, and theophylline, each of which
has its own effects on the human body. Caffeine was found to
present in all rat tissues after administration for 10 days and
accumulated for 25 days. The caffeine level was high in brain,
liver and kidney and widely distributed and accumulated in these

organs (Che et al., 2012). Because caffeine is both water- and
lipid-soluble, it readily crosses the blood brain barrier. Once
in the brain, caffeine may act at multiple molecular targets
to produce complex pharmacological actions, ranging from
adenosine receptor antagonism, to phosphodiesterase inhibition,
to GABA receptor blockade and calcium release (Fredholm et al.,
1999a). However, genetic knockout studies have demonstrated
that caffeine’s primary action in the brain is as an antagonist of
adenosine receptors (mainly A2AR) (Chen et al., 2013).

In this review, we first summarized the neuroprotective,
motor and cognitive benefits of caffeine in PD patients and
PD models. We then described the potential mechanisms
underlying caffeine’s protective effects, including modulation
of neuroinflammation and of newly emerging mechanisms
associated with autophagy and gut microbiota. Lastly,
we discussed possible genetic polymorphisms of caffeine-
associated genes in influencing caffeine drug responses and its
clinical implications.

MULTIPLE BENEFITS OF CAFFEINE IN
PD TREATMENT

Potential Neuroprotective Effects of
Caffeine in PD Patients and PD Models
The first evidence for the potential neuroprotective effect of
caffeine came from the Honolulu Heart Program, a large
prospective study of 8004 Japanese-American men over a 30 years
follow-up study. The study revealed that daily consumption of
784 mg/kg or more of coffee during the mid-life reduce the risk
for developing PD at age of 65-year old by 5-folds compared
to non-coffee drinkers after age- and smoking-adjustment (Ross
et al., 2000). This inverse relationship between consumption of
caffeine and the risk of developing PD was further supported
by the Health Professionals’ Follow-Up Study and the Nurses’
Health Study – involving 47,351 men and 88,565 women, and
subsequently also by at least three additional large prospective
studies, including Finnish Mobile Clinic Health Examination
Survey (Saaksjarvi et al., 2008) and the NeuroGenetics Research
Consortium (Powers et al., 2008) and Danish case-control
study involving idiopathic PD (Kyrozis et al., 2013). A meta-
analysis of 13 study involving total 901,764 participants for
coffee intake found a non-linear relationship was found between
coffee intake and PD risk, with maximum protection effect at
approximately 3 cups/day (Qi and Li, 2014). Systemic analysis
of 120 observation studies have firmly established that regular
human consumption of caffeine is associated with reduced
risk for PD (Ross et al., 2000; Ascherio et al., 2001, 2003;
Saaksjarvi et al., 2008; Grosso et al., 2017) and does not impose
significant adverse effects on the cardiovascular system, bone
status, or the incidence of cancer (Fredholm et al., 1999b;
Winkelmayer et al., 2005; Higdon and Frei, 2006; van Dam
et al., 2006; Cadden et al., 2007; Daly, 2007). Interestingly,
this inverse relationship of coffee consumption and risker for
developing PD is largely attributed to caffeine since that the
consumption of caffeinated (but not decaffeinated) coffee is
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associated with the reduced risk of developing PD in the Health
Professional Follow-up Study (Ascherio et al., 2001). Notably,
this inverse relationship is strong and consistent in men in the
Health Professional Follow-up Study (Grosso et al., 2017) and in
postmenopausal women who never used hormone replacement
therapy in the Cancer Prevention Study II Nutrition Cohort
(CPS II-Nutrition) (Palacios et al., 2012), but uncertain in women
and postmenopausal women ever users of hormone replacement
therapy. Thus, caffeine and estrogen interaction modify the
risk of developing PD. More recently, the Harvard Biomarkers
Study (HBS) conducted a cross-sectional, case-control study in
566 subjects consisting of idiopathic PD patients and healthy
controls, which highlighted the robustness of lower caffeine
intake and plasma urate levels as factors inversely associated with
idiopathic PD (Bakshi et al., 2020).

Furthermore, the neuroprotective effect of caffeine from
epidemiological investigation is further supported by mounting
evidence from animal studies demonstrating that caffeine confers
neuroprotection against dopaminergic neurodegeneration in
neurotoxin PD models using mitochondrial toxins (MPTP, 6-
OHDA and rotenone) (Chen et al., 2001; Ikeda et al., 2002;
Xu et al., 2002; Aguiar et al., 2006) and α-Syn transmission
mouse model through intracerebral injection of α-Syn fibers
(Luan et al., 2018). For example, acute or chronic treatment with
caffeine attenuates MPTP-induced dopaminergic neurotoxicity
and neurodegeneration (Chen et al., 2001; Xu et al., 2002). It
is interesting to note that in a chronic MPTP infusion model
of PD caffeine can still confer protection against dopamine
neurodegeneration even when caffeine was administered after the
onset of the neurodegenerative process (i.e., 14 days after MPTP
infusion) (Sonsalla et al., 2012). Furthermore, our recent study
demonstrated that caffeine can protect against A53T mutant
α-Syn induced pathological alterations in intact animals using the
α-Syn fibril model of PD, an effect associated with the enhanced
activity of autophagy (specifically macroautophagy and CMA)
(Luan et al., 2018) (see below for the more discussion).

Importantly, similar to caffeine, pharmacological blockade or
genetic deletion of adenosine A2A receptor (A2AR, the main
pharmacological target of caffeine in the brain) also protected
against dopaminergic neurodegeneration in animal models of PD
(Chen et al., 2001; Ikeda et al., 2002; Kachroo and Schwarzschild,
2012), suggesting that the protective effects of caffeine are likely
due to its action on the A2AR. Moreover, recent studies also
show that A2AR modulated α-Syn aggregation and toxicity in SH-
SY5Y cells (Ferreira et al., 2017a), and A2AR blockade rescued
synaptic and cognitive deficits in α-Syn transgenic mice model
of PD (Ferreira et al., 2017b). These animal studies provide a
neurobiological basis for the inverse relationship between caffeine
consumption and the reduced risk of developing PD, and support
the clinical potential for caffeine and A2AR antagonists as a
disease-modifying drug target for PD.

Two important caveats need to be taken into the
consideration. First, caffeine exerts synergistic neuroprotection
with eicosanoyl-5-hydroxytryptamide (EHT) in animal models
of PD, co-administration of these two compounds of coffee
orally have synergistic effects in protecting the brain against
α-Syn mediated toxicity through maintenance of protein

phosphatase 2A in an active state (Yan et al., 2018). Second,
in methamphetamine-induced neurotoxicity both in vitro
and in vivo, caffeine has been shown to increase toxicity
of methamphetamine in SH-SY5Y neuroblastoma cell line
through inhibition of autophagy (Pitaksalee et al., 2015) and
potentiate 3,4-methylenedioxymethamphetamine (MDMA)
-induced dopamine neuron degeneration in substantia nigra
pars compacta, possibly involving an increase in dopamine
release and excess ROS generation (Sinchai et al., 2011; Frau
et al., 2016). Therefore, caffeine has been consistently shown to
exert a neuroprotective effect in multiple neurotoxin (including
MPTP, 6-OHDA, rotenone) and alpha-synuclein models of PD,
but has been reported to exacerbate methamphetamine-induced
neurotoxicity. Additional studies are needed to clarify these
neurotoxicity context-dependent effects of caffeine.

Motor Benefit of Caffeine in PD Patients
and PD Models
The symptomatic effect of caffeine in PD was first tested in
1970s (Shoulson and Chase, 1975), but has been revisited by
several clinical studies recently. The motor benefit of caffeine
were documented in a pilot open-label, 6-week dose-escalation
study (Altman et al., 2011) and a 6-week randomized controlled
trial of caffeine (200–400 mg daily) involving 61 PD patients
(Postuma et al., 2012). These clinical studies suggest that caffeine
improved objective motor deficits in PD with the reduced
total Unified PD Rating Scale score and the objective motor
component. Furthermore, coffee consumption (>336 mg/day) is
associated with the reduced hazard ratio for the development of
dyskinesia compared with subjects who consumed <112 mg/day
in the Comparison of the Agonist Pramipexole with Levodopa
on Motor Complications of Parkinson’s Disease (CALM-PD)
and CALM Cohort extension studies (Wills et al., 2013). Based
on these positive findings, caffeine was recently investigated
for motor and disease-modification involving 121 PD patients
PD in a phase 3, 5-years (planned), two-arm, double-blind
RCT, with a primary outcome focused on motor symptoms and
disease-modification as a secondary outcome1. Unfortunately,
with the primary outcome analysis after 6 months demonstrating
no significant symptomatic benefit of caffeine (200 mg twice
daily) (Postuma et al., 2017), the study was terminated earlier
than the planned.

Based on the concentrated expression of A2AR in the striatum
and the A2AR is the key molecular target of caffeine, caffeine
(and A2AR antagonists) has been proposed 20 years ago to
improve motor activity in PD (Garcao et al., 2013; Morato et al.,
2017). Indeed, preclinical studies using rodent and non-human
primate models of PD demonstrate motor benefits caffeine and
A2AR antagonists in PD (Richardson et al., 1997; Chen, 2003;
Schwarzschild et al., 2006; Jenner et al., 2009), leading to clinical
pursuit of A2AR antagonists as a leading non-dopaminergic
treatment for motor deficits in PD. Since 2001, more than 25
clinical trials were conducted to evaluate the safety and clinical
efficacy of A2AR antagonists in PD patients; among these, eight
double blind, placebo controlled, phase IIb and III trials of

1https://clinicaltrials.gov/ct2/show/NCT01738178
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istradefylline (KW-6002, > 4000 PD patients), one phase IIb
trial with preladenant (SCH 420814, 253 PD patients), one
phase IIb trial with tozadenant (337 PD patients), all reported
motor benefits in advanced PD patients as an add-on therapy
with L-DOPA (Hauser et al., 2011). The culmination of the
two decade-long clinical studies of the effects of istradefylline
in more than 4,000 PD finally led to the U.S. Food and
Drug Administration (FDA) approval of the A2AR antagonist
Nourianz R© (istradefylline) developed by Kyowa Hakko-Kirin
Inc., Japan, as an add-on treatment to levodopa in Parkinson’s
disease (PD) with “OFF” episodes in August 2019. Istradefylline is
the first non-dopaminergic drug approved by United States FDA
for PD in the last two decades and this approval paves the way
to foster novel therapeutic opportunities for A2AR antagonists
including caffeine for neuroprotection or reversal of mood and
cognitive deficits in PD.

Caffeine and Cognitive Improvement in
PD
Parkinson’s disease is primarily characterized by cardinal motor
symptoms but cognitive changes also occur both in the early
and later stages of the disease process. In fact, ∼30% of
PD patients have dementia and an additional 25% of non-
demented PD patients developed mild cognitive impairments
that are characterized by frontostriatal cognitive deficits such as
alterations in executive function, attention, working and episodic
memory (Majbour and El-Agnaf, 2017). Convergent evidence
from human and animal studies supports the existence of DA-
dependent cognitive deficits in PD (Lewis et al., 2003). The
cognitive symptoms seen early in PD include the decreased
executive function (e.g., planning and decision making), working
memory deficit and impaired procedural learning, leading
to cognitive inflexibility that are largely attributed to the
frontostriatal dysfunction (Knowlton et al., 1996; Kehagia et al.,
2010). Early cognitive deficits are extremely troubling to patients
and reduce their quality of life. Currently there is no effective
treatment for mild cognitive impairments in PD. In this regard,
it is important to note that at least six longitudinal studies
support an inverse relationship between caffeine consumption
and decreased memory impairments associated with aging as
well as a reduced risk of developing dementia and Alzheimer’s
disease, including the Maastricht Aging Study (Hameleers et al.,
2000; van Boxtel et al., 2003), the Canadian Study of Health and
Aging (CSHA) (Lindsay et al., 2002), the FINE study (van Gelder
et al., 2007), the French Three Cities study (Ritchie et al., 2007),
the Cardiovascular risk factors, Aging and Dementia (CAIDE)
study (Eskelinen et al., 2009), the Honolulu-Asia Aging Study
(Gelber et al., 2011). Furthermore, in a cross-sectional study
involving 196 early-stage, treatment-naïve PD patients, coffee
drinking was significantly associated with a reduced severity
of the mood/cognition domain of NMSS in patients with PD
(p = 0.003) (Cho et al., 2018). These epidemiological findings raise
the possibility of caffeine as therapeutic treatment for cognitive
impairments in PD.

Indeed, preclinical studies with A2AR antagonist effect on
cognition in normal and MPTP-treated non-human primates

(NHP) provide the experimental evidence that A2AR antagonists
including caffeine can improve cognitive impairments in PD
models (Chen et al., 2013; Chen, 2014). Recent preclinical studies
in rodents and non-human primates demonstrated that A2AR
antagonists not only enhance working memory (Zhou et al.,
2009), reversal learning (Wei et al., 2011), set-shifting (Mingote
et al., 2008), goal-directed behavior (Li et al., 2016), and Pavlovian
conditioning (Wei et al., 2014) in normal animals, but also reverse
working memory impairments in animal models of PD (Ko et al.,
2016) and Huntington’s disease (Li et al., 2015), traumatic brain
injury (Ning et al., 2013, 2015, 2019) as well as Alzheimer’s
disease (AD) (Dall’Igna et al., 2007; Cunha and Agostinho,
2010; Laurent et al., 2014; Faivre et al., 2018). Furthermore,
we recently demonstrated a pro-cognitive effect in normal as
well as MPTP-treated Cynomolgus monkeys (Li et al., 2018b).
The demonstrated treatment paradigm of the A2AR antagonist
KW6002 for spatial working memory enhancement in non-
human primate model of PD provide required preclinical data to
facilitate the design of clinical trial of A2AR antagonists including
caffeine for cognitive benefit in PD patients (Li et al., 2018b).
Notably, recent clinical trials of A2AR antagonists for motor
benefits in PD did not evaluate their possible effects on cognitive
impairment in PD patients (Chase et al., 2003; Aarsland et al.,
2010). With the approval of istradefylline, it will now be possible
to evaluate the ability of A2AR antagonists to reverse cognitive
deficits in PD patients in clinical phase IV trials.

MECHANISMS OF NEUROPROTECTION
BY CAFFEINE IN PD

Multiple mechanisms have been proposed to account for
the neuroprotective effects of caffeine, including modulation
of glutamatergic excitotoxicity and neuroinflammation via
adenosine receptors (Chen et al., 2013). Furthermore, recent
investigation into the autophagy and gut microbiota in
PD pathogenesis raise the exciting possibilities that caffeine
may modify autophagy (through metabolism-related action of
caffeine) and gut microbiome (with caffeine direct action on gut
microbiota) to influence PD development.

Caffeine Modulates Neuroinflammation
in PD
Neuroinflammation is critically involved in the pathogenesis
of PD. Increasing evidence showed that neuroinflammation
response regulated by reactive microglia played an important
role in the neurodegeneration of DA neurons (Hirsch and
Hunot, 2009; Tansey and Goldberg, 2010; Hirsch et al., 2012).
α-Syn, in extracellular aggregated form, can bind to Toll-
like receptor 2 (TLR2), CD11b receptors and integrin β1
subunit on microglia to trigger massive microglial activation
and neuroinflammation, contributing to consequent neuronal
death (Lee et al., 2010; Tansey and Goldberg, 2010; Fellner
et al., 2013; Yasuda et al., 2013; Sacino et al., 2014). The
involvement of neuroinflammation in PD was further suggested
by the observation of the increased number of reactive
microglial cells and an upregulation of major histocompatibility
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complex class II (MHC-II) in PD patients (McGeer et al.,
1988). Caffeine can exert an anti-neuroinflammatory effect
under various pathological conditions. Caffeine administration
(daily intraperitoneal injection) reduces lipopolysaccharide
(LPS)-induced microglia activation in three regions of the
hippocampus, in a dose-dependent manner (Brothers et al.,
2010) and abrogate LPS-induced neuroinflammation, and
synaptic dysfunction in adult mouse brains (Badshah et al.,
2019). As a critical neuroprotective factor in PD, caffeine
may control microglia-mediated neuroinflammatory response
associated PD (Madeira et al., 2017). Indeed, daily intraperitoneal
administration of caffeine attenuates microglia reactivity and
prevents blood-brain barrier (BBB) dysregulation in the MPTP
mouse model, leading to decreased dopaminergic neuronal
loss (Xu et al., 2002; Chen et al., 2008). Furthermore, even
when introduced in the later phases of the neurodegenerative
process, caffeine is also able to attenuate the inflammatory
process and microglial cell expression of CD68 (a marker of
reactive microglia), which suggests its ability to arrest or delay
neuroinflammation and neurodegeneration (Chen et al., 2008).
Consistent with this view, by using an α-Syn fibril model of
PD, we recently found that chronic caffeine treatment attenuated
α-Syn-induced microglial activation and astrogliosis in the
striatum in mice (Luan et al., 2018). In addition, caffeine has been
shown to protect dopaminergic neurons by activation of the anti-
oxidative signaling pathways, such as the nuclear factor erythroid
2-related factor 2 (Nrf2)-Keap1 and peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1 alpha)
(Zhou et al., 2019).

The mechanisms underlying anti-neuroinflammation by
caffeine may involve the antagonism of the A2AR, the major
molecular target (Chen et al., 2001; Kalda et al., 2006).
A2ARs affords neuroprotection through the control of microglia
reactivity and neuroinflammation. Notably, pharmacological
blockade or genetic deletion of A2AR produces similar anti-
neuroinflammatory and neuroprotective effects as with caffeine
in several experimental models of PD (Chen et al., 2001; Ikeda
et al., 2002; Kalda et al., 2006; Hu et al., 2016; Luan et al.,
2018). For example, enhanced reactive astrogliosis and NF-κB
p65 activation around the injection site in hippocampus in
an α-Syn transmission mouse model of PD, and these α-Syn-
triggered neuroinflammatory responses were largely prevented in
A2AR KO mice (Hu et al., 2016). In the well-established α-Syn
fibril model of PD, chronic caffeine treatment largely reverted
the α-Syn-induced microglial activation and astrogliosis in the
striatum in mice (Brambilla et al., 2003; Boison et al., 2010;
Luan et al., 2018). Moreover, in A2AR antagonists also control
neuroinflammation (through p38), of synaptopathy (Canas et al.,
2009) and β-amyloid processing (Cao et al., 2009) in AD
models. Thus, caffeine may exert anti-neuroinflammation and
neuroprotection effect in PD by targeting the A2ARs.

Caffeine May Modulate PD Pathology by
Regulating Autophagy Activity
Autophagy is a high conserved defense and protective
mechanism in eukaryotic cell to achieve degradation of abnormal

proteins and damaged organelles by three types of autophagy
processes: microautophagy, macroautophagy and chaperone-
mediated autophagy (CMA). PD is essentially a protein
misfolding disease or conformational disease; characterized by
abnormal accumulation and aggregation of misfolded α-Syn
(Kalia and Kalia, 2015). Increasing evidence demonstrates
that aberrant regulation of autophagy contributes to the
aggregation of α-Syn and α-Syn-induced neurodegeneration
in PD (Ebrahimi-Fakhari et al., 2012; Poehler et al., 2014;
Xilouri et al., 2016; Hou et al., 2020; Senkevich and Gan-
Or, 2020). First, several studies found that alteration of
autophagy-lysosome pathway activity, including both CMA
and macroautophagy, existed in brains of postmortem PD
patients and experimental models of PD (Alvarez-Erviti et al.,
2010; Cerri and Blandini, 2019; Lamonaca and Volta, 2020; Qin
et al., 2020; Wan et al., 2020), revealing the direct correlation
between autophagy and pathological process of PD. Second,
abnormally aggregated α-Syn inclusions are mainly degraded
by autophagy (Webb et al., 2003) and defects or deficiency of
autophagy can lead to accumulation of intracellular misfolded
amyloid α-Syn aggregates, thus causally linking autophagy
to PD pathological process (Xilouri et al., 2016; Guo et al.,
2020). Third, α-Syn overexpression can impede autophagy by
reducing autophagosome formation in human Neuroblastoma
SH-SY5Y (Nascimento et al., 2020), and contribute to many
different pathologies seen in PD (Winslow and Rubinsztein,
2011). Notably, the pathogenic A53T and A30P α-Syn mutants
selectively bound to lysosome-associated membrane protein
type 2A (LAMP2A) with high affinity, blocked CMA activity
at the LAMP2A level, ultimately resulting in complete damage
to this pathway (Cuervo et al., 2004). Collectively, autophagy
plays an important role in the pathogenesis of PD, thus
targeting autophagy may represent a promising strategy for
treatment of PD (Rivero-Rios et al., 2016; Moors et al., 2017;
Lu et al., 2020).

Both caffeine and A2AR signaling can regulate autophagy
activity under different conditions in several cell types (Sinha
et al., 2014; Liu et al., 2016). Caffeine can induce macroautophagy
caused by a starvation response and confer a cytocidal
effect on Zygosaccharomyces bailii food spoilage yeast) in
combination with benzoic acid (Winter et al., 2008). Higher
concentrations of caffeine (10 mM) enhance autophagic flux in
various tumor cell lines (HeLa, SH-SY5Y, and PC12D cells).
Caffeine can induce apoptosis by enhancement of autophagy in
PC12D cells through PI3K/Akt/mTOR/p70S6 signaling pathway
(Saiki et al., 2011). Using both genetic and pharmacological
inhibitors of autophagy, researchers directly linked caffeine-
induced autophagy with oxidative lipid metabolism both in
HepG2 cells and in mice liver; and further demonstrated
that autophagy was associated with caffeine-induced hepatic
fat clearance in a mouse model of non-alcoholic fatty liver
disease, indicating that caffeine surprisingly is a potent stimulator
of hepatic autophagic flux (Ray, 2013; Sinha et al., 2014).
Accordingly, caffeine-enhanced autophagic flux in hepatic stellate
cells was stimulated by endoplasmic reticulum (ER) stress via
the IRE1-α signaling pathway, and autophagy trigged by caffeine
instigated cell apoptosis (Li et al., 2017). Acute high-caffeine
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exposure also significantly reduced skeletal myotube diameter
by increasing autophagic flux in differentiated C2C12 mouse
skeletal myoblasts cells (Bloemberg and Quadrilatero, 2016;
Hughes et al., 2017). Notably, caffeine increased autophagy
by promoting the calcium-dependent activation of AMP-
activated protein kinase (AMPK) in mammalian skeletal
muscle cells (Mathew et al., 2014), and prevent skin from
oxidative stress-induced senescence through the activation of
autophagy. This caffeine-induced autophagy, mainly mitophagy,
was mediated by A2AR/SIRT3/AMPK pathway, protecting skin
from oxidative stress-induced senescence both in vitro and
in vivo models (Li et al., 2018a). Therefore, caffeine also
has the potential in protection of skin disease. Consistent
with these studies, a recent research found that caffeine
directly enhanced autophagy in concentration- and time-
dependent manners in primary cultured thymocytes, which
was dependent on A2AR signaling (Liu et al., 2019). Taken
together, these studies from various cell models and in different
tissues and organs in vivo demonstrate that caffeine enhances
autophagy which is related to its therapeutic effects on
diverse human diseases, including tumors, aging, liver fibrosis,
and skin disease.

Using an α-Syn fibril model of PD, we recently have provided
the first evidence that caffeine can attenuate abnormal α-Syn
aggregation and neurotoxicity by re-establishing autophagy
activity in animal models of PD (Luan et al., 2018). Specifically,
chronic caffeine treatment did not affect autophagy processes
in the normal mice striatum, but did selectively reverse α-Syn-
induced defects in macroautophagy and CMA (Luan et al.,
2018). Thus, caffeine may represent a novel pharmacological
therapy for PD by targeting autophagy pathway. This study
collaborates with the previous study showing that caffeine-
induced autophagy protected against human prion protein
(PrP) peptide (106–126)-triggered apoptosis in a SH-SY5Y
neuroblastoma cell line. Therefore, autophagy enhanced by
caffeine may be a valid therapeutic strategy for neurodegenerative
diseases such as PD and prion (Moon et al., 2014;
Corti et al., 2020).

Caffeine May Influence PD Pathology by
Modulating Gut Microbiota
The gut microbiota in the human gastrointestinal (GI) tract
is estimated to contain 10 times more microbial cells than
human cells, and approximately 100–200-times more protein
coding genes than the human genome (Qin et al., 2010).
The gut microbiota critically influence various aspects of
human biology, including the absorption and metabolism of
nutrients, vitamins, medications, and toxic compounds; the
development and differentiation of the intestinal epithelium and
immune system, the maintenance of tissue homeostasis, and
the prevention of pathogens invasion (Sommer and Backhed,
2013). The gut microbiota also plays an important role in
gut-brain communication, and the neuroimmune system to
maintain brain homeostasis, thus influencing brain function and
behavior (Carabotti et al., 2015). In healthy subjects, the intestinal
microbiota is generally stable over time, but compositional

changes might occur following antibiotic usage or dietary
modifications (Lozupone et al., 2012).

Mounting evidence suggest that the intestinal microbiota may
be the triggering factor of PD pathology. Specifically, the gut
microbiota encoded proteins and their metabolites can initiate
accumulation of misfolding of α-Syn in the enteric nervous
system through molecular mimicry and intestinal mucosal
immunoinflammatory mechanisms, which thereafter could act in
a prion-like fashion and spread along the gut-brain axis via vagus
nerve, eventually leading to the development of PD pathology
(Friedland, 2015; Klingelhoefer and Reichmann, 2015; Pellegrini
et al., 2018; Ho et al., 2019; Miraglia and Colla, 2019; Cirstea
et al., 2020; Zheng et al., 2020). Multiple lines of preclinical and
clinical evidences support the role of gut microbiota dysfunction
in various aspects of PD pathogenesis: (i) according to the widely
accepted Braak Staging hypothesis about the pathogenesis of
PD, α-Syn pathology may begin in the intestine and spread to
the brain through the vagus nerve. This hypothesis has been
supported by two lines of key clinical findings. (a) Idiopathic
constipation is one of the strongest risk-factors for PD since up
to 80% of PD patients develop gastrointestinal dysfunction, in
particular constipation, in the early stages of PD, preceding the
onset of motor symptoms by years (Schapira et al., 2017). (b)
Full truncal vagotomy is associated with a decreased risk for
subsequent PD, suggesting that the vagal nerve may be critically
involved in the pathogenesis of PD (Svensson et al., 2015). (ii)
The gut microbiota of patients with PD is altered depending on
clinical motor phenotype and related to progress of PD; thus the
gut microbiome may be a potential PD biomarker (Scheperjans
et al., 2015a; Hopfner et al., 2017; Gerhardt and Mohajeri, 2018;
Qian et al., 2018; Nuzum et al., 2020; Pietrucci et al., 2020;
Ren et al., 2020). (iii) Gut microbiota is necessary to promote
α-Syn pathology, neuroinflammation, neurodegeneration, and
characteristic motor features in validated mice model of PD,
and specific microbial metabolites are sufficient to promote
PD symptoms, suggesting a casual and functional role in PD
pathogenesis (Sampson et al., 2016; Sun et al., 2018; Klann
et al., 2020; Koutzoumis et al., 2020). (iv) The human gut
microbiota metabolizes the PD medication Levodopa (L-dopa),
potentially reducing drug availability and causing side effects
(Maini Rekdal et al., 2019). Collectively, these findings support
that gut microbiota is critical contributor to PD pathogenesis and
may represent a promising therapeutic target for the treatment of
PD (Lubomski et al., 2019).

As the most important environmental and dietary factor of
PD, how does long-term drinking caffeine affect the diversity
of gut microbiota? Moreover, how do the human intestinal
microorganism and their encoded enzymes influence the
metabolism of caffeine? Caffeine is initially absorbed in the
stomach and small intestine but is further fermented in the
colon by gut microbiota (Scheperjans et al., 2015b). Recently,
caffeine consumption is reportedly related to the colonic mucosa-
associated gut microbiota (Gurwara et al., 2019); long-term
coffee intake is associated with fecal microbial composition
in humans, and regular consumption of coffee appears to be
associated with changes in some intestinal microbiota groups
in which caffeine, as the main dietary factor influencing PD
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development, may play a role (Gonzalez et al., 2020). Intestinal
microorganisms also play a role in the metabolism of caffeine
as caffeine was degraded in the gut of H. hampei, and that
experimental inactivation of the gut microbiota eliminates
this activity, suggesting that the detoxification of caffeine in
H. hampei is mediated by the insect’s gut microbiota (Ceja-
Navarro et al., 2015). Several recent studies have shed light
on the relationship between coffee consumption, caffeine and
gut microbiota, as well as GI function in PD (Derkinderen
et al., 2014; Scheperjans et al., 2015b). Some effects of coffee
on the gastrointestinal tract promote gastro-oesophageal reflux,
stimulation of gallbladder contraction and an increase of colonic
motor activity (Boekema et al., 1999). Coffee consumption is
also inversely associated with the prevalence of self-reported
constipation (Murakami et al., 2006). Notably, coffee and caffeine
regulates the composition and abundance of intestinal flora
under different pathologies. For example, coffee caused an
increase of anti-inflammatory Bifidobacteria and a decrease
of Clostridium spp. and Escherichia coli that invade the gut
mucosa in PD (Khokhlova et al., 2012). Furthermore, chronic
coffee consumption attenuated the increase in Firmicutes (F)-
to-Bacteroidetes (B) ratio and Clostridium Cluster XI normally
associated with high-fat feeding and augmented the levels of
Enterobacteria (Cowan et al., 2014). Coffee or its components
caffeine can also affect the gut microbiome and short-chain fatty
acids (SCFAs) profile in Tsumura Suzuki obese diabetes (TSOD)
mice and thereby improve hepatic inflammation. Specifically,
daily intake of coffee or its components did not repair the
gut dysbiosis in TSOD mice, rather, altered the percentages of
six microbial genera changed in these mice, including Blautia,
Coprococcus, and Prevotella, which have been implicated in
inflammation or obesity (Clarke et al., 2012; Nishitsuji et al.,
2018). Other studies suggest that the diversity and structure of
the gut microbiota is not sensitive to caffeine, however, when
the predicted metagenome functional content of the bacterial
communities was analyzed, the caffeine treatments did induce a
dramatic decrease of the aromatic amino acid decarboxylase gene
(Scorza et al., 2019).

Consistent with these findings, our preliminary meta-genome
analysis of the gut microbiota of A53T-α-Syn transgenic mice
model of PD by chronic intervention of caffeine indicated that
chronic caffeine treatment for one month had no significant
effect on gastrointestinal function, but apparently normalized
the structure and imbalance of the gut microbiota of PD model
mice (unpublished data). Additional studies are warranted to
study the interaction between caffeine and intestinal flora in
the body, and determine whether the beneficial effects of coffee
consumption on PD are mediated through the modulation of the
microbiota-gut-brain axis.

GENETIC STUDIES ON THE
INTERACTION BETWEEN CAFFEINE
AND PD RISK GENES

Epidemiological investigation coupled with genetic analyses
of the genetic and environmental interaction in development

of PD has provided several important insights into the
interaction between caffeine and several genes associated with
PD pathogenesis such as NMDA-glutamate-receptor subunit,
LRRK2 and estrogen in PD: (i) A recent genome-wide
association and interaction study (GWAIS) uncover a complex
interplay between genetic (GRIN2A, encoding an NMDA-
glutamate-receptor subunit) and environmental factors (caffeine
consumption) in etiology of PD, as a PD genetic modifier in
inverse association with caffeine intake (Hamza et al., 2011).
(ii) A study with patient-control study Swedish population has
revealed an association of a single nucleotide polymorphism,
GRIN2A_rs4998386, and its interaction with caffeine intake with
PD (Yamada-Fowler et al., 2014). Thus, the interaction between
caffeine and glutamate receptor genotypes may contribute to
the protective effects of coffee drinking/caffeine intake in PD.
(iii) Furthermore, a recent case control study of 812 subjects
consisting of PD and healthy controls showed that caffeine intake
would significantly reduce the risk of PD by 15-folds in those
carrying PD gene risk variant (LRRK2 R1628P) (Kumar et al.,
2015). Metabolomic analyses of the LRRK2 Cohort Consortium
(LCC) samples identified caffeine, its demethylation metabolites,
and trigonelline as prominent markers of resistance to PD linked
to pathogenic LRRK2 mutations, more so than to idiopathic
PD (Crotty et al., 2020). Exploratory analysis on potential
interactions of smoking and caffeine intake with 10 genome-
wide association studies of SNPs (at or near the SNCA, MAPT,
LRRK2, and HLA loci) further reveal that a combined smoking
and caffeine intake exposure is associated with a significant
interaction with rs2896905 at SLC2A13, near LRRK2 (Gao
et al., 2012). In addition, the Parkinson’s Epidemiology and
Genetics Association Studies in US (PEGASUS) consortium
(involving 3000 subjects of five independent well-characterized
patient-control series) uncovered an association between an
Adora2a variant (rs7165183 and rs5996696) and a reduced
risk of PD (Popat et al., 2011), with the strongest coffee-
PD association among those with homozygous carriers of the
CYP1A2 polymorphisms and slow metabolizers of caffeine. These
genetic studies support the protective effect of caffeine intake
on PD through the interaction between caffeine and GRIN2A,
LRRK2, and A2AR. These findings raise the exciting possibility of
selecting patient subpopulations by these genetic polymorphisms
of the GRIN2A, LRRK2, A2AR, and CYP1A1 genes.
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