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Neuromorphic computing is emerging to be a disruptive computational paradigm that

attempts to emulate various facets of the underlying structure and functionalities of

the brain in the algorithm and hardware design of next-generation machine learning

platforms. This work goes beyond the focus of current neuromorphic computing

architectures on computational models for neuron and synapse to examine other

computational units of the biological brain that might contribute to cognition and

especially self-repair. We draw inspiration and insights from computational neuroscience

regarding functionalities of glial cells and explore their role in the fault-tolerant capacity of

Spiking Neural Networks (SNNs) trained in an unsupervised fashion using Spike-Timing

Dependent Plasticity (STDP). We characterize the degree of self-repair that can be

enabled in such networks with varying degree of faults ranging from 50 to 90% and

evaluate our proposal on the MNIST and Fashion-MNIST datasets.

Keywords: astrocytes, unsupervised learning, spiking neural networks, spike-timing dependent plasticity,

self-repair

1. INTRODUCTION

Neuromorphic computing has made significant strides over the past few years—both from
hardware (Merolla et al., 2014; Sengupta and Roy, 2017; Davies et al., 2018; Singh et al., 2020)
and algorithmic perspective (Diehl and Cook, 2015; Neftci et al., 2019; Sengupta et al., 2019; Lu
and Sengupta, 2020). However, the quest to decode the operation of the brain have mainly focused
on spike based information processing in the neurons and plasticity in the synapses. Over the past
few years, there has been increasing evidence that glial cells, and in particular astrocytes, play a
crucial role in a multitude of brain functions (Allam et al., 2012). As a matter of fact, astrocytes
represent a large proportion of the cell population in the human brain (Allam et al., 2012). There
have been also suggestions that complexity of astrocyte functionality can significantly contribute to
the computational power of the human brain. Astrocytes are strategically positioned to ensheath
tens of thousands of synapses, axons and dendrites among others, thereby having the capability
to serve as a communication channel between multiple components and behave as a sensing
medium for ongoing brain activity (Chung et al., 2015). This has led neuroscientists to conclude
that astrocytes play a major role in higher order brain functions like learning and memory, in
addition to neurons and synapses. Over the past few years, there have beenmultiple studies to revise
the neuron-circuit model for describing higher order brain functions to incorporate astrocytes as
part of the neuron-glia network model (Allam et al., 2012; Min et al., 2012). These investigations
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clearly indicate and quantify that incorporating astrocyte
functionality in network models influence neuron excitability,
synaptic strengthening and, in turn, plasticity mechanisms like
Short-Term Plasticity and Long-Term Potentiation, which are
important learning tools used by neuromorphic engineers.

The key distinguishing factors of our work against prior efforts
can be summarized as follows:

(i) While recent literature reports astrocyte computational
models and their impact on fault-tolerance and synaptic learning
(Allam et al., 2012; De Pittà et al., 2012; Gordleeva et al., 2012;
Min et al., 2012; Wade et al., 2012), the studies have been mostly
confined to small scale networks. This work is a first attempt to
explore the self-repair role of astrocytes at scale in unsupervised
SNNs in standard visual recognition tasks.

(ii) In parallel, there is a long history of implementing
astrocyte functionality in analog and digital CMOS
implementations (Irizarry et al., 2013; Nazari et al., 2015;
Ranjbar and Amiri, 2015; Lee and Parker, 2016; Liu et al.,
2017; Amiri et al., 2018; Karimi et al., 2018). More recently,
emerging physics in post-CMOS technologies like spintronics
are also being leveraged to mimic glia functionalities at a
one-to-one level (Garg et al., 2020). However, the primary focus
has been on a brain-emulation perspective, i.e., implementing
astrocyte computational models with high degree of detail in
the underlying hardware. We explore the aspects of astrocyte
functionality that would be relevant to self-repair in the context
of SNN based machine learning platforms and evaluate the
degree of bio-fidelity required.

(iii) While Refs. (Hazan et al., 2019; Saunders et al., 2019b)
discusses impact of faults in unsupervised STDP enabled
SNNs, self-repair functionality in such networks have not been
studied previously.

While neuromorphic hardware based on emerging post-
CMOS technologies (Jo et al., 2010; Kuzum et al., 2011;
Ramakrishnan et al., 2011; Jackson et al., 2013; Sengupta and
Roy, 2017) have made significant advancements to reduce the
area and power efficiency gap of Artificial Intelligence (AI)
systems, such emerging hardware are characterized by a host
of non-idealities which has greatly limited its scalability. Our
work provides motivation toward autonomous self-repair of such
faulty neuromorphic hardware platforms. The efficacy of our
proposed astrocyte enabled self-repair process is measured by
the following steps: (i) Training SNNs using unsupervised STDP
learning rules in networks equipped with lateral inhibition and
homeostasis, (ii) Introducing “faults”1 in the trained weight
maps by setting a randomly chosen subset of the weights to
zero and (iii) Implementing self-repair by re-training the faulty
network with astrocyte functionality augmented STDP learning
rules. We also compare our proposal with sole STDP based re-
training strategy and substantiate our results on the MNIST and
F-MNIST datasets.

1Note that “faults” are disjoint from the concept of “dropout” (Srivastava et al.,

2014) used in neural network training. In dropout, neurons are randomly deleted

(along with their connections) only during training to avoid overfitting. In

contrast, faults in our work refer to static non-ideal stuck at zero synaptic

connections present during both the re-training and inference stages.

FIGURE 1 | (A) Network with no faults, (B) Network with fault occurring in

synapse associated with neuron N2 (Wade et al., 2012). 2-AG is local signal

associated with each synapse while e-SP is a global signal. A1 is the astrocyte.

2. MATERIALS AND METHODS

2.1. Astrocyte Preliminaries
In addition to astrocyte mediated meta-plasticity for learning
and memory (Nadkarni and Jung, 2004, 2007; Volman et al.,
2007; Wade et al., 2012), there has been indication that
retrograde signaling via astrocytes probably underlie self-
repair in the brain. Computational models demonstrate that
when faults occur in synapses corresponding to a particular
neuron, indirect feedback signal (mediated through retrograde
signaling by the astrocyte via endocannabinoids, a type of
retrograde messenger) from other neurons in the network
implements repair functionality by increasing the transmission
probability across all healthy synapses for the affected neuron,
thereby restoring the original operation (Wade et al., 2012).
Astrocytes modulate this synaptic transmission probability (PR)
through two feedback signaling pathways: direct and indirect,
responsible for synaptic depression (DSE) and potentiation
(e-SP), respectively. Multiple astrocyte computational models
(Nadkarni and Jung, 2004, 2007; Volman et al., 2007; Wade
et al., 2012) describe the interaction of astrocytes and neurons
via the tripartite synapse where the astrocyte’s sensitivity to
2-arachidonyl glycerol (2-AG), a type of endocannabinoid, is
considered. Each time a post synaptic neuron fires, 2-AG
is released from the post synaptic dendrite and can be
described as:

d(AG)

dt
=

−AG

τAG
+ rAGδ(t − tsp) (1)

where, AG is the quantity of 2-AG, τAG is
the decay rate of 2-AG, rAG is the 2-AG
production rate and tsp is the time of the post-
synaptic spike.

The 2-AG binds to receptors (CB1Rs) on the astrocyte process
and instigates the generation of IP3, which subsequently binds
to IP3 receptors on the Endoplasmic Reticulum (ER) to open
channels that allow the release of Ca2+. It is this increase in
cystolic Ca2+ that causes the release of gliotransmitters into
the synaptic cleft that is ultimately responsible for the indirect
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FIGURE 2 | Simulation results of the network in Figure 1 using the

computational model of astrocyte mediated self-repair from Wade et al. (2012).

Total simulation time is 400 s. At 200 s, faults are introduced in 70% of the

synapses connected to N2. All the synapses have PR(t0)=0.5. (A) e-SP of N1

and N2. It is the same for both N1 and N2 since e-SP is a global function, (B)

DSE of N1 and N2. It is different for each neuron as it is dependent upon the

neuron output. At 200 s, after the introduction of the faults in N2, only DSE of

N2 changes, (C) PR of different types of synapses connected to N1 and N2,

and (D) Firing rate of neurons N1 and N2.

signaling. The Li-Rinzel model (Li and Rinzel, 1994) uses three
channels to describe the Ca2+ dynamics within the astrocyte:
Jpump models how Ca2+ is pumped into the ER from the
cytoplasm via the Sarco-Endoplasmic-Reticulum Ca2+-ATPase
(SERCA) pumps, Jleak describes Ca

2+ leakage into the cytoplasm
and Jchan models the opening of Ca2+ channels by the mutual
gating of Ca2+ and IP3 concentrations. The Ca2+ dynamics is
thus given by:

dCa2+

dt
= Jchan + Jleak − Jpump (2)

The details of the equations and their derivations can be obtained
fromWade et al. (2012) and De Pittà et al. (2009).

The intracellular astrocytic calcium dynamics control the
glutamate release from the astrocyte which drives e-SP. This
release can be modeled by:

d(Glu)

dt
=

−Glu

τGlu
+ rGluδ(t − tCa) (3)

FIGURE 3 | In the above equations, the STDP learning window height is a

non-linear increasing function of the deviation 1f from the ideal firing frequency

of the post-neuron.

FIGURE 4 | The single layer SNN architecture with lateral inhibition and

homeostasis used for unsupervised learning.

FIGURE 5 | Histogram count of the ideal firing rate of neurons responding to

digit “0” vs. digit “1” (measured from 5,000 test examples of the MNIST

dataset).

where, Glu is the quantity of glutamate, τGlu is the glutamate
decay rate, rGlu is the glutamate production rate and tCa is the
time of the Ca2+ threshold crossing. To model e-SP:

τeSP
d(eSP)

dt
= −eSP+meSPGlu(t) (4)

where, τeSP is the decay rate of e-SP and meSP is a scaling factor.
Equation (4) substantiates that the level of e-SP is dependent on
the quantity of glutamate released by the astrocyte.

The released 2-AG also binds directly to pre-synpatic CB1Rs
(direct signaling). A linear relationship is assumed between DSE
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FIGURE 6 | Test accuracy of a 225 neuron network on the MNIST dataset

with 70% faulty connections with normal and enhanced learning rates during

STDP re-training process. Re-training with A-STDP rule is also depicted.

FIGURE 7 | (A–D) Learnt weight patterns for 225 neuron network on the

MNIST dataset are shown. Re-training the network with sole STDP learning

causes distortion of the weight maps (50 and 80% fault cases are plotted). The

red boxes in (A,B) highlight how the neurons can change association toward a

particular class during re-learning thereby forgetting their original learnt

representations. Receptive fields of all neurons undergo distortion for the 80%

fault case.

and the level of 2-AG released by the post-synaptic neuron as:

DSE = −AG× KAG (5)

where, AG is the amount of 2-AG released by the post-synaptic
neuron and is found from Equation (1) and KAG is a scaling

factor. The PR associated with each synapse is given by the
following equation:

PR(t) = PR(t0)+ PR(t0)×

(

DSE(t)+ eSP(t)

100

)

(6)

where, PR(t0) is the initial PR of the synapses, e-SP and DSE are
given by Equations (4) and (5), respectively. In the computational
models, the effect of DSE is local to the synapses connected to a
particular neuron whereas all the tripartite synapses connected
to the same astrocyte receive the same e-SP. Under no-fault
condition, the DSE and e-SP reach a dynamic equilibrium where
the PR is unchanged over time, resulting in a fixed firing rate
for the neurons. When a fault occurs, this balance subsides and
the PR changes according to Equation (6) to restore the firing
rate to its previous value. To showcase this effect consider for
instance, Figure 1 where a simple SNN with two post-synaptic
neurons is depicted. Let us assume that each post-neuron receives
input spikes from 10 pre-neurons. The initial PR of the synapses
were set to 0.5. Figure 1A is the case with no faults, while in
Figure 1B, faults have occurred after some time in 70% of the
synapses associated with post-neuron N2 (Figure 2). Note, here
“faults” imply that the synapses do not take part in transmission
of the input spikes i.e., have a PR of 0. This results in a drop
of the firing frequency associated with N2 while operation of
N1 is not impacted. Thus, the amount of 2-AG released by N2
decreases, which increases DSE and in turn increases the PR of
the associated synapses of N2 where no faults have occurred.
Hence, we observe in Figure 2D that the increased PR recovers
the firing rate and approaches the ideal firing frequency. Note
that the degree of self-recovery, i.e., the difference between
the recovered and ideal frequency is a function of the fault
probability. The simulation conditions and parameters for the
modeling are based on Wade et al. (2012). Interested readers
are directed to Wade et al. (2012) for an extensive discussion on
the astrocyte computational model and the underlying processes
governing the retrograde signaling.

A key question that we have attempted to address in this
work is the computational complexity at which we require
to model the feedback mechanism to implement autonomous
repair in such self-learning networks. Simplifying the feedback
modeling would enable us to implement such functionalities by
efficient hardware primitives. For instance, the core functionality
of astrocyte self-repair occurs in conjunction with STDP based
learning in synapses. Figure 3 shows a typical STDP learning
rule where the change in synaptic weight varies exponentially
with the spike time difference between the pre- and post-neuron
(Liu et al., 2018), according to measurements performed in
rat glutamatergic synapses (Bi and Poo, 2001). Typically, the
height of the STDP weight update for potentiation/depression
is constant (A+/A−). However, astrocyte mediated self-repair
suggests that the weight update should be a function of the firing
rate of the post-neuron (Liu et al., 2018). Assuming the fault-
less expected firing rate of the post-neuron to be fideal and the
non-ideal firing rate to be f , the synaptic weight update window
height should be a function of 1f = fideal − f . The concept
has been explained further in Figure 3 and is also in accordance
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FIGURE 8 | Simulation results of the network in Figure 1 using the

computational model of Wade et al. (2012) with synapses having different initial

PR values. Total simulation time is 400 s. At 200 s, faults are introduced in 8

synapses with high initial PR connected to N2. (A) e-SP of N1 and N2, (B)

DSE of N2, (C) PR of the 3 types of synapses connected to N2 (orange:

healthy synapse with PR(t0)=0.5, green: healthy synapse with PR(t0)=0.1 and

blue: faulty synapse with PR(t0)=0.5 till 200 s and PR(t0)=0 afterwards) and (D)

Firing rate of neuron N2.

with Figure 2 where the PR increase after fault introduction
varies in a non-linear fashion over time and eventually stabilizes
once the self-repaired firing frequency approaches the ideal value.
The functional dependence is assumed to be that of a sigmoid
function—indicating that as the magnitude of the fault, i.e.,
deviation in the ideal firing frequency of the neuron increases,
the height of the learning window increases in proportion to
compensate for the fault (Liu et al., 2018). Note that the term
“fault” for the machine learning workloads, described herein,
refers to synaptic weights (symbolizing PR) stuck at zero.
Therefore, with increasing amount of synaptic faults, f <<

fideal, thereby increasing the STDP learning window height
significantly. During the self-healing process, the frequency
deviation gradually reduces and thereby the re-learning rate also
becomes less pronounced and finally saturates once the ideal
frequency is reached. While our proposal is based on Liu et al.
(2018), prior work has been explored in the context of a prototype
artificial neural network with only 4 input neurons and 4 output
neurons. Extending the framework to an unsupervised SNN

FIGURE 9 | Value of wα (98-th percentile from weight distribution of the entire

network) during the self-repair process using A-STDP learning rule for a 225

neuron network on the MNIST Dataset with 80% faulty connections.

based machine learning framework therefore requires significant
explorations, highlighted next.

2.2. Neuron Model and Synaptic Plasticity
We utilized the Leaky Integrate and Fire (LIF) spiking neuron
model in our work. The temporal LIF neuron dynamics are
described as,

τmem
∂v(t)

∂t
= −v(t)+ vrest + I(t) (7)

where, v(t) is the membrane potential, τmem is the membrane
time constant, vrest is the resting potential and I(t) denotes the
total input to the neuron at time t. The weighted summation
of synaptic inputs is represented by I(t). When the neuron’s
membrane potential crosses a threshold value, vth(t), it fires an
output spike and the membrane potential is reset to vreset . The
neuron’s membrane voltage is fixed at the reset potential for a
refractory period, δref , after it spikes during which it does not
receive any inputs.

In order to ensure that single neurons do not dominate
the firing pattern, homeostasis (Diehl and Cook, 2015) is also
implemented through an adaptive thresholding scheme. The
membrane threshold of each neuron is given by the following
temporal dynamics,

vth(t) = θ0 + θ(t)

τtheta
∂θ(t)

∂t
= −θ(t)

(8)

where, θ0 > vrest , vreset and is a constant. τtheta is the adaptive
threshold time constant. The adaptive threshold, θ(t) is increased
by a constant quantity θ+, each time the neuron fires, and decays
exponentially according to the dynamics in Equation 8.

A trace (Morrison et al., 2008) based synaptic weight update
rule was used for the online learning process (Diehl and Cook,
2015; Saunders et al., 2019b). The pre and post-synaptic traces
are given by xpre and xpost , respectively.Whenever the pre (post) -
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synaptic neuron fires, the variable xpre (xpost) is set to 1, otherwise
it decays exponentially to 0 with spike trace decay time constant,
τtrace. The STDP weight update rule is characterized by the
following dynamics,

1w =

{

ηpost ∗ xpre on post-synaptic spike

−ηpre ∗ xpost on pre-synaptic spike
(9)

where, ηpre/ηpost denote the learning rates for pre-synaptic/post-
synaptic updates, respectively. The weights of the neurons are
bounded in the range of [0,wmax]. It is worth mentioning here
that the sum of the weights associated with all post-synaptic
neurons is normalized to a constant factor,wnorm (Saunders et al.,
2019a).

2.3. Network Architecture
Our SNN based unsupervised machine learning framework
is based on single layer architectures inspired from cortical
microcircuits (Diehl and Cook, 2015). Figure 4 shows the
network connectivity of spiking neurons utilized for pattern-
recognition problems. Such a network topology has been shown
to be efficient in several problems, such as digit recognition
(Diehl and Cook, 2015) and sparse encoding (Knag et al., 2015).
The SNN, under consideration, has an Input Layer with the
number of neurons equivalent to the dimensionality of the
input data. Input neurons generate spikes by converting each
pixel in the input image to a Poisson spike train whose average
firing frequency is proportional to the pixel intensity. This layer
connects in an all-to-all fashion to the Output Layer through
excitatory synapses. The Output layer has nneurons LIF neurons

TABLE 1 | Simulation parameters.

Parameters Value

Membrane time constant, τmem 100 ms

Spike trace decay time constant, τtrace 20 ms

Resting potential, vrest −65 mV

Threshold voltage constant, θ0 −52 mV

Membrane reset potential, vreset −60 mV

Refractory period, δref 5 ms

Adaptive threshold time constant, τtheta 107ms

Adaptive threshold voltage increment, θ+ 0.05

Post-synaptic learning rate, ηpost 10−2 (MNIST)

4× 10−3 (F-MNIST)

Pre-synaptic learning rate, ηpre 10−4 (MNIST)

4× 10−5 (F-MNIST)

Normalization factor, wnorm 78.4

No. of excitatory neurons, nneurons 225 / 400 (MNIST)

400 (F-MNIST)

Static inhibitory synaptic weight, wrecurrent -120 (MNIST)

−250 (F-MNIST)

A-STDP weight-percentile hyperparameter, α 98

A-STDP non-linearity hyperparameter, σ 2

characterized by homeostasis functionality. It also has static
(constant weights) recurrent inhibitory synapses with weight
values, wrecurrent , for lateral inhibition to achieve soft Winner-
Take-All (WTA) condition. Each neuron in the Output Layer
has an inhibitory connection to all the neurons in that layer
except itself. Trace-based STDP mechanism is used to learn the
weights of all synapses between the Input and Output Layers. The
neurons in the Output Layer are assigned classes based on their
highest response (spike frequency) to input training patterns
(Diehl and Cook, 2015).

2.4. Challenges and Astrocyte Augmented
STDP (A-STDP) Learning Rule Formulation
One of the major challenges in extending the astrocyte based
macro-modeling in such self-learning networks lies in the fact
that the ideal neuron firing frequency is a function of the specific
input class the neuron responds to. This is substantiated by
Figure 5 which depicts the histogram distribution of the ideal
firing rate of the wining neuron in the fault-less network. Further,
due to sparse neural firing, the total number of output spikes of
the winning neurons over the inference window is also small,
thereby limiting the amount of information (number of discrete
levels) that can be encoded in the frequency deviation, 1f . This
leads to the question: Can we utilize another surrogate signal that
gives us information about the degree of self-repair occurring in
the network over time while being independent of the class of the
input data?

While the above challenge is related to the process of reducing
the STDP learning window over time, we observed that using
sole STDP learning or with a constant enhanced learning rate
consistently reduced the network accuracy over time (Figure 6).
Figure 7 also depicts that normal STDP retraining with faulty
synapses slowly loses their learnt representations over time.
Re-learning all the healthy synaptic weights uniformly using
STDP with an enhanced learning rate should at least result in
some accuracy improvement for the initial epochs of re-training,
even if the modulation of learning window height over time is
not incorporated in the self-repair framework. The degradation
of network accuracy starting from the commencement of the
retraining process signified that some additional factors may
have been absent in the astrocyte functionality macro-modeling
process, which is independent from the above challenge of
modulating the temporal behavior of the STDP learning window.

In that regard, we draw inspiration from Equation (6), where
we observe that the initial fault-free value of the PR acts as
a scaling factor for the self-repair feedback terms DSE and e-
SP. We perform a similar simulation for the network shown in
Figure 1, with each neuron receiving input from 10 synapses.
However in this case, we set the initial PR of all of the synapses
to 0.5, except one connected to N2; for which the initial PR was
set to 0.1. In other words, 9 of the synapses connected to N2
have a PR(t0)=0.5, while for one PR(t0)=0.1. The lower initial PR
value symbolizes a weaker connection. The network is simulated
for 400 s and at 200 s, the associated PR of 8 of the synapses
with higher initial PR are reduced to 0 to signify faulty condition
(Figure 8). We observe that after the introduction of the faults,
the PR of the synapses with the higher initial PR value is enhanced
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greatly compared to the one with the lower initial PR. This
leads us to the conclusion that synapses that play a greater role
in postsynaptic firing also play a greater role in the self-repair
process compared to other synapses.

Since our unsupervised SNN is characterized by analog
synaptic weights in the range of [0,wmax], we hypothesized
that this characteristic might underlie the reason for the
accuracy degradation and designed a preferential self-repair
learning rule for healthier synapses. This was found to result in
significant accuracy improvement during the retraining process
(discussed in next section). Our formulated A-STDP learning
rule formulation is therefore also guided by the following
question: Can we aggressively increase the healthy synaptic weights
during the initial learning epochs which preserves the original
representations learnt by the network?

Driven by the above observations, we formulated our
Astrocyte Augmented STDP (A-STDP) learning rule during the
self-repair process as,

1w =

{

ηpost ∗ xpre ∗ (w/wα)
σ on post-synaptic spike

−ηpre ∗ xpost on pre-synaptic spike
(10)

where, wα represents the weight value at the α-th percentile
of the network and serves as the surrogate signal to guide the
retraining process. Figure 9 depicts the temporal behavior of wα

for the 98-th percentile of the weight distribution. After faults
are introduced, wα is significantly reduced and slowly increases
over time during the re-learning process. It finally saturates off
at the bounded value wmax. The term w/wα ensures that the
effective learning rate for healthier synapses (w > wα) is much
higher than the learning rate for weaker connections (w < wα)
while σ dictates the degree of non-linearity. Since wα increases
over time, the enhanced learning process also reduces and finally
stops once wα saturates. It is worth mentioning here that wα , σ
and wmax are hyperparameters for the A-STDP learning rule. All
hyperparameter settings and simulation details are presented in
the next section.

FIGURE 11 | Improvement of test accuracy during re-learning is depicted as a

function of the training samples using A-STDP learning rule on the (A) MNIST

(225 and 400 neuron networks) and (B) F-MNIST datasets (400 neuron

network). Mean and standard deviation of the accuracy is plotted for 80% fault

simulation in the networks.

FIGURE 10 | Ablation studies for the hyperparameters (A) σ (with fixed α = 98) and (B) α (with fixed σ = 2) in A-STDP learning rule.
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TABLE 2 | Self-repair results for A-STDP enabled SNNs.

Network

description

Fault

probability

Accuracy after

fault

injection (%)

Accuracy after

weight

normalization (%)

Accuracy after

STDP

re-training (%)

Accuracy after

A-STDP

re-training (%)

Accuracy

gain from

A-STDP

MNIST Dataset

225 Excitatory neurons

Baseline accuracy = 89.53%

50% 75.41± 2.28 83.04± 0.49 76.69± 0.98 84.06± 0.70 1.02

60% 70.72± 1.41 80.25± 0.70 73.85± 1.18 82.19± 0.28 1.95

70% 61.86± 2.03 76.06± 1.22 70.57± 0.48 79.39± 1.13 3.33

80% 30.42± 3.26 69.13± 0.85 67.42± 1.37 75.42± 0.48 6.29

90% 9.92± 0.11 56.69± 1.45 61.40± 1.38 65.57± 1.28 8.89

400 Excitatory neurons

Baseline accuracy = 92.02%

50% 79.32± 2.57 85.56± 0.24 80.96± 1.24 87.16± 0.12 1.59

60% 73.01± 2.15 82.61± 0.22 79.12± 1.28 85.17± 0.33 2.56

70% 61.20± 1.10 79.77± 0.61 77.51± 0.62 83.00± 0.40 3.22

80% 30.18± 2.60 73.08± 0.87 73.26± 1.16 78.68± 0.73 5.58

90% 9.80± 0.27 59.90± 1.16 67.80± 0.77 68.85± 0.48 8.95

Fashion-MNIST dataset

400 Excitatory neurons

Baseline accuracy = 77.35%

50% 58.62± 1.24 73.85± 0.50 73.51± 0.30 75.88± 0.38 2.02

60% 39.12± 1.19 71.85± 1.36 72.23± 0.60 75.16± 0.49 3.31

70% 16.61± 0.69 70.21± 0.44 70.63± 0.70 73.14± 0.44 2.93

80% 10.00± 0.22 66.32± 0.58 68.80± 0.47 70.82± 0.57 4.51

90% 10.04± 0.28 60.24± 0.86 63.92± 0.77 65.49± 0.40 5.25

3. RESULTS

We evaluated our proposal in the context of unsupervised
SNN training on standard image recognition benchmarks under
two settings: scaling in network size and scaling in network
complexity. We used MNIST (LeCun and Cortes, 2010) and
Fashion-MNIST (Xiao et al., 2017) datasets for our analysis.
Both datasets contain 28 × 28 grayscale images of handwritten
digits / fashion products (belonging to one of 10 categories)
with 60,000 training examples and 10,000 testing examples. All
experiments are run in PyTorch framework using a single GPU
with a batchsize of 16 images. In addition to standard input pre-
processing for generating the Poisson spike train, the images in
F-MNIST dataset also undergo Sobel filtering for edge detection
before being converted to spike trains. The SNN implementation
is done using a modified version of the mini-batch processing
enabled SNN simulation framework (Saunders et al., 2019b) in
BindsNET (Hazan et al., 2018), a PyTorch based package (Link).
In addition to dataset complexity scaling, we also evaluated two
networks with increasing size (225 and 400 neurons) on the
MNIST dataset. For theMNIST dataset, the baseline test accuracy
of the ideal network was 89.53 and 92.02%, respectively. A 400-
neuron network was used for the F-MNIST dataset with 77.35%
accuracy. The baseline test accuracies are superior/comparable
to prior reported accuracies for unsupervised learning on both
datasets. For instance, Diehl and Cook (2015) reports 87%
accuracy for an STDP trained network with 400 neurons while
Zhu and Wang (2020) reports the best accuracy of 73.1% for

state-of-the-art clustering methods on the F-MNIST dataset.
Table 1 lists the network simulation parameters used in this work.
It is worth mentioning here that all hyperparameters were kept
unchanged (from their initial values during training) in the self-
repair process. We also kept the hyperparameters, wα and σ for
the A-STDP rule unchanged for all fault simulations. Figure 10
shows a typical ablation study of the hyperparameters α and σ .
For this study, we trained a 225-neuron network with 90% faults.
We divided the training set into training and validation subsets
in the ratio of 5:1, respectively, through random sampling. The
two accuracy plots shown in Figure 10 are models retrained on
the training subset and then evaluated on the new validation
set. Further hyperparameter optimizations for different fault
conditions can potentially improve the accuracy improvement
even further.

The network is first trained with sole STDP learning rule for
2 epochs and the maximum test accuracy network is chosen
as the baseline model. Subsequently, faults are introduced by
randomly deleting synapses (from the Input to the Output Layer)
post-training. Each synaptic connection was assigned a deletion
probability, pdel, to decide whether the connection would be
retained in the faulty network. For this work, pdel was varied
between 0.5 and 0.9 to analyze the network and re-train after
introducing faults. Note that A-STDP learning rule is only used
during this self-repair phase. It is worth mentioning here, that
weight normalization by factor wnorm (mentioned in section 2.2)
is used before starting the re-training process. This helps to
adjust the magnitude of firing threshold relative to the weights
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FIGURE 12 | (A–D) Initial and self-repaired weight maps of the 225 (400)

neuron network trained on MNIST (F-MNIST) dataset corresponding to 80%

fault simulations.

of the neurons (since the resultant magnitude diminishes due to
fault injection).

Figure 11 shows the test classification accuracy as a function
of re-learning epochs for a 225/400 neuron network with 80%
probability for faulty synapses. After the faults are introduced,
the network accuracy improves over time during the self-repair
process. The mean and standard deviation of test accuracy
from 5 independent runs are plotted in Figure 11. Figure 12
depicts the initial and self-repaired weight maps of the 225
(MNIST) and 400 (F-MNIST) neuron networks, substantiating
that original learnt representations are preserved during the
re-learning process. Table 2 summarizes our results for all
networks with varying degrees of faults. The numbers in
parentheses denote the standard deviation in accuracy from
the 5 independent runs. Since sole STDP learning resulted
in accuracy degradation for most of the runs, the accuracy
is reported after 1 re-learning epoch. For some cases, some
accuracy improvement through normal STDP was also observed.

The maximum accuracy is reported for the A-STDP re-training
process. After repair through A-STDP, the network is able to
achieve accuracy improvement across all level of faults, ranging
from 50 to 90%. Interestingly, A-STDP is able to repair faults
even in a 90% faulty network and improve the testing accuracy by
almost 9% (5%) for the MNIST (F-MNIST) dataset. Further, the
accuracy improvement due to A-STDP scales up with increasing
degree of faults. Note that the standard deviation of the final
accuracy over 5 independent runs is much smaller for A-STDP
than normal STDP re-training, signifying that the astrocyte
enabled self-repair is consistently stable, irrespective of the initial
fault locations.

4. DISCUSSION

The work provides proof-of-concept results toward the
development of a new generation of neuromorphic computing
platforms that are able to autonomously self-repair faulty non-
ideal hardware operation. Extending beyond just unsupervised
STDP learning, augmenting astrocyte feedback in supervised
gradient descent based training of SNNs needs to be explored
along with their implementation on neuromorphic datasets
(Orchard et al., 2015). In this work, we also focused on aspects
of astrocyte operation that would be relevant from a macro-
modeling perspective for self-repair. Further investigations on
understanding the role of neuroglia in neuromorphic computing
can potentially forge new directions related to synaptic learning,
temporal binding, among others.
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