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Our emotional experiences depend on our interoceptive ability to perceive and
interpret changes in our autonomous nervous system. An inaccurate perception and
interpretation of autonomic changes impairs our ability to understand and regulate our
emotional reactions. Impairments in emotion understanding and emotion regulation
increase our risk for mental disorders, indicating that interoceptive deficits play an
important role in the etiology and pathogenesis of mental disorders. We, thus, need
measures to identify those of us whose interoceptive deficits impair their emotion
understanding and emotion regulation. Here, we used cardiac measures to investigate
how our ability to engage prefrontal and (para-)limbic brain region regions affects
our ability to perceive and interpret cardiac changes. We administered a heartbeat
detection task to a sample of healthy individuals (n = 113) whose prefrontal-(para-)
limbic engagement had been determined on basis of a heart rate variability recording.
We found a positive association between heartbeat detection and heart rate variability,
implying that individuals with higher heart rate variability were more accurate in heartbeat
detection than individuals with lower heart rate variability. These findings suggest that our
interoceptive accuracy depends on our prefrontal-(para-)limbic engagement during the
perception and interpretation of cardiac changes. Our findings also show that cardiac
measures may be useful to investigate the association between interoceptive accuracy
and prefrontal-(para-)limbic engagement in a time- and cost-efficient manner.

Keywords: heartbeat detection, heart rate variability, interoception, attention, vagal tone, emotion

INTRODUCTION

Interoception refers to our ability to perceive and interpret changes in our autonomous nervous
system (Craig, 2002). Cardiac and respiratory activity are examples of autonomic processes that
frequently change during emotional events (Kreibig, 2010). The perception and interpretation of
these autonomic changes forms the basis of our emotional experiences and helps us to understand
and to regulate our emotional reactions (Critchley and Garfinkel, 2017). For instance, those of
us who are sensitive to cardiac changes have less difficulties in understanding and responding to
emotional events than those of us who are insensitive to cardiac changes (Fustos et al., 2013; Shah
et al., 2017; Lischke et al., 2020a,b). Given that emotion understanding and emotion regulation is
central for our mental health (Gross and Jazaieri, 2014), it is not surprising that alterations in the
perception and interpretation of autonomic changes increase our risk for mental disorders (Paulus
and Stein, 2010). For instance, those of us whose cardiac sensitivity is in the abnormal range have
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more mental health problems than those of us whose cardiac
sensitivity is in the normal range (Pollatos et al., 2007b, 2009;
Herbert et al., 2011; Shah et al., 2016). The way we perceive
and interpret autonomic changes, thus, appears to be of utmost
importance for our mental health.

To understand how we perceive and interpret autonomic
changes, we need measures that differentiate between different
aspects of interoception (Critchley and Garfinkel, 2017).
Fortunately, these measures have already been developed
by researchers. Depending on the research question, these
measures assess interoceptive accuracy (i.e., objective accounts of
interoception), interoceptive sensibility (i.e., subjective accounts
of interoception) or interoceptive awareness (i.e., correspondence
between objective and subjective accounts of interoception).
The most popular measure is the heartbeat detection task
(Schandry, 1981), an interceptive accuracy task that requires
the tracking of heartbeats within different time intervals.
By employing the heartbeat detection task, researchers were
able to identify a network of brain regions that is relevant
for the perception and interpretation of cardiac changes
(Schulz, 2016). This network comprises several brain regions
but prefrontal and (para-)limbic brain regions appear to
be the most important ones. Prefrontal and (para-)limbic
show the most pronounced activity changes during the
perception and interpretation of cardiac changes (Critchley et al.,
2004; Pollatos et al., 2005; Kuehn et al., 2016), implying a
close association between prefrontal-(para-)limbic activity and
interoceptive accuracy. It may, thus, be possible that our ability
to perceive and interpret cardiac changes depends on our
ability to engage prefrontal and (para-)limbic brain regions
for this matter.

To test this possibility, we administered measures of
interoceptive accuracy and prefrontal-(para-)limbic engagement
to a sample of young adults. Interoceptive accuracy was
measured with the heartbeat detection task and prefrontal-(para-
)limbic engagement was measured with a heart rate recording.
The heart rate recording was used for the determination of
parasympathically induced heart rate changes, a measure of
vagally mediated heart rate variability (Shaffer and Ginsberg,
2017). Parasympathetically induced heart rate changes are closely
associated with activity changes in prefrontal and (para-)limbic
brain regions (Thayer et al., 2012; Ruiz Vargas et al., 2016),
indicating that vagally mediated heart rate variability reflects
prefrontal-(para-)limibic engagement (Thayer and Lane, 2009;
Smith et al., 2017). The heart rate recording, thus, allowed us
to investigate the association between interoceptive accuracy
and prefrontal-(para-)limbic engagement in an unobtrusive
manner. In light of previous findings showing that activity
changes in prefrontal and (para-)limbic brain regions are
positively associated with the perception and interpretation
of cardiac changes (Critchley et al., 2004; Pollatos et al.,
2005; Kuehn et al., 2016), we expected to find a similar
association between vagally mediated heart rate variability
and heartbeat detection. Preliminary findings suggest that
vagally mediated heart rate variability may be positively
associated with heartbeat detection (Owens et al., 2018).
We, thus, expected to find a positive rather than negative

association between vagally mediated heartrate variability and
heartbeat detection.

MATERIALS AND METHODS

Participants
We based our participant recruitment on an a priori power
analysis with G∗Power 3.1.9.2 (Faul et al., 2009). The power
analysis suggested that 82 participants would provide sufficient
data to detect meaningful associations between vagally mediated
heartrate variability and heartbeat detection in our analyses
[correlation analysis (two-tailed): α = 0.05, 1-ß = 0.80, r = 0.30;
regression analyses (total number of predictors: 8, number
of tested predictors: 1): α = 0.05, 1-ß = 0.80, f2 = 0.15].
Following this suggestion, we recruited 113 participants for
the study (see Table 1). In order to be included in the study,
the participants had to be native speakers and to be aged
between 18 and 35 years. Participants who were currently in
psychotherapeutic treatment were excluded from the study.
Inclusion and exclusion of participants was determined on
basis of an in-house questionnaire assessing sociodemographic
(age and sex), anthropometric (height and weight) and medical
(physical activity in terms of aerobic fitness, smoking status,
medication status, treatment status) information (Lischke et al.,
2018a). All participants that were included in the study provided
written-informed consent to the study protocol. The study
protocol, which had been approved by the local ethics committee,
was carried out in accordance with the Declaration of Helsinki.

Procedure
We used a heart rate recording to determine participants’ vagally
mediated heart rate variability and heartbeat detection. Each
recording session was scheduled during the daytime (at least 2 h
after wakening time and 5 h before sleeping time) to control
for circadian and diurnal variations in participants’ heart rate
(Yamasaki et al., 1996; Bonnemeier et al., 2003). Before we
started with the recording session, we asked the participants
to use the bathroom. This allowed us to rule out that bladder
filling and gastric digestion had an effect on participants’ heart
rate (Fagius and Karhuvaara, 1989; Rossi et al., 1998). The
participants completed the recording session in a comfortable
chair that was located in a dimly lit room. The heart rate
recording was performed with a mobile heart rate monitor (RS
800, Polar Electro Oy; Kempele, Finland) that has been shown
to record heartbeats as accurate as mobile electrocardiogram
systems (Weippert et al., 2010).

Heartbeat Detection
Participants’ heartbeat detection was determined during the
first part of the recording session. Following an established
procedure (Lischke et al., 2020a,b), we asked the participants
to count their heartbeats during 25, 35, and 45 s lasting time
intervals. They were not informed about the length of the
time intervals and they were not allowed to use any measure
that may have facilitated the heartbeat detection. We used the
number of counted and recorded heartbeats to compute two
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TABLE 1 | Participant characteristics.

M (SD) 95% CI

Sex (f/m, n) 40/69

Age 26.30 (3.91) [25.55, 27.04]

Tobacco use (n) 28

Medication use (n) 10

Anti-allergic medication 3

Endocrine medication 5

Psychotropic medication 2

Contraceptive use (n) 22

Unspecified contraceptives 19

Androgenic contraceptives 1

Anti-androgenic contraceptives 2

Body mass index (kg/m2) 22.90 (2.83) [22.40, 23.42]

Physical activity (h/week) 6.19 (3.53) [5.57, 6.86]

Respiratory activity (log pHF, Hz) −0.71 (0.10) [−0.72, −0.69]

Heart rate (bpm) 74.70 (12.20) [72.25, 76.88]

Heart rate variability

RMSSD (ms) 43.54 (26.19) [38.51, 48.79]

log RMSSD (ms) 1.57 (0.25) [1.52, 1.62]

pNN50 (%) 20.72 (17.66) [17.35, 24.20]

log pNN50 (%) 1.14 (0.48) [1.04, 1.23]

Heartbeat detection

HBDSC 0.69 (0.18) [0.66, 0.72]

HBDGA 0.60 (0.26) [0.56, 0.65]

pHF, peak of high frequency band (Shaffer and Ginsberg, 2017); RMSSD, root
mean square of successive differences between consecutive heartbeats (Shaffer
and Ginsberg, 2017); pNN50, number of successive heartbeat interval pairs that
differ more than 50 ms divided by the total number of all heartbeat intervals (Shaffer
and Ginsberg, 2017); HBDSC, Heartbeat detection – traditional index (Schandry,
1981); HBDGA, Heartbeat detection – alternative index (Garfinkel et al., 2015).

different indices of participants’ heartbeat detection, a traditional
heartbeat detection index1 (Schandry, 1981) and an alternative
heartbeat detection index2 (Hart et al., 2013) that has been shown
to be to be less sensitive against outliers than the traditional
heartbeat detection index (Garfinkel et al., 2015). We used both
heartbeat detection indices in our analyses to test the robustness
of our findings.

Heart Rate Variability
Participants’ vagally mediated heart rate variability was
determined during the second part of the recording session.
Following an established procedure (Lischke et al., 2018b, 2019),
we asked the participants to sit still and to stay awake during a
300 s lasting time interval. The heartbeats that were recorded
during this time interval were analyzed with Kubios HRV 2.2
(Tarvainen et al., 2014). The analysis followed the guidelines of
the Task Force of the European Society of Cardiology (1996): The

1

1HBDSC =
1
3

∑(
1−

(|nheartbeatsreal − nheartbeatscounted|)

nheartbeatsreal

)
2

2HBDGF =
1
3

∑(
1−

(|nheartbeatsreal − nheartbeatscounted|)

(nheartbeatsreal + nheartbeatscounted)/2

)

recordings were detrended (smoothn priors: λ = 500), visually
inspected and artifact corrected (adaptive filtering: cubic spline
interpolation) before they were subjected to a time-domain
and spectral analysis. The time-domain analysis was used for
the determination of a heart rate index (meanHR) and for the
determination of two vagally mediated heartrate variability
indices (the root mean square of successive differences between
consecutive heartbeats, RMSSD; the number of successive
heartbeat interval pairs that differ more than 50 ms divided by
the total number of all heartbeat intervals, pNN50). The values of
these indices were in the range of values that have been reported
in comparable samples of participants (Dantas et al., 2018).
The spectral analysis was used to determine a respiration index
(Thayer et al., 2002), the peak frequency of the high frequency
band (pHF). We used the respiration index to adjust the vagally
mediated heartrate variability indices for respiration-induced
alterations (Weippert et al., 2015). Using both vagally mediated
heartrate variability indices in our analyses allowed us to test the
robustness of our findings.

Statistical Analyses
We performed all analyses with the bootstrapping module of
SPSS 27 (SPSS Inc., Chicago, IL, United States). Preliminary
analyses revealed that the datasets of four participants were
incomplete or invalid due to a recording error. We, thus, used
the datasets of the remaining 109 participants for the main
analyses. The main analyses comprised regression and correlation
analyses. Multiple regressions were run to analyze the association
between participants’ vagally mediated heart rate variability and
heartbeat detection. The vagally mediated heart rate variability
indices constituted the predictor variables and the heartbeat
detection indices constituted the criterion variables. Participant
characteristics that may distort the association between vagally
mediated heartrate variability and heartbeat detection were
used as additional predictor variables (age, sex, body mass
index, physical activity, respiratory activity, smoking status, and
medication status). The regression analyses were complemented
by correlation analyses. Partial correlations were run to quantify
the association between participants’ vagally mediated heart rate
variability and heartbeat detection. The vagally mediated heart
rate variability indices constituted the dependent variable, the
heartbeat detection indices the independent variables and the
aforementioned participant characteristics the control variables.
We set the significance level for all analyses at α ≤ 0.05
and determined significance values (p), effect size measures (r,
R2,1R2, and B) and 95% confidence intervals (CIs).

RESULTS

Associations Between the Vagally
Mediated Heart Rate Variability Indices
(RMSSD, pNN50) and the Traditional
Heartbeat Detection Index (HBDSC)
In the first set of regression models, the traditional heartbeat
detection index constituted the criterion variable. Entering the
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TABLE 2 | Associations between the vagally mediated heart rate variability indices (RMSSD and pNN50) and the traditional heartbeat detection index (HBDSC).

Heartbeat detection (HBDSC) Heartbeat detection (HBDSC)

Model One B SE B 95% CI t p Model two B SE B 95% CI t p

Step one Step one

Sex 0.13 0.05 [0.03, 0.23] 2.37 0.015* Sex 0.13 0.05 [0.04, 0.23] 2.37 0.018*

Age 0.00 0.01 [−0.01, 0.01] −0.09 0.943 Age 0.00 0.01 [−0.01, 0.01] −0.09 0.915

Tobacco use −0.03 0.04 [−0.11, 0.06] −0.64 0.552 Tobacco use −0.03 0.04 [−0.11, 0.06] −0.64 0.545

Medication use 0.04 0.08 [−0.10, 0.21] 0.70 0.610 Medication use 0.04 0.08 [−0.10, 0.20] 0.70 0.574

Contraceptive use 0.03 0.05 [−0.08, 0.14] 0.54 0.545 Contraceptive use 0.03 0.05 [−0.07, 0.14] 0.54 0.559

Body mass index −0.01 0.01 [−0.02, 0.01] −0.97 0.342 Body mass index −0.01 0.01 [−0.02, 0.01] −0.97 0.312

Physical activity 0.01 0.01 [0.00, 0.02] 1.79 0.066 Physical activity 0.01 0.01 [0.00, 0.02] 1.79 0.068

Respiratory activity (log pHF) −0.03 0.16 [−0.32, 0.30] −0.15 0.891 Respiratory activity (log pHF) −0.03 0.16 [−0.35, 0.30] −0.15 0.870

Step two Step two

Sex 0.13 0.05 [0.03, 0.23] 2.33 0.013** Sex 0.12 0.05 [0.03, 0.22] 2.27 0.020*

Age 0.00 0.01 [−0.01, 0.01] 0.00 1.000 Age 0.00 0.00 [−0.01, 0.01] −0.07 0.946

Tobacco use −0.02 0.04 [−0.10, 0.07] −0.44 0.661 Tobacco use −0.02 0.04 [−0.1, 0.07] −0.41 0.694

Medication use 0.04 0.08 [−0.1, 0.20] 0.66 0.610 Medication use 0.04 0.07 [−0.08, 0.19] 0.72 0.551

Contraceptive use 0.05 0.05 [−0.06, 0.15] 0.81 0.374 Contraceptive use 0.04 0.05 [−0.06, 0.15] 0.69 0.452

Body mass index 0.00 0.01 [−0.02, 0.01] −0.50 0.669 Body mass index 0.00 0.01 [−0.02, 0.01] −0.41 0.687

Physical activity 0.01 0.00 [0.00, 0.02] 1.41 0.120 Physical activity 0.01 0.01 [0.00, 0.02] 1.24 0.185

Respiratory activity (log pHF) −0.11 0.16 [−0.40, 0.22] −0.59 0.486 Respiratory activity (log pHF) −0.10 0.16 [−0.41, 0.25] −0.53 0.558

Heart rate variability (log RMSSD) 0.15 0.06 [0.02, 0.28] 2.11 0.024* Heart rate variability (log pNN50) 0.09 0.04 [0.02, 0.16] 2.48 0.014**

Model one: step one: R2 = 0.15, F(8,100) = 2.13, p = 0.040*, step two: 1R2 = 0.04, 1F(1,99) = 4.46, p = 0.037*; model two: step one: R2 = 0.15, F(8,100) = 2.13, p = 0.040*, step two: 1R2 = 0.05, 1F(1,99) = 6.13,
p = 0.015*. HBDSC, Heartbeat detection – traditional index (Schandry, 1981); pHF, peak of high frequency band (Shaffer and Ginsberg, 2017); RMSSD, root mean square of successive differences between consecutive
heartbeats (Shaffer and Ginsberg, 2017); pNN50, number of successive heartbeat interval pairs that differ more than 50 ms divided by the total number of all heartbeat intervals (Shaffer and Ginsberg, 2017). *p ≤ 0.05,
**p ≤ 0.01, ***p ≤ 0.001.
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participant characteristics as predictor variables in a first step into
the regression models accounted for a significant proportion of
the variance in the traditional heartbeat detection index [RMSSD:
R2 = 0.15, F(8,100) = 2.13, p = 0.040; pNN50: R2 = 0.15,
F(8,100) = 2.13, p = 0.040, see Table 2]. However, sex was the
only predictor variable that turned out be significant in the
regression models [RMSSD: B = 0.14, SE B = 0.05, 95% CI [0.03,
0.23], t(100) = 2.37, p = 0.015; pNN50: B = 0.13, SE B = 0.05,
95% CI [0.04, 0.23], t(100) = 2.37, p = 0.018; see Table 2].
Entering the vagally mediated heart rate variability indices as
predictor variables in a second step into the regression models
also accounted for a significant proportion of the variance in
the traditional heartbeat detection index [RMSSD: 1R2 = 0.04,
1F(1,99) = 4.46, p = 0.037; pNN50: 1R2 = 0.05, F(1,99) = 6.13,
p = 0.015, see Table 2]. The vagally mediated heart rate variability
indices were, besides sex [RMSSD: B = 0.13, SE B = 0.05, 95%
CI [0.03, 0.23], t(99) = 2.33, p = 0.013; pNN50: B = 0.12, SE
B = 0.05, 95% CI [0.02, 0.22], t(99) = 2.27, p = 0.020; see Table 2],
the only significant predictors in the regression models [RMSSD:
B = 0.15, SE B = 0.06, 95% CI [0.02, 0.28], t(99) = 2.11, p = 0.024;
pNN50: B = 0.09, SE B = 0.04, 95% CI [0.02, 0.16], t(99) = 2.48,
p = 0.009; see Table 2]. Taken together, the regression models
suggested that there was a small to medium sized association
between the vagally mediated heart rate variability indices and
the traditional heartbeat detection index [RMSSD: r(99) = 0.21,
95% CI [0.05, 0.37], p = 0.037; pNN50: r(99) = 24, 95% CI [0.05,
0.41], p = 0.015; see Figure 1].

Associations Between the Vagally
Mediated Heart Rate Variability Indices
(RMSSD, pNN50) and the Alternative
Heartbeat Detection Index (HBDGA)
In the second set of regression models, the alternative heartbeat
detection index constituted the criterion variable. Entering the
participant characteristics as predictor variables in a first step into
the regression models accounted for a significant proportion of

the variance in the alternative heartbeat detection index [RMSSD:
R2 = 0.14, F(8,100) = 2.12, p = 0.041; pNN50: R2 = 0.14,
F(8,100) = 2.12, p = 0.041; see Table 3]. However, sex was the
only predictor variable that turned out be significant in the
regression models [RMSSD: B = 0.18, SE B = 0.08, 95% CI [0.03,
0.23], t(100) = 2.36, p = 0.017; pNN50: B = 0.18, SE B = 0.07,
95% CI [0.04, 0.33], t(100) = 2.36, p = 0.009; see Table 3].
Entering the vagally mediated heart rate variability indices as
predictor variables in a second step into the regression models
also accounted for a significant proportion of the variance in
the alternative heartbeat detection index [RMSSD: 1R2 = 0.04,
1F(1,99) = 4.79, p = 0.031; pNN50: 1R2 = 0.05, F(1,99) = 6.70,
p = 0.011; see Table 3]. The vagally mediated heart rate variability
indices were, besides sex [RMSSD: B = 0.18, SE B = 0.08, 95%
CI [0.03, 0.34], t(99) = 2.32, p = 0.022; pNN50: B = 0.17, SE
B = 0.07, 95% CI [0.04, 0.32], t(99) = 2.25, p = 0.015; see Table 3],
the only significant predictors in the regression models [RMSSD:
B = 0.23, SE B = 0.09, 95% CI [0.04, 0.40], t(99) = 2.19, p = 0.020;
pNN50: B = 0.13, SE B = 0.05, 95% CI [0.03, 0.22], t(100) = 2.59,
p = 0.007; see Table 3]. Taken together, the regression models
suggested that there was a small to medium sized association
between the vagally mediated heart rate variability indices and
the alternative heartbeat detection index [RMSSD: r(99) = 0.21,
95% CI [0.05, 0.37], p = 0.031; pNN50: r(99) = 0.25, 95% CI [0.06,
0.42], p = 0.011; see Figure 2].

DISCUSSION

To explore the possibility that our interoceptive accuracy depends
on our ability to engage prefrontal and (para-)limbic brain
regions for this matter (Critchley et al., 2004; Pollatos et al.,
2005, 2007a; Kuehn et al., 2016), we administered cardiac
measures of interoceptive accuracy and prefontal-(para-)limbic
engagement to a sample of young adults. Interoceptive accuracy
was measured with a heartbeat detection task and prefrontal-
(para-)limbic engagement with a heart rate recording. We used

FIGURE 1 | Scatterplots with lines of best fit and 95% confidence intervals demonstrating raw associations between the vagally mediated heart rate variability
indices (RMSSD and pNN50) and the traditional heartbeat detection index (HBDSC).
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TABLE 3 | Associations between the vagally mediated heart rate variability indices (RMSSD and pNN50) and the alternative heartbeat detection index (HBDGA).

Heartbeat detection (HBDGA) Heartbeat detection (HBDGA)

Model One B SE B 95% CI t p Model two B SE B 95% CI t p

Step one Step one

Sex 0.18 0.08 [0.03, 0.34] 2.36 0.017* Sex 0.18 0.07 [0.04, 0.33] 2.36 0.009**

Age 0.00 0.01 [−0.02, 0.01] −0.49 0.668 Age 0.00 0.01 [−0.02, 0.01] −0.49 0.656

Tobacco use −0.03 0.06 [−0.14, 0.09] −0.45 0.690 Tobacco use −0.03 0.06 [−0.13, 0.09] −0.45 0.696

Medication use 0.06 0.11 [−0.15, 0.29] 0.66 0.555 Medication use 0.06 0.11 [−0.14, 0.28] 0.66 0.583

Contraceptive use 0.04 0.08 [−0.12, 0.18] 0.53 0.579 Contraceptive use 0.04 0.08 [−0.1, 0.20] 0.53 0.565

Body mass index −0.01 0.01 [−0.03, 0.01] −1.05 0.290 Body mass index −0.01 0.01 [−0.03, 0.01] −1.05 0.318

Physical activity 0.01 0.01 [0.00, 0.03] 1.86 0.063 Physical activity 0.01 0.01 [0.00, 0.03] 1.86 0.064

Respiratory activity (log pHF) 0.02 0.23 [−0.42, 0.49] 0.07 0.930 Respiratory activity (log pHF) 0.02 0.23 [−0.42, 0.45] 0.07 0.933

Step two Step two

Sex 0.18 0.08 [0.03, 0.34] 2.32 0.022* Sex 0.17 0.07 [0.04, 0.32] 2.25 0.015*

Age 0.00 0.01 [−0.02, 0.01] −0.40 0.726 Age 0.00 0.01 [−0.02, 0.01] −0.47 0.688

Tobacco use −0.01 0.06 [−0.13, 0.10] −0.23 0.825 Tobacco use −0.01 0.06 [−0.12, 0.1] −0.20 0.842

Medication use 0.05 0.10 [−0.15, 0.27] 0.61 0.568 Medication use 0.06 0.10 [−0.13, 0.27] 0.68 0.552

Contraceptive use 0.07 0.08 [−0.09, 0.21] 0.82 0.384 Contraceptive use 0.06 0.08 [−0.09, 0.2] 0.70 0.468

Body mass index −0.01 0.01 [−0.03, 0.01] −0.56 0.553 Body mass index 0.00 0.01 [−0.03, 0.02] −0.47 0.665

Physical activity 0.01 0.01 [0.00, 0.03] 1.47 0.123 Physical activity 0.01 0.01 [0.00, 0.02] 1.29 0.162

Respiratory activity (log pHF) −0.10 0.24 [−0.57, 0.4] −0.40 0.647 Respiratory activity (log pHF) −0.08 0.23 [−0.54, 0.35] −0.32 0.734

Heart rate variability (log RMSSD) 0.23 0.09 [0.04, 0.4] 2.19 0.020* Heart rate variability (log pNN50) 0.13 0.05 [0.03, 0.22] 2.59 0.007**

Model one: step one: R2 = 0.14, F(8,100) = 2.12, p = 0.031*, step two: 1R2 = 0.04, 1F(1,99) = 4.79, p = 0.031*; model two: step one: R2 = 0.14, F(8,101) = 2.12, p = 0.041*, step two: 1R2 = 0.05, 1F(1,99) = 6.70,
p = 0.011*. HBDGA, Heartbeat detection – alternative index (Garfinkel et al., 2015); pHF, peak of high frequency band (Shaffer and Ginsberg, 2017); RMSSD, root mean square of successive differences between
consecutive heartbeats (Shaffer and Ginsberg, 2017); pNN50, number of successive heartbeat interval pairs that differ more than 50 ms divided by the total number of all heartbeat intervals (Shaffer and Ginsberg,
2017). *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 2 | Scatterplots with lines of best fit and 95% confidence intervals demonstrating raw associations between the vagally mediated heart rate variability
indices (RMSSD and pNN50) and the alternative heartbeat detection index (HBDGA).

the heartbeat detection task to determine two different heartbeat
detection indices and the heart rate recording to determine two
different vagally mediated heart rate variability indices (Shaffer
and Ginsberg, 2017). The vagally mediated heart rate indices
were both positively associated with the heartbeat detection
indices, regardless whether the traditional or alternative heartbeat
detection index were considered in the regression and correlation
analyses. The regression and correlation analyses were well-
powered and well-controlled, ruling out that the association
between the vagally mediated heart rate variability index and
the heartbeat detection indices was spurious. We, thus, found
the expected association between vagally mediated heart rate
variability and heartbeat detection. The association between
vagally mediated heart rate variability and heartbeat detection
supports the idea that our interoceptive accuracy depends on our
ability to engage prefrontal and (para-)limbic brain regions for
the perception and interpretation of cardiac changes.

To understand the association between vagally mediated heart
rate variability and heartbeat detection, we have to delineate
the processes that determine the performance on the heartbeat
detection task. Heartbeat detection relies on executive control
processes (Critchley and Garfinkel, 2017), in particular on those
that are related to attention. For an accurate perception and
interpretation of cardiac changes, attention has to be shifted from
the outside to the inside of the body, to be shielded against
sensations from the outside of the body and to be focused
on sensations inside the body. Attention shifting, attention
shielding and attention focusing are executive control processes
that are driven by activity changes in prefrontal brain and (para-
)limbic regions (Petersen and Posner, 2012). Activity changes
in prefrontal and (para-)limbic brain regions are associated
with vagally mediated heart rate variability (Thayer et al., 2012;
Ruiz Vargas et al., 2016), indicating that vagally mediated heart
rate variability may also be associated with these executive
control processes. Vagally mediated heart rate variability is, in
fact, associated with executive control processes (Zahn et al.,
2016; Holzman and Bridgett, 2017), including attention shifting,

attention shielding and attention focusing (Hansen et al., 2003;
Williams et al., 2016; Siennicka et al., 2019; Sorensen et al., 2019).
The association between vagally mediated heart rate variability
and heartbeat detection may, thus, be mediated by executive
control processes that are driven by activity changes in prefrontal
and (para-)limbic brain regions.

There are several prefrontal and (para-)limbic brain regions
that may mediate the association between vagally mediated heart
rate variability and heartbeat detection through executive control
processes. These brain regions are organized in networks that
are implicated in the up- and downregulation of cardiac changes
(Thayer and Lane, 2009), the perception and interpretation
of cardiac changes (Schulz, 2016) and the execution of
externally and internally oriented attention changes (Petersen
and Posner, 2012). Some brain regions are part of more than one
network. These brain regions provide functional and structural
connections between the networks (Bullmore and Sporns, 2012).
Most connections are provided by the anterior cingulate cortex
and the insula (Medford and Critchley, 2010). These connections
make the anterior cingulate cortex and the insula to central
network hubs that coordinate the interplay between the networks
(Dosenbach et al., 2007; Sridharan et al., 2008). The anterior
cingulate cortex and the insula monitor and regulate the activity
of all brain regions in the networks (Barrett and Simmons,
2015), which explains why activity changes in the anterior
cingulate cortex and insula are closely associated with vagally
mediated heart rate variability (Chang et al., 2013; Allen et al.,
2015; Jennings et al., 2016), heartbeat detection (Critchley et al.,
2004; Pollatos et al., 2005; Kuehn et al., 2016) and attention
(Seeley et al., 2007; Eckert et al., 2009; Shulman et al., 2009).
Activity changes in the anterior cingulate cortex and the insula
may, thus, trigger executive control processes that mediate the
association between vagally mediated heart rate variability and
heartbeat detection.

To illustrate the importance of the anterior cingulate cortex
and the insula for mediating the association between vagally
mediated heart rate variability and heartbeat detection through
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executive control processes, we only have to take a look at some
of the most common mental disorders (Paulus and Stein, 2010).
Mood and anxiety disorders are characterized by alterations in
vagally mediated heart rate variability (Licht et al., 2008, 2009),
heartbeat detection (Pollatos et al., 2009; Dunn et al., 2010)
and executive control processes (Mogg et al., 1992, 1995; Lim
and Kim, 2005). The alterations in vagally mediated heart rate
variability and heartbeat detection are related to alterations in
anterior cingulate cortex and insula activity during the perception
and interpretation of cardiac changes (Caseras et al., 2013; Avery
et al., 2014; Wiebking et al., 2015; Cui et al., 2020; DeVille et al.,
2020), presumably via alterations in executive control processes
(Mitterschiffthaler et al., 2008; Etkin et al., 2010). The alterations
in anterior cingulate cortex and insula activity account for severe
alterations in emotion, cognition and behavior (Caseras et al.,
2013; Avery et al., 2014; Wiebking et al., 2015; Cui et al., 2020;
DeVille et al., 2020), indicating that interoceptive deficits play
an important role in the etiology and pathogenesis of mood and
anxiety disorders (Paulus and Stein, 2010).

Considering the importance of interoceptive deficits for the
etiology and pathogenesis of mood and anxiety disorders (Paulus
and Stein, 2010), we need measures that allow us to identify
those of us whose interoceptive deficits put them at risk for these
disorders. As we have shown, cardiac measures may be useful for
this purpose. We combined a cardiac measure of interoceptive
accuracy, the heartbeat detection index, with a cardiac measure of
prefrontal-(para-)limbic engagement, the vagally mediated heart
rate variability index. Combining these measures allowed us to
demonstrate that our interoceptive accuracy depends on our
prefrontal and (para-)limbic engagement during the perception
and interpretation of cardiac changes. It should be noted,
however, that we only employed cardiac but not neural measures
in our investigation. We, thus, can only assume that vagally
mediated heart rate variability reflected prefrontal-(para-)limbic
engagement during the perception and interpretation of cardiac
changes. Future investigations that supplement cardiac measures
with neural measures may help to test this assumption with
more rigor (e.g., measuring vagally mediated heart rate variability
and heartbeat detection during functional or structural imaging).
Future investigations should also employ a more rigorous control
of participant characteristics that affect cardiac measures than
we did in our investigation (e.g., excluding participants with
medication use or caffeine use). We hope that our investigation

opens an avenue for these types of investigations because we
believe that cardiac measures are a promising tool for researchers
in the field of interoception. Cardiac measures can be obtained
from unobtrusive heart rate recordings that do not require
dedicated staff or equipment. These measures may, thus, be
interesting for researchers who need to investigate the association
between interoception and prefrontal-(para-)limbic engagement
in a time- and cost-efficient manner.
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