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A Heterogeneous Spiking Neural
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This paper introduces a heterogeneous spiking neural network (H-SNN) as a novel,

feedforward SNN structure capable of learning complex spatiotemporal patterns

with spike-timing-dependent plasticity (STDP) based unsupervised training. Within

H-SNN, hierarchical spatial and temporal patterns are constructed with convolution

connections and memory pathways containing spiking neurons with different dynamics.

We demonstrate analytically the formation of long and short term memory in H-SNN

and distinct response functions of memory pathways. In simulation, the network is

tested on visual input of moving objects to simultaneously predict for object class and

motion dynamics. Results show that H-SNN achieves prediction accuracy on similar or

higher level than supervised deep neural networks (DNN). Compared to SNN trained with

back-propagation, H-SNN effectively utilizes STDP to learn spatiotemporal patterns that

have better generalizability to unknownmotion and/or object classes encountered during

inference. In addition, the improved performance is achieved with 6x fewer parameters

than complex DNNs, showing H-SNN as an efficient approach for applications with

constrained computation resources.

Keywords: spiking neural network, unsupervised STDP learning, multi-objective prediction, spatiotemporal data

processing, neuromorphic computing

1. INTRODUCTION

Spiking neural network (SNN) (Maass, 1997; Gerstner and Kistler, 2002b; Pfeiffer and Pfeil, 2018)
is a dynamical system with bio-inspired neurons (Izhikevich, 2003) and learning behaviors (Dan
and Poo, 2006; Caporale and Dan, 2008). In rate-encoded SNN, inputs are represented as spike
trains with varying (pixel dependent) frequency and patterns within input spikes can be learned
without supervision using spike-timing-dependent plasticity (STDP) (Bell et al., 1997; Magee and
Johnston, 1997; Gerstner and Kistler, 2002a). The event-driven nature of SNN operation also
promises high energy-efficiency during real-time inference (Roy et al., 2019). Over the years,
SNN has shown success in spatial processing such as image classification. Although, many large
scale spatial SNNs depend on conversion from DNN (Diehl et al., 2015; Rueckauer et al., 2017;
Sengupta et al., 2019) or supervised training (Lee et al., 2016; Nicola and Clopath, 2017; Huh and
Sejnowski, 2018), more recently, unsupervised learning has shown promising results (Lee et al.,
2018; Srinivasan and Roy, 2019). However, SNNs for processing temporal or spatiotemporal data
are still primarily based on recurrent connections (DePasquale et al., 2016; Bellec et al., 2018)
and use supervised training (Stromatias et al., 2017; Wu et al., 2018), leading to high network
complexity for processing spatiotemporal data and high demand for labeled data. Recently, SNN
has also been explored for optical flow applications, such as Spike-FlowNet (Lee et al., 2020), which
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is based on self-supervision; with STDP-based learning, it
is possible to implement SNN for optical flow (Paredes-
Vallés et al., 2020), but learning is limited to only short-term
temporal patterns.

In this paper, we present a novel heterogeneous SNN (H-
SNN) architecture that exploits inherent dynamics of spiking
neurons for unsupervised learning of complex spatiotemporal
patterns. Our key innovation is to use feedforward connections of
spiking neurons with different dynamics to represent memory of
different time-scales and learn temporal patterns. This eliminates
the need for recurrent connection present in state-of-the-art
SNNs used for temporal learning (DePasquale et al., 2016; Bellec
et al., 2018; Wu et al., 2018; Lee et al., 2020). Moreover, we
adapt spiking convolution modules (Kheradpisheh et al., 2018)
to the network architecture. As a result, H-SNN is able to extract
distinguishing temporal and spatial features from spatiotemporal
inputs using only STDP based unsupervised training. To the
best of our knowledge, H-SNN is the first STDP-learned multi-
objective SNN for predicting object class and motion. More
specifically, the following key contributions are made:

• We propose a novel spiking network architecture and STDP
based unsupervised learning process for predicting object class
and motion dynamic from spatiotemporal inputs.

• We design neurons with different dynamics and network
layers with crossover connections to hierarchically form
short and long term memory used to learn complex
temporal patterns.

• We present spiking convolutional network with local/cross-
depth inhibition to learn motion invariant spatial features
from augmented dataset.

• We analytically show that heterogeneous neuronal
dynamics and multi-path connection can represent
distinguishable features of temporal patterns without
any recurrent connection.

The effectiveness of H-SNN is demonstrated with computer
vision tasks involving dynamic data set, considering that many
neural network applications involve perception of objects in
motion (Marković et al., 2014; Baca et al., 2018). Figure 1

illustrates examples of such applications, where a robotic arm
is interacting with a rolling object, and where an unmanned
aerial vehicle (UAV) is analyzing a moving car. The object
motion can be a mixture of translation and rotation, both with

FIGURE 1 | Objects with mixed dynamics in computer vision applications: robots interacting with a rolling ball in a convex (Left); an UAV analyzing movement of a

vehicle (Right).

constant or changing speed. A neural network is required to
perform two tasks: identify class of the object and understand
dynamic of the motion. In real world implementations where
unforeseen conditions might be encountered, the neural network
must also be able to correctly classify known objects with unseen
motion and recognize known motion of unknown objects.
Thus, for networks that rely on camera as input, the constant
transformation of pixel-level information makes the preceding
problem challenging.

In our experiment, we first test the networks on a human
gesture dataset captured by event camera (Amir et al.,
2017). Datasets consist of frame sequences with various linear
(translation) and angular (rotation) motions created from an
aerial image dataset (Xia et al., 2017) and Fashion-MNIST (Xiao
et al., 2017) are also tested for multi-objective prediction. We
compare H-SNN to deep learning approaches including 3D
Convolutional Neural Network (CNN) and CNN combined with
recurrent neural network (RNN), as well as SNN trained with
back-propagation. Results show that H-SNN has comparable (or
better) prediction accuracy than baselines while having similar or
less network parameters.

2. MATERIALS AND METHODS

2.1. Deep Learning for Learning
Spatiotemporal Patterns
The spatiotemporal input data can be processed using deep
neural network (DNN) with 3D convolution kernel (Tran
et al., 2015) or recurrent connection (Donahue et al., 2015).
However, in those spatiotemporal networks, transformation
invariance is not explicitly imposed. To achieve transformation
equivalent feature extraction, several DNN architectures have
been proposed (Cheng et al., 2016; Weiler et al., 2018; Zhang,
2019). While it is possible to apply those designs in the
spatiotemporal network, it has been demonstrated that DNNs are
invariant only to images with very similar transformation as that
in the training set (Azulay andWeiss, 2018), which indicates that
DNNs generalize poorly when learning feature transformations.
As a result, an increased amount of network parameters are
required for conventional DNN to achieve transformation
invariant classification. For example, in Weiler et al. (2018), each
pre-defined rotation angle requires an additional set of CNN
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filters; in data augmentation based approaches such as Cheng
et al. (2016), more parameters are needed to learn all the
rotated features. Together with the combination of 3D kernel
or recurrent connections, this leads to large complexity for
spatiotemporal networks.

2.2. Spiking Neuron and Synapses
Spiking neural network uses biologically plausible neuron and
synapse models that can exploit temporal relationship between
spiking events (Moreno-Bote and Drugowitsch, 2015; Lansdell
and Kording, 2019). There are different models that are
developed to capture the firing pattern of real biological neurons.
We choose to use Leaky Integrate-and-Fire (LIF) model in this
work described by:

τm
dv

dt
= a+ RmI − v and v = vreset , if v > vthreshold (1)

Here, Rm is membrane resistance and τm = RmCm is the time
constant with Cm being membrane capacitance. a is a parameter
used to adjust neuron behavior during simulation. I is the sum
of current from all synapses that connects to the neuron. A spike
is generated when membrane potential v cross threshold and the
neuron enters refractory period, during which the neuron can not
spike again.

In SNN, two neurons connected by one synapse are
referred to as pre-synaptic neuron and post-synaptic neuron.
Conductance of the synapse determines how strongly two
neurons are connected and learning can be achieved through
modulating the conductance following an algorithm named
spike-timing-dependent-plasticity (STDP) (Gerstner et al., 1993;
Gerstner and Kistler, 2002a), which has been applied in SNNs
designed for computer vision applications (Masquelier and
Thorpe, 2007; Diehl and Cook, 2015). There are two types of
synaptic weight modulation in STDP: long-term potentiation
(LTP) and long-term depression (LTD). More specifically, LTP
is triggered when post-synaptic neuron spikes closely after
a pre-synaptic neuron spike, indicating a causal relationship
between the two events. On the other hand, when a post-
synaptic neuron spikes before pre-synaptic spike arrives or
without receiving a pre-synaptic spike at all, the synapse goes
through LTD. There is an exponential relationship between
the time difference of spikes 1t (Bi and Poo, 2001) and
the current level of conductance (Querlioz et al., 2013). In
this work, the magnitude of LTP and LTD is determined as
follows:

1Gp = αpe
−1t(G−Gmin)/(τpot(Gmax−Gmin)) (2)

1Gd = αde
−1t(Gmax−G)/(τdep(Gmax−Gmin)) (3)

In the functions above, 1Gp is the magnitude of LTP actions,
and 1Gd is the magnitude of LTD actions. αp, αd, Gmax, and
Gmin are parameters that are tuned based on specific network
configurations. τdep and τpot are time constant parameters. 1t

is determined by subtracting the arrival time of the pre-synapse
spike from that of the post-synapse spike (tpost − tpre).

2.3. The Proposed Method
2.3.1. Heterogeneous Neuron Dynamics
Prior SNN designs mostly focus on using neurons with the
same dynamics through the network. In contrast, H-SNN
combines neurons with different dynamics to facilitate learning
and memory of different length separately in a heterogeneous
network. As neurons are used as the basic element of information
retention, long and short retention length can be achieved if
neurons have different decay rates. For simplicity, let b = − 1

τm

and c = Rm
τm

. Consider a spiking neuron that receives input
current I at t = 0, time for its membrane potential to decay to
vreset is:

tdecay =
1

b
ln(vreset +

a

b
)−

1

b
ln(vreset +

a

b
+ cI) (4)

Equation (4) suggests that, by adjusting the parameters a, b and
c in Equation (1), different information retention period can be
achieved. Particularly, in H-SNN, three types of spiking neurons
are used:

• Learner neuron, which has a balanced decay rate and input
response designed to optimize STDP learning, is similar to
neurons used in previous works (Querlioz et al., 2013; Lee
et al., 2018; Srinivasan and Roy, 2019). Its parameters are
referred to as {aln, bln, cln}.

• Short-term neuron, with parameters {astn, bstn, cstn}, has
astn < aln and bstn > bln to create higher decay rate. It is used
to extract short term patterns from input features.

• Long-term neuron, with parameters {altn, bltn, cltn}, has lower
decay rate than learner neuron, as altn > aln and bltn < bln. It
is designed for long term pattern recognition.

Since membrane potential of long term memory neuron decays
slower, under the same input signal, it can potentially produce
spike frequency that dominates the short term memory neuron
when the two are placed in parallel. To prevent this, cstn > cltn
is used. Figure 2A shows responses of different neurons to pre-
synaptic frequency. Long-term neuron is able to respond to lower
frequency input, due to its lower decay rate, but its post-synaptic
frequency increases slowly compared to the short-term neuron.
Figure 2B shows that short-term and long-term neurons gain
membrane potential faster than learner neuron with a given input
current, but they also exhibit different decay rates when input
current is zero.

2.3.2. Network Architecture
The architecture of H-SNN is shown in Figure 3. Three types of
modules are connected by three types of data flow paths between
network layers. Spike signal from each layer’s memory module
is sent through perception path to deeper layers. Learning path
connects memory module to learner module in the next layer
to enable STDP learning. The learned synapse conductance is
transferred from learner module to memory module in the same
layer. Modules are built with neurons of specific dynamics as
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FIGURE 2 | Neurons and inhibition: (A) Neuron response to input frequency; (B) neuron decay rate; (C) illustration of cross-depth and local inhibition.

FIGURE 3 | Architecture of the proposed network; network operation involves data flow of three paths: learning path where STDP learning is used to modulate

synapse conductance, transfer path where learned features are transferred to long and short term neurons, and perception path, where perceived input

spatiotemporal features are encoded in spikes.

mentioned before. Each convolution layer contains a learner
module and a memory module. Two inhibition schemes are
implemented within the convolutional layers: cross-depth, and
local (Figure 2C). Cross-depth inhibition is implemented to
create competition between neurons with the same receptive
field. This prevents more than one kernel from learning the same
pattern. Local inhibition, where the spike of one neuron inhibits
surrounding neurons in the same depth, is used to help the
network to better detect and learn translation invariant features.

Learner module is responsible for facilitating STDP learning.
All the spiking neurons in this module are learner neurons, and
local inhibition is combined with cross-depth inhibition. For
memory module, a combination of long-term and short-term
neurons are used. Synapses in memory module are used only
for perception thus not modified by STDP learning. Cross-depth
inhibition is not implemented to accelerate neuron response and
mitigate the diminishing spike frequency issue. The last layer is
a multi-objective prediction module (MoPM) with each neuron

fully connected to the previous layer. As will be discussed later,
MoPM is fine-tuned with supervision. To facilitate the common
conversion process, MoPM consists of all standard learner
neurons. Inside the MoPM, neurons are indexed as Ni,j where
i represents one objective (section) and each j represent one
label (class) within that section. Here, section-lateral inhibition
is implemented, which means that spiking of neuron Ni,j sends
inhibition signal to all neurons in section i while other sections
are unaffected. This enables H-SNN to simultaneously generate
prediction for independent objectives.

2.3.3. Learning Process
For each input sequence, all frames are converted to a 2D array of
spike train; the frequency of spike train for a pixel is proportional
to the pixel’s intensity (rate encoding). The network receives one
frame at a time and observes it for a period (ttrain chosen based on
input frequency range) to generate sufficient spiking events. After
all frames are learned the process repeats for the next sequence.
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The learning of the network proceeds layer-wise. During
learning of layer 1, neurons in the learner module receive input

spikes and perform STDP learning. The learned conductance
matrix is transferred to long-term and short-term neurons.
Next, learning of layer 2 begins. In this step, memory neurons

in layer 1 receive input spikes and generate spikes for the
learner neurons in layer 2. After the learner neurons complete
learning of all training sequences, the conductance matrix is
transferred to layer 2 memory neurons. This process repeats for
all convolution layers. While in one layer, the learner neurons
exhibit different neuron activity with the long-term and short-
term neurons, such layer-wise learning process allows the next
layer to learn the changed spiking pattern using STDP. Since
multi-layer SNN experiences diminishing spiking frequency
along network layers, threshold of neurons in the memory
module are scaled down to produce higher output spiking
frequency. The scaling factor for each layer is tuned as network
hyperparameter, and its value is kept uniform within one layer
to prevent distortion of output pattern. During training of the
final fully connected layer (MoPM), the perception path produces
spikes for each training sequence and spike frequency of all
memory neurons in convolution layer n is calculated. The last
layer is trained with a conventional stochastic gradient descent
method to predict multiple objectives. The objective function
is to minimize binary cross entropy loss between label vectors
that are one-hot encoded for each prediction target and the
layer output.

2.3.4. Memory Pathway - Hierarchical Memory

Formation in H-SNN
Within the perception path, long-term and short-term neurons
in different layers are connected with crossover connections.
This establishes different memory pathways as shown by the red,
gray and blue lines in Figure 4. More specifically, we define a
memory pathway as one trace of stacked connection of long-
term and short-term neurons from the first memory module to
the last.The memory pathways in H-SNN have a wide range of
time scales. Connections consist of entirely short-term neurons,
long-term neurons, and mixture of both types of neurons create
memory pathways of shortest, longest, and intermediate time
scales, respectively.

To better illustrate this, an example is shown in Figure 4.
The memory pathways enable hierarchical learning of temporal
patterns for the target spike train shown at the top of the figure.
Learner neurons in the first layer extract correlation information
from the immediate past (single spike in Figure 4) and transfer
such knowledge to neurons in memory pathway (two different
compositions of a single spike in Figure 4). The memory of
layer 1 creates a higher level of temporal abstraction of input
features that are transmitted as spike inputs to the learner
neurons in layer 2. Hence, learner neuron in layer 2 learns
compositions of the higher level temporal patterns perceived
by memory modules in layer 1 (see bottom of Figure 4 for
illustration). This process is repeated throughout the learning
process creating a hierarchical learning of temporal features

FIGURE 4 | Illustration of memory pathway and hierarchical learning in H-SNN.
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with learner neurons in the last layer learning highest level
temporal features over the longest time-window. In other words,
the equivalent STDP learning window expands along network
layers, with long memory pathways creating the faster expansion
and short memory pathways creating the slower expansion.
Temporal features of different scales can therefore be learned
without supervision.

2.4. Spatiotemporal Pattern
Representation in H-SNN
For H-SNN to predict object class and motion dynamic, memory
modules needs to transform the input sequences to output space
that contains spatial (motion invariant) features of target classes
and spatiotemporal features of target dynamics. The last layer
of H-SNN trained with SGD can statistically correlate those
attributes in the reduced dimension to output targets. As H-
SNN uses spatial architecture based on spiking convolutional
module, H-SNN models spatial features similar to a traditional
CNN. However, unlike the global optimization of parameters
using gradient descent in CNN, H-SNN uses local, unsupervised
STDP to learn spatial patterns in a layer-by-layer fashion, such as
shown in prior works (Kheradpisheh et al., 2018; Srinivasan and
Roy, 2019).

A network must memorize distinguishable information over
various time scales to model temporal patterns. Since H-SNN
does not use recurrent connections, we analytically show that
the feed-forward connections of spiking neurons with different
dynamics can represent various temporal patterns, through
proving two properties of H-SNN: output of different memory
pathways is distinguishable and different memory pathways can
retain temporal information of different length.

We first show that memory pathways have different response
function, i.e. different mapping from input spike pattern to
output spike pattern (Lemma 2.1). As information is represented
by spike frequency (rate encoding), this proves that each
memory pathway has distinguishable information (Lemma
2.2). Next, we demonstrate that different memory pathways
represent information over different time scales (Lemma 2.4).
The following steps show that the H-SNN can represent temporal
patterns without using recurrent connections.

2.4.1. Neuron Decay Rate
First, consider the LIF neuron as described by (1), as reproduced
here with parameters b and c:

dv/dt = a+ bv+ cI and v = vreset , if v > vthreshold

Without input current, the differential equation for membrane
potential of neuron m can be re-written a first order separable
ordinary differential equation, and its solution leads to:

1

a+ bvm
dvm/dt = 1

vm(t) =
1

b
ebt+Cb −

a

b
(5)

Here, C is the constant of integration. A single input spike with
current I drives membrane potential to:

vltnm = vreset + cI

Consider initial condition at t = 0 with vm = vreset + cI, value
of integration constant C can be found, and by substituting it (5)
can be rewritten:

C =
1

b
ln(bvreset + bcI + ab)

vltnm (t) = (vreset + cI +
a

b
)ebt −

a

b

After neuron m received the input spike, the time it takes for the
membrane potential to decay to vltnm = vreset is:

tdecay =
1

b
ln(vreset +

a

b
)−

1

b
ln(vreset +

a

b
+ cI)

It can be observed that decay rate is different for the three types
of neuron and their parameters {a, b, c} differ.

2.4.2. Distinguishability of Memory Pathways
We first derive the spike response function of memory pathways,
which formulates output spike frequency given input spike
frequency. Based on this, we show the distinguishability of
memory pathways by analyzing their response functions.

LEMMA 2.1. Let {n1, n2, ...nm} be a list of sequential connected
spiking neurons that have uniform refractory period r, and
minimal number of input spike needed to reach spiking threshold
{γ1, γ2, ...γm}. With fin being the input spike frequency to n1, the
output spike frequency of nm is:

fnm = (r +

∏m
i=1 γi

fin
+ r

m−2∑
k=0

k∏
j=0

γm−j)
−1

Proof. Spiking event at time ti can be marked with Dirac delta
function δ(t− ti). For a spiking neuronm, input current from all
pre-synaptic neurons is Im =

∑
n,i Gmnδ(t − tin), where Gnm is

the synapse conductance between neuron n and m, and the sum
is over all pre-synaptic spiking events. Integration of the input
current can be performed for each pre-synaptic spike.With initial
state at t = 0 with v = vreset , solving (1) leads to:

vm(t) = vresete
bt−

a

b
(1−ebt)+cebt

∑
n

∑
i

Gmn

∫ t

0
δ(t−tin)e

−btdt

(6)
Now consider neuron m with one pre-synaptic neuron that has
output frequency fin and t0 = 0, the time tγ for neuron m to
reach spiking state is vm(t

γ ) >= vth, where vth is the threshold
voltage. Since the membrane potential increases at time of ti and
decays otherwise, tγ will be one instance of ti. When we set t = ti

and expand the equation for vm, we have:

vm(t
i) = (vreset+

a

b
)ebt

i
−
a

b
+cGebt

i−bt1+cGebt
i−bt2+...+cG (7)
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The post-synaptic neuron m has output spike frequency that can
be found with:

fout = F(fin) =
1

T + r
=

1

(γ /fin)+ r
=

fin

γ + rfin
(8)

where r is the refractory period, and tγ = {min tγ | vm(t
γ ) ≥

vth}. F(fin) is referred to as the neuron response function.
Consider a long-term neuron and a short-term neuron connected
in series with one input neuron at spiking frequency fin, the
response function would be a composition of two neurons’
response function:

(Fstn ◦ Fltn) (fin) = (
γltnγstn

fin
+ γstnr + r)−1 (9)

By doing the same composition for more neurons, we can
generalize the pattern, and response function ofmemory pathway
(8(fin)) that consists ofm neurons can be derived as follows:

fnm = 8(fin) = (r +

∏m
i=1 γi

fin
+ r

m−2∑
k=0

k∏
j=0

γm−j)
−1 (10)

The proof is complete.

LEMMA 2.2. The response function (10) for different memory
pathways are distinct from each other.

Proof. Consider memory pathway formed by two neurons
p1 = {nltn, nstn} with γltn, γstn connected in order, and another
memory pathway formed by p2 = {nstn, nltn} with γstn, γltn
connected in order. The response function of the two memory
pathways is:

8p1 (fin) = (
γltnγstn

fin
+ γstnr + r)−1 and

8p2 (fin) = (
γstnγltn

fin
+ γltnr + r)−1 (11)

It can be observed that 8p1 6= 8p2 , and that response function
(10) is dependent on the order of γ . Each memory pathway in H-
SNN has sequentially connected neurons that form an ordered
list of γ . Since all memory pathways have different connection
sequences, which leads to different sequences of γ , response
function 8 is different for each memory pathway. The proof
is complete.

2.4.3. Retention Length of Memory Pathways
Here, we first prove the existence of cut-off frequency of spiking
neurons, followed by analysis of retention length of memory
pathways.

LEMMA 2.3. There exists a cut-off pre-synaptic spike frequency
to a post-synaptic neuron below which the post-synaptic neuron
cannot spike.

Proof. From the membrane potential equation derived in the
main paper for Lemma 3.1:

vm(t
i) = (vreset +

a

b
)ebt

i
−

a

b
+ cGebt

i−bt1 + cGebt
i−bt2 + ...+ cG

Since1t = 1
f
= ti+1− ti, subtracting membrane potential values

at two consecutive ti provides:

1vm = vm(t
i+1)− vm(t

i) = (vreset +
a

b
)ebt

i+1
− (vreset +

a

b
)ebt

i

+ cGebt
i+1−bt1 (12)

setting t1 to zero, we have:

1vm = (vreset +
a

b
)ebt

i
(eb1t − 1)+ cGebt

i
eb1t

1vm = ((vreset +
a

b
)(eb1t − 1)+ cGeb1t)ebt

i
(13)

As the term ((vreset +
a
b
)(eb1t − 1)+ cGeb1t) does not depend on

ti, vm is either strictly increasing, staying the same or decreasing
with higher ti. This indicates that, when 1vm ≤ 0 the post-
synaptic neuron can never spike regardless of how many pre-
synaptic spike it receives. For post-synaptic neuron with specific
parameters and synapse conductance G, ((vreset +

a
b
)(eb1t − 1)+

cGeb1t) depends on 1t. Since 1t = 1
f
, there exists a value of

pre-synaptic frequency f below which the post-synaptic neuron
cannot spike. The proof is complete.

LEMMA 2.4. The duration for which each memory pathway can
store information is different.

Proof. Given a memory pathway consist of neurons
{n1, n2, ...nm} connected in order with input spike to n1 at
frequency f 0in. There exists a cutoff frequency f ic for each neuron
ni. If input spike frequency to ni is lower than f ic , the neuron
cannot spike. This value can be mapped to original input
frequency f 0in with (10) of the memory pathway ending at ni−1:
f ic = 8ni−1(f

0
in). The mapped cutoff frequency is referred to as

f i
mapped

. Since a neuron must receive at lease one input spike

to reach threshold, along memory pathway f i
mapped

decreases,

or holds the same. Therefore, the longest duration T that the
memory pathway can hold information is T = (fm

mapped
)−1. Using

(10), we have: fmc = 8nm−1(f
m
mapped

), which leads to:

fmmapped = (
1

fmc
− r − r

m−3∑
k=0

k∏
j=0

γm−1−j)
−1

m−1∏
i=1

γi (14)

T = (
1

fmc
− r − r

m−3∑
k=0

k∏
j=0

γm−1−j)(

m−1∏
i=1

γi)
−1 (15)

Following the same process used in proof of Lemma 2.2, we can
show that T is different for each memory pathway. The proof
is complete.
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3. RESULTS

3.1. Parameters and Simulation
Configurations
In this work we use a GPU accelerated SNN simulator
we developed as an open source project named
ParallelSpikeSim (She et al., 2019). The manually tuned
neuron parameters are: for learner neurons, a is –4.1, b is –0.01,
c is 0.31, and r (refractory period) is 20 ms; for short-term
neurons, a is –5.1, b is –0.02, c is 0.45, and r is 10 ms; for
long-term neuron, a is –1.6, b is –0.001, c is 0.16, and r is 10 ms.
Values of STDP parameters are: αp = 0.1, αd = 0.03,Gmax = 1.0,
Gmin = 0, τpot = 10ms, and τdep = 80ms. To prevent early
convergence of synaptic conductance and allow the network to
effectively learn the entire dataset, the values of αp and αd are
chosen to be relatively small, and training data is shuffled for
both class and motion categories. In terms of simulation, the unit
timestep is set to be 1 ms. Input frames are converted to spike
trains with pixel intensity proportional to spike frequency range

f
input
min = 0Hz and f

input
max = 100Hz. Time spent on each frame is

ttrain = 300ms. All neuron states are reset to default value after
learning of each sequence.

3.2. Quantitive Analysis
Comparing tdecay when m is a long-term neuron and when m is
a short-term neuron, starting from the same membrane potential
level, the ratio of the time it takes for two neurons to decay to
vreset is:

tltn
decay

tstn
decay

≈ 2.4

From (13), we can find the cut-off frequency value by setting
1vm = 0, which gives:

(vreset +
a

b
)(eb1t − 1) = −cGeb1t

1t =
1

b
ln(

vreset + a/b

vreset + a/b− cG
)

In terms of cut-off frequency,

f0 =
1

1t
=

b

ln( vreset+a/b
vreset+a/b−cG

)

Comparing three neuron types with values of parameters {a, b, c}
as shown before, under different synapse conductance, the cut-off
frequency of each neuron is shown in Table 1. It can be observed
that, for all three neuron types, the cut-off frequency has a strong
dependency on synapse conductance.

3.3. Baseline Networks
Five DNNs are implemented to represent baselines for
spatiotemporal processing, namely, (i) a simple 3D CNN (Tran

et al., 2015) referred to as 3D CNN-α, which has similar layer
configurations as H-SNN, (ii) 3D CNN-β , a more complex 3D
CNN with more layers and parameters, (iii) 3D MobileNetV2
and (iv) 3D ShuffleNetV2 as implemented in Köpüklü et al.
(2019). The fifth baseline for comparison is an implementation
of CNN+LSTM (Donahue et al., 2015). To prevent overfitting,
for 3D CNN-α and 3D CNN-β dropout layers are applied; for all
DNN baselines, early stopping for training are used. In Wu et al.
(2018), spatiotemporal back-propagation is shown for SNN and
the trained network is tested for dynamic dataset. We implement
this design with two variants as additional bio-inspired baseline
networks. The first variant is referred to as BP-SNN, which has
the same convolution layer configuration as H-SNN but does not
use neurons of different dynamics. Based on the original BP-SNN
structure, we implement refractory period to the neurons, and
modified each layer to include neurons with long and short
memory, similar to H-SNN. This second variant is referred to as
BP-SNN-LS.

3.4. Network Complexity and Energy
Dissipation
The configurations of convolution layers and network parameter
number are shown in Table 2. The tested H-SNN has 0.74
million parameters. 3D CNN-α has similar complexity as H-
SNN with 0.83 million parameters and BP-SNN has the same
number of parameters as H-SNN. On the other hand, 3D
CNN-β and CNN+LSTM contains 4.5 million and 3.7 million
parameters. 3D MobileNetV2 and 3D ShuffleNetV2 has 0.5x
complexity (Köpüklü et al., 2019) and contains more parameters

TABLE 1 | Cut-off frequency f0 (Hz) of post-synaptic neuron with one pre-synaptic

neuron as input at different synapse conductance.

Neuron type G = 0.1 G = 0.2 G = 0.3 G = 0.4 G = 0.5 G = 0.6

Learner 105.8 52.9 35.2 26.4 21.1 17.6

Short-term 78.9 39.5 26.3 19.7 15.8 13.1

Long-term 63.5 31.7 21.1 15.8 12.7 10.6

TABLE 2 | Network configurations.

Model Convolution layer

configuration

Total

parameter

3D CNN-α Conv3D{[3x3x3,20],[3x3x3,32],

[5x5x5,64], [5x5x5,64]}

0.83M

3D CNN-β Conv3D{[3x3x3,32],[5x5x5,64],

[3x3x3,96], [3x3x3,128]x2}

4.5M

3D MobileNetV2 (Köpüklü et al., 2019) 1.5M

3D ShuffleNetV2 (Köpüklü et al., 2019) 1.2M

CNN+LSTM Conv2D{[3x3,64],[3x3,128],[5x5,256]} 3.7M

BP-SNN/BP-SNN-LS Conv2D{[3x3,32],[3x3,64],

[5x5,128], [7x7,40]}

0.74M

H-SNN Conv2D{[3x3,32],[3x3,64],

[5x5,128], [7x7,40]}

0.74M
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than H-SNN. For CNN+LSTM, parameters in the CNN encoder
is 2.7M, while that in the LSTM decoder is 1.0M.

For H-SNN, network memory consist of two main parts:
(i) synapse conductance, which are trainable parameters, use
0.474M, and (ii) neuron state, which are non-trainable variables,
use 0.267M to store all membrane potential. The number of
H-SNN’s trainable parameters is thus significantly less than
3D CNN-β and CNN+LSTM. Moreover, it is well-known
that the event-driven nature of SNN assists in reducing
network activation which in turn reduced energy dissipation of
computation. Using method presented in Panda et al. (2020), we
compute the energy advantage of H-SNN over DNN baselines
during inference as follows: 1.0 for H-SNN, 1.55 for 3D CNN-α,
and 3.37 for 3D ShuffleNetV2; 3DMobileNetV2, 3DCNN-β , and
CNN+LSTM consumes 9.01×, 11.80× and 28.88× higher energy
than H-SNN, respectively. BP-SNN and BP-SNN-LS uses similar
energy as H-SNN.

3.5. Single-Objective Prediction
3.5.1. Experimental Details
To test the effectiveness of H-SNN in learning spatiotemporal
patterns, both single-objective and multi-objective experiments
are conducted. In the single-objective experiment, an event
camera dataset of human gesture (Amir et al., 2017) is used.
Here, individual events are superimposed onto frames with
resolution of 128x128 over 20 ms window. Each generated
sequence contains one hundred frames and the network learns
to predict the type of action in each sequence. Three baseline
networks are tested: 3D CNN-α as well as the more complex 3D
MobilNetV2 and 3D ShuffleNetV2.

To study the feasibility of learning with less labeled data and
benefit of unsupervised learning, three sets of experiments are
performed on DNN baselines using different training set sizes:
100, 50, and 30% of the full training data set. In terms of H-
SNN, two training configurations are tested: one that uses the
same training set as DNN for STDP learning and SGD-based final
layer tuning, referred to as H-SNN; the other, referred to as H-

SNN (full data), uses the full training set for STDP unsupervised
learning, while SGD-based tuning uses the same set as DNN.

3.5.2. Results
As shown in Table 3, accuracy results from the three sets of
experiments are listed. With full training dataset, accuracy of H-
SNN is on a comparable level with 3D MobileNetV2 and 3D

TABLE 3 | Accuracy result of event camera dataset for networks trained with 100,

50, and 30% of labeled training data.

Model 100% 50% 30%

3D CNN-α 92.8 90.5 86.3

3D MobileNetV2 97.0 94.2 90.4

3D ShuffleNetV2 97.3 95.4 90.1

H-SNN 96.2 93.8 90.9

H-SNN (full data) 96.2 95.8 93.7

H-SNN accuracy results that exceed all baselines are marked in bold.

ShuffleNetV2 and outperforms 3D CNN-α. With less amount
of labeled training data, all networks experience performance
degradation. Among tested networks, H-SNN (full data) has
the lowest accuracy decrease, while other networks lose around
7% from 100% training data to 30%. Such difference leads to
the higher accuracy of H-SNN (full data) in low training data
conditions, which indicates that unsupervised STDP learning of
unlabeled data is effectively improving spatiotemporal pattern
recognition in this particular task.

3.6. Multi-Objective Prediction
3.6.1. Experimental Details
The second set of experiments is designed as a multi-objective
computer vision task: the network observes a moving object
as visual input to predict the class of the object and dynamic
of its motion. We generate dataset with controlled motion
dynamics by extracting objects from an aerial image dataset (Xia
et al., 2017). A subset (20%) of the original training data
for each object class is used with label to test the benefit
of unsupervised learning. In order to generate transformation
sequences, objects are placed on canvas and applied with
translation and rotation, each with five possible dynamics: static,
constant speed, accelerating, decelerating, and oscillating. For
the training sequence, transformation dynamics are generated
with parameters Ptrain. For the test sequence, objects are taken
from the test set of Xia et al. (2017) and transformation dynamic
parameters are drawn from Gaussian distribution with mean
Ptrain and standard deviation σts. As a second, non-aerial test
case, we have performed similar experiments on Fashion-MNIST
dataset which are 10 classes of apparel items with the dimension
of 28 by 28, as objects. Training and test sequences are generated
following the same process as discussed above, except that
10% of the original training data is used. For all generated
sequences, training data is shuffled for both object class and
motion dynamic.

In addition to regular training/inference setup, to understand
the network’s capability to learn class and motion independently,
a total of three sets of experiments are conducted:

• Experiment 1: all-objective prediction In this regular
training/inference setup, training set contains all classes and
all possible transformation dynamics, and networks are tested
for prediction of object class and its rotation/translation
dynamics, which is either static, constant speed, accelerating,
decelerating, or oscillating.

• Experiment 2: class-agnostic motion prediction In this
experiment, networks are trained with sequences containing
objects belonging to half of all classes, and tested for
transformation dynamics prediction on the other half classes.

• Experiment 3: motion-agnostic class prediction Training
sequences contain all object classes, but with only a subset of
motion dynamics. Networks are tested for accuracy of class
prediction but with unknown dynamics.

Experiment 1 is conducted on both the aerial and Fashion-
MNIST dataset, while the other two are tested on the aerial
dataset only. Examples of training/test sequences for the three
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experiments are shown in Figure 5. All baseline networks as
discussed in section 3.3 are tested.

3.6.2. Training Configurations
We test H-SNN with two training schemes for the aerial dataset.
The first one, referred to as H-SNN (1xU), uses 20% of the
training set mentioned before for STDP learning and SGD-
based final layer tuning. To study the advantage of training with
unlabeled data, we create a second network, H-SNN (5xU), that
uses 5×more unlabeled data during STDP learning in SNNwhile
the SGD-based tuning of the last year still uses the original labeled
training set same as H-SNN (1xU). For Fashion-MNIST,H-SNN

(1xU) uses sequences generated with 10% of original training set
per class for unsupervised learning and final layer tuning;H-SNN

(10xU) uses the whole training set for unsupervised learning and
the same 600 objects per class sequences as used in H-SNN (1xU)
for final layer supervised tuning. All baselines, including DNNs
and SNN trained with back-propagation, are trained with the
dataset used by H-SNN (1xU).

3.6.3. Aerial Footage Results

3.6.3.1. All-objective prediction
In all-objective prediction, results are measured by four metrics:
accuracy for three separate targets and joint accuracy, which
accounts for predictions that are correct for all three separate
targets. Each objective’s individual accuracy: class, rotation, and
translation, is referred to as C, R, and T. Training accuracy
for all networks are shown in Table 4. From the test accuracy

FIGURE 5 | Illustrations of training and test sequences for the three experiments of the aerial footage dataset.
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results in Table 5, it can be observed that 3D MobileNetV2 and
3D ShuffleNetV2 show better accuracy than 3D CNN-α while
they both fall behind 3D CNN-β and CNN+LSTM. BP-SNN-
LS demonstrates better performance than BP-SNN in rotation
and translation targets, while its class prediction is similar with
BP-SNN.

With σts = 1, H-SNN (1xU) predicts with good accuracy
for motion dynamics and achieves a reasonable level of class
prediction accuracy. This indicates that H-SNN is able to learn
spatiotemporal patterns from moving objects and predicts for
separate objectives based on the learned patterns. Comparing
H-SNN (5xU) to H-SNN (1xU), unsupervised learning provides
considerable performance increase for all targets.With increasing
σts, accuracy for class prediction does not experience drastic
degradation, showing that visual features learned by the network
have a high degree of transformation invariance.

In comparison with baseline networks, accuracy values where
H-SNN exceeds all baselines are marked bold in Table 5. For
σts = 1, H-SNN (1xU) outperforms BP-SNN and 3D CNN
variants except for 3D CNN-β , while H-SNN (5xU) shows
accuracy on a par with 3D CNN-β and CNN+LSTM. The
advantage of H-SNN (1xU) is more evident in predicting motion
with high deviation, as it achieves better results than baseline

TABLE 4 | Training accuracy of all-objective prediction with aerial footage dataset.

Model Joint {C,R,T}

3D CNN-α 80.5 90.8, 94.9, 93.4

3D CNN-β 84.8 91.3, 96.5, 96.3

3D MobileNetV2 88.4 92.4, 97.7, 97.9

3D ShuffleNetV2 87.8 92.6, 96.8, 97.9

CNN+LSTM 86.7 90.7, 97.5, 98.1

BP-SNN 87.4 89.5, 98.9, 98.7

BP-SNN-LS 85.8 90.4, 97.5, 97.3

H-SNN (1xU) 84.8 91.4, 96.5, 96.1

H-SNN (5xU) 89.6 92.3, 98.1, 99.0

networks. This indicates that H-SNN is able to generalize more
effectively the transformation invariant/equivariant patterns.
With extra unlabeled dataset used for SNN learning, H-SNN
(5xU) outperforms all baselines networks in most metrics. BP-
SNN shows comparable accuracy as H-SNN (1xU) for class
prediction, while its performance for motion prediction is
noticeably lower than H-SNN (1xU), especially at higher σts. BP-
SNN-LS has similar performance with H-SNN (1xU) while still
outperformed by H-SNN (5xU).

Confusion matrices for σts = 5 are shown in Figure 6A. For
each of the two variants of H-SNN, results are presented with
three matrics. The matrix on the left is for class prediction, the
top right is for rotation and the bottom right is for translation.
Horizontal axis is predicted label and vertical axis is target label,
each marked with a number; for class prediction, 0-9 represents
the 10 classes of objects; for rotation and translation, 0 is static,
1 is constant speed, 2 is acceleration, 3 is deceleration, and 4
is oscillation. Lighter color represents more instances. It can be
observed that, in terms of class prediction, confusion matrices
of H-SNN (1xU) and H-SNN (5xU) share similarities, while H-
SNN (5xU) predicts with more consistency across all classes.
For motion prediction, learning unlabeled data has different
effect: errors of H-SNN (5xU) for rotation prediction is more
concentrated in one dynamic, while its errors for translation
prediction spreads out more evenly, compared to H-SNN (1xU).

3.6.3.2. Class-agnostic motion prediction
Table 6 lists accuracy of class-agnostic motion prediction. Each
cell in the table contains accuracy for rotation (R) and translation
(T). Result shows that the two H-SNN implementations are
able to successfully predict motion dynamics of objects from
unknown classes. Compared to motion dynamic accuracy from
all-objective prediction, we observe that H-SNN experiences
some degree of performance degradation. However, the decrease
in accuracy is not drastic, especially for H-SNN (5xU). This
shows that H-SNN is able to learn and predict motion dynamics
independent of object’s visual features on a certain level.

Among conventional deep networks, 3D CNN-β and
CNN+LSTM show better accuracy than 3D CNN-α by a
significant lead. 3D ShuffleNetV2 performs well in predicting

TABLE 5 | Test accuracy of all-objective prediction with aerial footage dataset.

σts = 1 σts = 3 σts = 5

Model Joint {C,R,T} Joint {C,R,T} Joint {C,R,T}

3D CNN-α 51.3 64.5, 87.9, 90.4 23.2 58.9, 61.9, 63.5 16.0 56.1, 51.1, 55.8

3D CNN-β 58.6 67.1, 94.7, 92.2 31.6 64.9, 66.1, 73.7 25.3 62.8, 60.3, 66.9

3D MobileNetV2 54.7 66.9, 88.3, 92.7 24.2 64.1, 53.8, 70.1 18.0 61.9, 47.1, 62.0

3D ShuffleNetV2 53.8 64.8, 89.8, 92.5 26.1 63.2, 55.8, 73.9 19.9 60.8, 49.7, 65.9

CNN+LSTM 56.1 66.2, 92.8, 91.3 28.4 63.0, 68.3, 66.0 23.3 61.3, 63.8, 59.5

BP-SNN 49.5 65.1, 86.7, 88.3 23.6 61.7, 59.2, 64.6 17.4 60.4, 50.1, 57.3

BP-SNN-LS 58.1 66.7, 92.6, 94.1 32.5 60.1, 68.8, 78.7 26.7 58.3, 65.3, 70.2

H-SNN (1xU) 56.2 66.8, 91.0, 92.4 34.0 64.4, 70.5, 74.8 29.0 63.2, 66.1, 69.7

H-SNN (5xU) 68.0 72.8, 94.4, 98.8 44.6 69.5, 78.4, 81.8 32.9 66.4, 68.3, 72.6
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FIGURE 6 | Confusion matrix for (A) aerial image sequences and (B) Fashion-MNIST sequences; for each network, the left matrix is for class prediction, the top right

for rotation and the bottom right for translation; darker color represents less instances.

TABLE 6 | {R,T} prediction accuracy for unknown classes with aerial footage

dataset.

σts = 1 σts = 3 σts = 5

Model {R,T} {R,T} {R,T}

3D CNN-α 86.4, 88.7 60.7, 64.9 52.3, 56.3

3D CNN-β 95.2, 91.4 70.3, 65.3 61.4, 59.3

3D MobileNetV2 91.0, 83.6 67.1, 67.4 56.0, 61.6

3D ShuffleNetV2 97.5, 81.9 68.2, 62.2 67.6, 57.8

CNN+LSTM 93.1, 87.6 72.5, 66.7 63.1, 57.7

BP-SNN 84.7, 85.9 57.5, 64.2 51.4, 58.6

BP-SNN-LS 86.5, 94.8 62.3, 78.2 57.5, 60.4

H-SNN (1xU) 88.6, 91.0 68.0, 73.4 64.0, 63.2

H-SNN (5xU) 92.3, 98.4 72.7, 80.7 66.3, 70.7

H-SNN accuracy results that exceed all baselines are marked in bold.

rotation dynamic, while 3D MobileNetV2 shows good accuracy
for translation dynamic. BP-SNN-LS has good performance for
translation prediction, while the spatiotemporal patterns learned
by BP-SNN are less generalizable, as its performance lags behind
H-SNN and other baselines in this test. With increasing variation
in transformation parameters, as observed in the σts = 3 and
σts = 5 cases, accuracy of all networks degrade considerably.
Accuracy of H-SNN (1xU) is on similar level with the more
complex DNNs and BP-SNN-LS, and higher than 3D CNN-
α and BP-SNN. H-SNN (5xU) shows comparable or better
performance than best baseline performance. Similar to all-
objective prediction, the advantage of H-SNN (5xU) is more
evident for high σts cases.

TABLE 7 | Motion-agnostic class prediction: (left) configurations for class

prediction test with unknown transformations where {s, c, a,d,o}: static, constant

speed, accelerating, decelerating and oscillating; (right) accuracy of class

prediction for different test cases with aerial footage dataset.

Training

dynamics

Test

dynamics

Pair I T:

{s, a,d,o}

T:

{c}

R:

{a,d}

R:

{c, s,o}

Pair II T:

{a,d}

T:

{c, s,o}

R:

{s, a,d,o}

R:

{c}

Pair III T:

{a,d}

T:

{c, s,o}

R:

{a,d}

R:

{c, s,o}

Model Pair I Pair II Pair III

3D CNN-α 52.7 50.1 45.4

3D CNN-β 57.5 52.5 51.9

3D MobileNetV2 51.9 47.1 50.6

3D ShuffleNetV2 59.1 56.2 59.3

CNN+LSTM 56.2 56.6 53.1

BP-SNN 49.3 48.2 43.0

BP-SNN-LS 51.2 53.6 55.4

H-SNN (1xU) 60.4 54.0 53.4

H-SNN (5xU) 64.7 60.6 58.9

H-SNN accuracy results that exceed all baselines are marked in bold.

3.6.3.3. Motion-agnostic class prediction
The three training/test pairs of motion dynamics are shown in
Table 7 (left), and results for each pair is shown in Table 7 (left).
H-SNN is able to learn motion invariant spatial patterns as it
predicts object classes with reasonable accuracy. For this task,
accuracy of H-SNN (1xU) can again be improved further using
more unlabeled data as shown in the H-SNN (5xU) results.
This indicates a better generalization ability of H-SNN (5xU) for
objects with unknown transformations.
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In this test, 3D ShuffleNetV2 provides better performance
than all other baselines. Compared to other networks, H-SNN
(1xU) performs well for Pair I while keeping its advantage
over 3D CNN-α and BP-SNN for all test cases. For Pair II,
it is on a par with the best baseline results. H-SNN (5xU)
achieves considerable improvement for all pairs by providing the
best accuracy results except for Pair III, where it slightly falls
behind 3D ShuffleNetV2. Hence, we observe that patterns learned
from unlabeled data by STDP reduces the impact of unknown
transformations to class prediction. For BP-SNN, degradation
from all-objective prediction is significant, which indicates that
the network has difficulty in learning spatial patterns invariant
to unknown transformations. Compared to BP-SNN, BP-SNN-
LS shows improvement in Pair II and Pair III while performs
similarly in Pari I.

It is also worth noting that, compared to previously shown
class prediction results, combinations of training/test dynamics
affect network performance differently. For example, Pair II
causes more degradation to 3D CNN-β than to CNN+LSTM
while Pair I has similar influence to the two networks. For BP-
SNN, Pair III shows to be most challenging. This indicates that
the spatial patterns learned by networks generalize differently for
unseen motion dynamics.

3.6.4. Fashion-MNIST Results
As shown in Table 8, both variants of H-SNN provide good
accuracy for the three targets, indicating that the network is
able to effectively learn the spatiotemporal patterns in moving
apparel items, which have different visual features from the aerial
footage dataset. H-SNN (10xU) shows higher accuracy than H-
SNN (1xU) for class and translation motion prediction, while the
improvement it achieves for rotation prediction is smaller.

From the confusion matrix in Figure 6B, the two H-
SNN variants show similar profile for rotation and translation
predictions while their class prediction differentiates. With
unsupervised learning, H-SNN (10xU) is able to predict more
accurately for classes that have high error rate, while the
improvement on classes with lower error rate is less noticeable.

Among the baseline DNNs, 3D CNN-β shows good result
at low σts as it performs better than other deep networks and

BP-SNN, and shares similar performance with CNN+LSTM
in high σts in terms of joint accuracy while each individual
target differs. BP-SNN-LS shows considerable gain from BP-
SNN and has the best performance among baseline networks.
H-SNN (1xU) demonstrates similar accuracy as 3D CNN-β for
σts = 1 while its accuracy is lower than BP-SNN-LS. At higher
σts, H-SNN (1xU) shows comparative advantage: the prediction
accuracy for multiple targets exceeds all baseline networks. This
indicates that, for Fashion-MNIST, H-SNN is able to more
effectively learn spatiotemporal patterns generalizable to different
transformation dynamics. With unsupervised learning of extra
unlabeled sequences, H-SNN (10xU) is able to make better
prediction in almost all individual targets, and achieves joint
accuracy considerably higher than baseline networks.

3.6.5. Impact of Training Data Size
In this section we investigate the impact of scaling labeled
training data on H-SNN, with two types of unsupervised
learning setups. For the aerial dataset, unsupervised learning and
supervised training of H-SNN both use sequences generated with
20, 60, and 100% of the original dataset. For Fashion-MNIST,
three levels of supervised training: 10, 50, and 100%, are tested on
a network that learns 100% data without supervision. The results
are shown in Table 9. For the aerial dataset, it can be observed
that by increasing training data size the network experiences
considerable improvement on performance. The gain in class
prediction accuracy is higher than that in motion prediction
and the improvement in general is higher for lower σts cases.
When the network always learns 100% unlabeled data, similar
trend can also be observed as shown in the Fashion-MNIST
result. However, the benefit from increasing training data size
is smaller than in the aerial dataset, e.g., for σts = 1, joint
accuracy increased by around 27% for aerial image, while for
Fashion-MNIST the gain is around 9%.

4. DISCUSSION

In this paper we present H-SNN as a novel spiking neural
network design that is capable of learning spatiotemporal
information with STDP. For H-SNN, no recurrent connection

TABLE 8 | Accuracy result for sequences generated with Fashion-MNIST.

σts = 1 σts = 3 σts = 5

Model Joint {C,R,T} Joint {C,R,T} Joint {C,R,T}

3D CNN-α 54.3 70.4, 86.4, 89.2 19.0 50.2, 57.0, 66.5 10.9 43.9, 45.9, 54.4

3D CNN-β 63.1 72.5, 92.6, 94.0 28.4 61.0, 61.3, 75.9 18.2 58.9, 53.8, 57.4

3D MobileNetV2 57.6 70.0, 94.2, 87.3 22.6 58.3, 57.4, 67.6 13.8 53.8, 48.2, 53.1

3D ShuffleNetV2 61.0 68.7, 92.3, 96.2 23.9 53.4, 56.0, 79.8 12.1 43.2, 47.5, 59.0

CNN+LSTM 55.7 69.2, 89.6, 89.8 24.2 55.3, 74.7, 58.5 18.4 53.2, 64.1, 54.1

BP-SNN 54.5 68.1, 85.7, 93.4 19.5 47.0, 56.5, 73.5 14.3 50.6, 47.5, 59.3

BP-SNN-LS 70.0 76.8, 97.1, 94.1 37.2 66.0, 71.6, 78.7 26.0 62.5, 67.3, 61.7

H-SNN (1xU) 65.6 74.1, 96.2, 92.2 38.9 64.8, 83.7, 71.8 27.6 59.2, 71.0, 65.7

H-SNN (10xU) 73.9 79.4, 96.8, 96.2 47.5 70.0, 84.9, 79.9 31.7 65.2, 71.9, 67.6

H-SNN accuracy results that exceed all baselines are marked in bold.
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TABLE 9 | Impact of training data size for aerial dataset (top 3 rows) with scaling unsupervised learning data size and Fashion-MNIST (bottom 3 rows) with fixed

unsupervised learning data size.

σts = 1 σts = 3 σts = 5

Training set Joint {C,R,T} Joint {C,R,T} Joint {C,R,T}

20% 56.2 66.8, 91.0, 92.4 34.0 64.4, 70.5, 74.8 29.0 63.2, 66.1, 69.7

60% 76.5 81.5, 95.2, 98.6 49.0 73.7, 81.7, 81.3 34.6 70.4, 69.0, 71.2

100% 83.5 86.3, 97.2, 99.5 54.7 77.1, 84.9, 83.5 37.8 72.9, 70.5, 73.5

10% 73.9 79.4, 96.8, 96.2 47.5 70.0, 84.9, 79.9 31.7 65.2, 71.9, 67.6

50% 77.8 81.1, 97.6, 98.3 51.5 72.3, 86.5, 82.3 34.7 68.7, 73.6, 68.6

100% 82.3 85.3, 97.9, 98.6 57.4 76.8, 87.1, 85.9 38.1 74.2, 74.0, 69.4

is needed due to the hierarchical formation of long and
short memory. This makes it possible to implement a
feedforward convolutional network that can be learned with
STDP unsupervised training. The effectiveness of H-SNN design
is confirmed through mathematical analysis and experiments.

Based on neuron design and network architecture, analysis
of neuron dynamics is performed and formula of memory
pathway response function is derived. We demonstrate that
distinct response functions for different input spike frequency are
present in H-SNN. Meanwhile, derivation of cut-off frequency
of memory pathway shows that memory of different time scales
can be achieved. H-SNN is thus analytically shown to be able to
represent distinguishable temporal patterns.

We test H-SNN in computer vision tasks predicting for both
single and multiple objectives, and demonstrate the effectiveness
of H-SNN on dataset with different visual features and varying
motion dynamics. H-SNN is compared with conventional DNN
approaches including multiple variants of 3D-CNN, CNN with
recurrent connections and SNN trained with back-propagation.
Results show two main advantages of H-SNN. First, H-SNN
has comparable accuracy with DNN using the same amount
of training data. Meanwhile, with the addition of unlabeled
data, H-SNN can be further optimized with unsupervised STDP
learning and provides higher accuracy than conventional DNN
and BP-SNN. The advantage over baselines is most significant
when motion dynamic has high deviation from training set. This
trend is observed for H-SNN with and without extra unlabeled
data to learn. The second advantage is that, with unsupervised
learning, H-SNN demonstrates better generalization ability to
unknown motion or classes in motion-agnostic and class-
agnostic tests. Compared to BP-SNN, H-SNN more effectively
learns transformation invariant spatial patterns as well as the
general spatiotemporal patterns in the dataset. The combination
of long and short term neurons in BP-SNN-LS produces

considerable improvement over the original BP-SNN in terms of
motion dynamics prediction accuracy. However, the supervised
training method of BP-SNN-LS does not have the ability to learn
unlabeled data, thus cannot benefit from the same technique
used for H-SNN (5xU) and H-SNN (10xU) to further improve
SNN performance.

In addition to prediction accuracy, the improved performance
of H-SNN is achieved with much lower network complexity
than conventional deep networks, and can be implemented
in hardware with higher energy-efficiency. In conclusion, H-
SNN provides an appealing solution for learning spatiotemporal
patterns encountered in computer vision applications that have
limited training data and/or constrained computing resources.
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