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Memristors have attracted interest as neuromorphic computation elements because they

show promise in enabling efficient hardware implementations of artificial neurons and

synapses. We performed measurements on interface-type memristors to validate their

use in neuromorphic hardware. Specifically, we utilized Nb-doped SrTiO3 memristors as

synapses in a simulated neural network by arranging them into differential synaptic pairs,

with the weight of the connection given by the difference in normalized conductance

values between the two paired memristors. This network learned to represent functions

through a training process based on a novel supervised learning algorithm, during

which discrete voltage pulses were applied to one of the two memristors in each pair.

To simulate the fact that both the initial state of the physical memristive devices and

the impact of each voltage pulse are unknown we injected noise into the simulation.

Nevertheless, discrete updates based on local knowledge were shown to result in robust

learning performance. Using this class of memristive devices as the synaptic weight

element in a spiking neural network yields, to our knowledge, one of the first models

of this kind, capable of learning to be a universal function approximator, and strongly

suggests the suitability of these memristors for usage in future computing platforms.

Keywords: neuromorphic computing, supervised learning, interface memristor, Nb-doped SrTiO3, neural

networks, spiking neural network, function approximation

1. INTRODUCTION

The field of Machine Learning is, at its core, concerned with building function approximators from
incomplete data samples. The state of the art approach to solving this problem is using artificial
neural networks (ANNs), where a large number of real-valued artificial neurons are connected to
each other by means of weights. The neurons in such networks are typically arranged into multiple
layers, and are therefore referred to as deep learning. The optimization process is performed by
updating the weight matrices defining the connection weights between pairs of neurons and is
guided by learning rules, which are heuristic optimization algorithms capable of iteratively tuning
the network weights to minimize some error function. This process is based on either global
(as in the classic back-propagation algorithm) or local knowledge (which is more biologically
plausible); the typical outcome is an interpolation for the hidden mapping from input samples
to observed outputs.

Traditional neural networks usually require considerable power and are not necessarily
constrained by physical limitations. One of the main reasons for this shortcoming is that artificial
neural networks are run on traditional Von Neumann architectures in which memory and
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computation are not co-located. The high energy required by
deep learning can be ascribed to the fact that an artificial neural
network is essentially a non-Von Neumann computational
model, where memory and computation are co-located in
connection weight matrices, being simulated on hardware that
implements a different computational paradigm.

Even though many important advances in deep learning
have been “biologically inspired” (e.g., convolutional neural
networks), it is unclear how far the current deterministic
approach can progress because of energy requirements,
architectural complexity, and capacity to generalize.

To reduce energy, alternative approaches to traditional neural
networks aim to implement learning in neuromorphic hardware.
Memristors are novel fundamental circuit elements that have
attracted a great deal of interest for this purpose because they
exhibit multilevel conductance states, giving them—for example
when arranged in a crossbar array architecture—the ability to
carry out parallel vector-matrix multiplication (C = aB), which
is the most important mathematical operation underpinning
artificial neural network implementations (Xia and Yang, 2019).
The ability to carry out this operation, where the input is
voltage V , output is current I, and the weight corresponds to
conductance G (the inverse of resistance R), follows from Ohm’s
law I = VG and Kirchoff’s current law Ij =

∑

Ii. Due to
their non-volatile nature and ability to co-locate memory and
computing, memristors can enable parallel physical computation
within a low energy envelope.

Memristors have also been used as direct hardware
implementations of weights in order to replicate standard
deep learning software architectures, such as long short-term
memory (LSTM) (Li et al., 2019). Such systems can then
be trained using standard gradient-based machine learning
algorithms but in doing so limit themselves to the mainstream
computational paradigm and do not take full advantage of the
material properties of the memristive devices.

Another alternative approach to computation in which the
use of memristors is currently being explored is that of reservoir
computing (Lukoševičius and Jaeger, 2009). A reservoir is a
collection of recurrently interconnected units exhibiting short-
termmemory and non-linear response to inputs; the connections
of the reservoir are fixed and the training of the network is
focused on a simple feed-forward readout layer thus reducing
training time and complexity. Previous literature has shown that
memristor-based reservoir computers are capable of excellent
performance on a variety of tasks by taking advantage of the
intrinsic characteristics of the physical devices. A recurrent
connection is a way of adding temporal dynamics to a model, but
a memristor already is such a system. Existing memristor-based
reservoirs have thus eschewed the recurrent connections between
the reservoir units and relied on the fact that programming pulses
at different moments in time have varying effect on the state
of the device (Du et al., 2017; Midya et al., 2019; Moon et al.,

Abbreviations: LIF, leaky integrate-and-fire (neurons); mPES, memristor

prescribed error sensitivity; MSE, mean squared error; Nb, Niobium; Nb:STO, Nb-

doped SrTiO3; NEF, neural engineering framework; SNN, spiking neural network;

SrTiO3, strontium titanate; ρ, Spearman correlation coefficient.

2019). Diffusive memristors—whose memristance is governed
by fast diffusive species have also seen use as reservoir units
(Wang et al., 2017b), but also as artificial neurons (Wang et al.,
2018b), as their dynamics are well-suited to representing the
leaky integrate-and-fire model of neuronal computation.

The biological parallel with the brain can be taken further by
substituting continuous idealized neurons, found in traditional
artificial neural networks, for their spiking equivalent and by
using a learning algorithm which updates weights on the basis
of local knowledge. For example, considerable interest has been
devoted to using memristors to implement Hebbian learning
rules which are thought to underpin the capacity of the brain
to learn in an unsupervised manner and adapt to novel stimuli.
Multiple flavors of spike timing-dependent plasticity (STDP)
and hardware architectures have been proposed as ways to
make good use of the physical characteristics of memristors, by
appropriately shaping voltage pulses (Serrano-Gotarredona et al.,
2013; Ambrogio et al., 2016), or by controlling second-order state
variables (Kim et al., 2015).

The most widely studied memristors for neuromorphic
applications are ones relying on electric field control of nanoscale
filaments between two electrodes (Seo et al., 2011; Hu et al.,
2018; Moon et al., 2018; Wang et al., 2018a), phase transitions
(Kuzum et al., 2012; Ambrogio et al., 2016; Wang et al., 2017a),
or voltage induced control of the ferroelectric configuration
(Nishitani et al., 2012; Kim and Lee, 2019; Oh et al., 2019). A
less studied class of materials for synaptic device applications are
interface-type memristors where electric field controlled resistive
switching results from changes occurring at interfaces. While
the resistive switching in for example metal/Nb-doped SrTiO3

(Nb:STO) Schottky junctions, is well-documented in literature,
there are not many reports in which they are considered as
individual neuromorphic components (Yin et al., 2016; Jang et al.,
2018; Zhao et al., 2019), and to the best of our knowledge, no
reports of their use as components in neural networks. Often,
memristive devices require forming processes, which can be
unfavorable for device performance and network integration
(Amer et al., 2017; Kim et al., 2019). An attractive feature of
Nb:STO memristors is that the switching behavior is present in
the as-fabricated device. In addition, they also show reproducible
multi-level resistive switching and low reading currents at room
temperature, making them potentially ideal as components in
neuromorphic computers. Such computers need to be able
to deal and operate within the physical constraints of the
particular class of memristor they utilize as hardware substrate.
The heterogeneous characteristics of memristive devices also
entails that a neuromorphic computer be aware of their physical
characteristics and responses, in order to be able to utilize them
to their full potential.

Here, we utilized Nb:STO memristors as synapses in a
simulated spiking neural network to explore the suitability of
this class of memristors as computing substrate. Measurements
were conducted on physical devices, in which the change
in resistance in response to a series of voltage pulses was
monitored. We found the resistance values in response to
forward voltage pulses to follow a power law, whereby each
pulse gives rise to an amplitude-dependent decrease in the
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resistance. Next, we built a simulated model using the Nengo
Brain Builder framework, consisting of pre- and post-synaptic
neuronal ensembles arranged in a fully-connected topology.
Each artificial synapse was composed of a differential synaptic
pair of memristors, one designated as “positive” and one as
“negative,” and the weight of the connection was given by
the difference in normalized conductance values between the
two paired memristors. Using a training process during which
discrete voltage pulses were applied to one of the two memristors
in each pair, we showed that our model was capable of learning
to approximate transformations from randomly and periodically
time-varying signals, suggesting that it could operate as a general
function approximator. The initial state of thememristive devices
was unknown, as were their exact operating parameters due to
the addition of noise; this simulated the same kind of constraints
faced in hardware, making it likely that the learning model could
be ported to a physical implementation.Most importantly, robust
learning performance was proven using only discrete updates
based on local information.

2. MATERIALS AND METHODS

2.1. Device Fabrication
Memristive devices are material systems which undergo
reversible physical changes under the influence of a sufficiently
high voltage, giving rise to a change in resistance (Strukov
et al., 2008; Brivio et al., 2018). Here, metal/Nb-doped SrTiO3

devices were used, where resistive switching results from
changes occurring at the Ni/Nb:STO interface (Sim et al.,
2005; Seong et al., 2007; Sawa, 2008; Rodenbsücher et al., 2013;
Mikheev et al., 2014; Goossens et al., 2018). We fabricated
devices on (001) SrTiO3 single crystal substrates doped with
0.01 wt% Nb in place of Ti (obtained from Crystec Germany).
To obtain a TiO2 terminated surface, a wet etching protocol
was carried out using buffered hydrofluoric acid, this was
followed by in-situ cleaning in oxygen plasma. To fabricate
the Schottky junctions, a layer of Ni (20 nm), capped with
Au (20 nm) to prevent oxidation, was grown by electron
beam evaporation at a room temperature at a base pressure
of ≈ 10−6 Torr. Junctions with areas between 50 × 100 and
100 × 300 µm2 were defined using UV-photolithography and
ion beam etching. Further UV-photolithography, deposition
and lift-off steps were done to create contact pads and finally
wire bonding was carried out to connect the contacts to a
chip carrier. Current-voltage measurements were performed
using a Keithley 2410 SourceMeter in a cryostat under vacuum
conditions (10−6 Torr). All electrical measurements were
done using three-terminal geometry with a voltage applied
to the top Ni electrode. The measurements in the present
work are performed on junctions of 20,000 µm2. More details
on the measurement techniques and device characterization
can be found in Goossens et al. (2018). In light of practical
applications and due to the attractive lowering of reverse
bias current with increasing temperatures (Susaki et al.,
2007; Goossens et al., 2018), all measurements were done at
room temperature.

2.2. Device Experimental Evaluation
Biological synapses strengthen and weaken over time in a process
known as synaptic plasticity, which is thought to be one of the
most important underlying mechanisms enabling learning and
memory in the brain. For a device to be useful as a neural
network component, its resistance should thus be controllable
through an external parameter, such as voltage pulses—so that
it may take on a range of values (within a certain window).
The as-fabricated Ni/Nb-doped SrTiO3 memristive devices
showed stable and reproducible resistive switching without any
electroforming process.

Hence, to investigate the effect of applying pulses across the
interface, we conducted a series of measurements in which a
device was subjected to a SET voltage of +1 V for 120 s to bring
it to a low resistance state and reduce the influence of previous
measurements. Then, 25 RESET pulses of negative polarity (−4
V) were applied and the current was read after each pulse. A
negative read voltage was chosen because significantly larger
hysteresis is observed in reverse bias compared to forward bias.
Because of differences in the charge transport mechanisms under
forward and reverse bias, a much smaller current flows in this
regime: to ensure the measured current is sufficiently large to be
read without significant noise levels, a reading voltage of −1 V
was chosen. The RESET pulse amplitude was varied from −2
to −4 V. This procedure was repeated several times for each
amplitude sequentially. The pulse widths were≈ 1 s.

Next, we performed a set of measurements in which devices
were SET to a low resistance state by applying +1 V for 120
s before applying 10 RESET pulses of −4 V to bring devices
to a depressed state. This was followed by applying a series of
potentiation pulses ranging from+0.1 to+1 V.

2.3. Nengo Brain Maker Framework
The aforementioned devices were integrated into a simulated
spiking neural network (SNN); this was implemented using the
Nengo Brain Maker Python package (Bekolay et al., 2014), which
represents information according to the principles of the Neural
Engineering Framework (NEF) (Eliasmith and Anderson, 2003).
Nengo was chosen because its two-tier architecture enables it to
run on a wide variety of hardware backends—including GPUs,
SpiNNaker, Loihi—with minimal changes to user-facing code,
opening up the possibility of running models on a variety of
neuromorphic hardware (Furber et al., 2014; Davies et al., 2018).
The results of our current work are framework-independent and
would apply to any computational model congruent to the one
we simulated in Nengo.

In Nengo, information is represented by real-valued vectors
which are encoded into neural activity and decoded to reconstruct
the original signal (Bekolay et al., 2014). The representation
is realized by neuronal ensembles, which are collections of
neurons representing a vector; the higher the number of neurons
in the ensemble, the better the vector can be encoded and
decoded/reconstructed. Each neuron i in an ensemble (which in
our case are leaky integrate-and-fire (LIF) neurons) has its own
tuning curve that describes how strongly it spikes in response to
particular inputs (encoding). The collective spiking activity of the
neurons in an ensemble represents the input vector, which can
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A B

FIGURE 1 | (A) The Error neuronal ensemble calculates the difference E = y − f (x) between the post-synaptic y and transformed pre-synaptic f (x) representations in

order to inform the mPES learning rule. These connections are not implemented using simulated memristors and are calculated by Nengo. mPES tunes the weights

W on the connection between the pre- and post-synaptic ensembles with the overall goal of reducing the error E. W transforms x into y ≈ f (x) across the synaptic

connection and, with training, the post-synaptic ensemble’s representation improves, becoming closer to the transformed pre-synaptic one: y → f (x). The Switch

ensemble is activated to inhibit the Error ensemble and stop learning. NB: the input x, error signal E, and output y can have different dimensionality, which—in

turn—is independent from the number of neurons used to represent them. In our current work, all three signals have the same dimensionality. (B) In this example, the

pre- and post-synaptic neuronal ensembles both have size 3 and are fully-connected so the weight matrix W has 3× 3 entries. Each pair of pre- and post-synaptic

neurons (i, j) is linked by a simulated synapse. Each synapse’s weight Wij is given by the scaled difference in normalized conductances γ (G+

ij − G−

ij ) of its differential

synaptic pair of memristors M+

ij and M−

ij . As an example, the figure focuses on how the neurons (1, 1) in the pre- and post-synaptic ensembles are connected by a

synaptic weight W11; the neural activity a
pre
1 of the pre-synaptic neuron is combined with the synaptic weight W11 to give the input to the first post-synaptic neuron.

The activations of the post-synaptic neurons, in turn, define the signal represented in post-synaptic ensemble.

be reconstructed in output by applying a temporal filter to each
spike train and linearly combining these individual contributions
(decoding). Thus, each neuronal ensemble represents a vector
through its unique neuronal activation pattern through time.

Ensembles are linked by connections which transform and
transmit the encoded vector represented in the pre-synaptic
ensemble bymeans of aweight matrix. The post-synaptic ensemble
will thus be trying to render a transformation of the vector
represented in the pre-synaptic neuronal ensemble; in the
default case Nengo attempts offline optimization to find a
series of optimal weights to approximate the function along
the connection.

Learning rules can be applied to the connection between two
ensembles in order to iteratively modify its weighting and thus
find the correct transformation in an onlinemanner.

2.4. Simulated Model
The Nengo model used to evaluate the usage of our memristive
devices in a neuromorphic learning setting, consisted of three
neuronal ensembles: pre- and post-synaptic, and one for
calculating an error signal E. The pre- and post-synaptic
ensembles were linked by a connection which resulted in a
fully-connected topology between their constituent neurons; this
is equivalent to the physical arrangement of memristors into
crossbar arrays (Xia and Yang, 2019) used in many previous
works to realize efficient brain-inspired computation (Hu et al.,
2014; Li et al., 2019). The specific topology, which is crucial in
enabling the model to learn, is shown in Figure 1A.

The pre-synaptic ensemble had as input signal a d-
dimensional vector x and the connection between the ensembles
was tuned in order for the post-synaptic ensemble to represent
a transformation/function f : x → y of the vector encoded into
the pre-synaptic neuronal population. This time-varying input

signal consisted of either d uniformly phase-shifted sine waves xd
described by:

xd = sin(
1

4
2π t + i

2π

d
), i ∈ [0, d] (1)

or of d white noise signals low-filtered by a 5 Hz
cutoff. The latter signal was generated by using the
nengo.processes.WhiteSignal class and is naturally
periodic but, in order to be able to test network on unseen data,
the period was chosen to be double the total simulation time of
30 s.

The third neuronal ensemble, dedicated to calculating the
error signal, was connected to the pre- and post-synaptic
ensembles using standard Nengo connections whose weights
were pre-calculated by the framework. The connection from
the post-synaptic ensemble implemented the identity function—
simply transferring the vector—while the one from the
pre-synaptic ensemble calculated −f (x) with f being the
transformation of the input signal we sought to teach the model
to approximate. The connection from pre to error ensembles
did indeed already represent the transformation f (x) that the
model needed to learn, but the optimal network weights for
this connection were calculated by Nengo before the start of the
simulation based on the response characteristics of the neurons
in the connected ensembles. Therefore, the weights realizing
the transformation on this connection were not learned from
data and did not change during the simulation. Given these
connections from pre and post-ensembles, the error ensemble
represented a d-dimensional vector E = y − f (x) which
was used to drive the learning in order to bring the post-
synaptic representation y as close as possible to the transformed
pre-synaptic signal f (x), the ground truth in this supervised
learning context.
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The learning phase was stopped after 22 s of simulation
time had passed; this was done by activating a fourth neuronal
ensemble which had strong inhibitory connections to the error
ensemble. Suppressing the firing of neurons in the error ensemble
stopped the learning rule on the main synaptic connection
from modifying the weights further and thus let us test the
quality of the learned representation in the remaining 8 s
of simulation time. An example simulation run is shown in
Supplementary Figures 2, 3.

In separate experiments, the transformation f for the model
to learn was either f (x) = x or f (x) = x2. Learning the
square function was expected to be a harder problem to solve as
f (x) = x2 is not an injective function; i.e., different inputs can
be mapped to the same output [(−1)2 = 12 = 1, for example].
Even learning the identity function f (x) = x is not a trivial
problem in this setting, as the pre- and post-synaptic ensembles
are not congruent in how they represent information, even when
they have the same number of neurons. Each of the ensembles’
neurons may respond differently to identical inputs, so the same
vector decoded from the two ensembles will be specified by
different neuronal activation patterns. Therefore, the learning
rule has to be able to find an optimal mapping between two
potentially very different vector spaces even when the implicit
transformation between these is the identity function.

The quality of the learned representation was evaluated on
the last 8 s of neuronal activity by calculating the mean squared
error (MSE) and Spearman correlation coefficient ρ between the
ground truth given by the transformed pre-synaptic vector f (x),
and the y vector represented in the post-synaptic sensemble.

At a lower level, each artificial synapse—one to connect each
pair of neurons in the pre- and post-synaptic ensemble—in
our model was composed of a “positive” M+ and a “negative”
M− simulated memristor (see Figure 1B). The mapping of the
current resistance state R± of a pair of memristors to the
corresponding synaptic network weight ω was defined as:

ω = γ

[(

1
R+

−
1
R1

1
R0

−
1
R1

)

−

(

1
R−

−
1
R1

1
R0

−
1
R1

)]

= γ

[(

G+ − G0

G1 − G0

)

−

(

G− − G0

G1 − G0

)]

(2)

Note that the relationship between conductance and resistance
was specified by G =

1
R ; thus, when normalizing, the maximum

conductance G1 was given by the inverse of the minimum
resistance 1

R0
, and vice-versa. So, the network weight of a synapse

at each timestep was the result of the difference between its
current memristor conductances G±, which were normalized in
the range [0, 1], and then multiplied by a gain factor γ .

To simulate device-to-device variation and hardware noise we
elected to introduce randomness into the model in two ways.
Firstly, we initialized the memristor resistances to a random high
in the range [108 �±15%] in order to ensure than all the weights
were not 0 at the start of the simulation. This value was chosen on
the basis of the experimental measurements shown in Figure 4, it
being a high-resistance state the devices converged to after the

application of−4 V RESET pulses. We can therefore imagine the
simulated memristors being brought to their initial resistances
by the application of several −4 V RESET pulses prior to the
start of the training phase. As each entry in weight matrix W
was given by the difference in normalized conductances of a pair
of memristors, initializing them all to the same resistance 108 �

would have lead them all to necessarily be equal to 0, as per
Equation (2). InMachine Learning parlance, the act of assigning a
random initial value network parameters is known as “symmetry
breaking.” Secondly, we perturbed, via the addition of 15%
Gaussian noise, the parameters in Equation (8) used to calculate
the updated resistance states of the simulated devices. This was
done independently for every simulated memristive device.

2.5. Learning Rule
The process through which learning is effected in an artificial
neural network is the iterative, guided modification of the
network weights connecting the neurons. To this end,
we designed a neuromorphic learning rule that enacted
this optimization process by applying SET pulses to our
memristive devices.

In order to learn the desired transformation from the pre-
synaptic signal, we iteratively tuned the model parameter matrix
W, which represented the transformation across the synaptic
connection between the pre- and post-synaptic ensembles. This
was done by adjusting the resistances R± of the memristors in
each differential synaptic pair through the simulated application
of +0.1 V SET learning pulses guided - at each timestep
of the simulation - by a modified version of the supervised,
pseudo-Hebbian prescribed error sensitivity (PES) learning
rule (MacNeil and Eliasmith, 2011); this extension of PES to
memristive synapses will be referred to asmPES from here on.

The PES learning rule accomplishes online error
minimization by applying at every timestep the following
equation to each synaptic weight ωij:

1ωij = καjejEai (3)

where ωij is the weight of the connection between pre-synaptic
neuron i and post-synaptic neuron j, κ is the learning rate, αj the
gain factor for neuron j, ej the encoding vector for neuron j, E
the global d-dimensional error to minimize, and ai the activity of
pre-synaptic neuron i. αj and ej are calculated for each neuron in
the post-synaptic ensemble by the Nengo simulator such that:

aj = G
(

αjej · x+ bj
)

(4)

with G the neuronal non-linearity, x the input vector to the
ensemble, and bj a bias term.

The factor ǫ = αjejE is analogous to the local error in
the backpropagation algorithm widely used to train artificial
neural networks (Le Cun, 1986). The overview shown in Figure 2
applies to both the PES and mPES learning rules, with the
exception of step 3 that is characteristic to mPES; in this high-
level depiction we can see how the neuronal pairs i, j whose
ωij > 0 are the ones which contribute to the post-synaptic
representation being lower than the pre-synaptic signal and
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FIGURE 2 | High level example (not to scale) of how the mPES learning rule

minimizes the error E between the pre- and post-synaptic representations. At

time t = k the neurons contributing to making the relevant component in error

E negative are found, and the weights connecting them are adjusted

accordingly; this example focuses on one such synapse. The error is negative

so the synapse of the identified neurons is facilitated by pulsing its positive

memristor M+ to increase its conductance. The facilitation increases the future

response of the post-synaptic neuron and this is conducive to reducing the

error in the following timesteps. NB: The process is analogous for the PES

learning rule, with the exception of step 3., as PES operates directly on the

synaptic weights W.

should thus be the ones potentiated in order to bring the
post-synaptic representation closer to the pre-synaptic one. The
converse is also true, so the synapses whose corresponding
ωij < 0 should be depressed in order to reduce E. Thus,
the neurons in the post-synaptic ensemble that are erroneously
activating will be less likely to be driven to fire in the
future, changing the post-synaptic representation toward a more
favorable one.

mPES is a novel learning rule developed to operate under the
constraints imposed by the memristive devices and essentially
behaves as a discretized version of PES. This discretization is a
natural consequence of the models it operates on not having ideal
continuous network weights but instead, by these being given by
the state of memristors, which were updated in a discrete manner
through voltage pulses. The gradual change in the weights
W between pre- and post-synaptic neuronal ensembles in the
model can be classified as a self-supervised learning optimization
process, as the learning was informed by the error E vector
calculated by the third neuronal ensemble—which was also a part

FIGURE 3 | The left panel shows the evolution of the memristors’ resistances

in one differential synaptic pair during the learning part of the simulation. The

positive memristor M+ in the pair in plotted in red, the negative memristor M−

in blue. The right panel shows the corresponding network weight W whose

value is given by applying Equation (2) to the resistances in the differential

synaptic pair. W is unit-less and varies in the range [0, γ ].

of the model. Our learning rule had to be able to operate in a very
restricted and stochastic environment given that we only supplied
+0.1 V SET potentiation pulses to our memristive devices
during the online training process, and that we introduced
uncertainty on the initial resistance and update magnitude of
the memristors. Furthermore, at most one memristor in each
synapse could have its resistance updated (eitherM+ orM−) and
the exact result of this operation was also uncertain due to the
fact that we injected noise into the parameters in Equation (8)
governing the update. Figure 3 shows how the resistances of the
memristors in one such differential synaptic pair are modulated
during training, and how the corresponding weight evolves over
time. An interesting characteristic stemming from the power-
law memristance behavior is that each SET pulse has a smaller
effect than the one preceding it; the effect this has on the network
weight is to help it converge to an optimum in a manner very
similar to the cooling in simulated annealing (Kirkpatrick et al.,
1983), as can be seen forW in Figure 3. This kind of behavior was
seen for most—if not all—of the synapses in our simulations.

The learning rule is gated, pseudo-Hebbian, and uses discrete
updates and local information, therefore making it biologically
plausible. Our claim that the learning rule is local is substantiated
by the fact that only information available to post-synaptic
neuron j is used when calculating the weight update 1ωij. The
key point is that each neuron has a different random encoder and
is therefore responsive to a different portion of the error vector
space. Each update is thus optimizing a separate local error ǫ

which depends on the neural state of j; there is no collaboration
between units toward optimizing a global error function as in
classical gradient methods. The algorithmic approach is akin
to that presented in, e.g., Mostafa et al. (2018). Specific to our
current setup is also the fact that we have no hidden layers in the
network and therefore all information is necessarily local, there
being no intermediaries. The characterization as a gated learning
rule derives from the fact that when E = 0 learning does not
occur, while the pseudo-Hebbian element is given by the post-
synaptic activity being represented indirectly by αjej instead of
explicitly by aj.

mPES required the definition and tuning of a hyperparameter
γ , which is analogous to the learning rate found in most machine
learning algorithms. γ represents the gain factor used to scale
the memristors’ conductances G± to network weights W whose
magnitude was compatible with the signals the model needs

Frontiers in Neuroscience | www.frontiersin.org 6 February 2021 | Volume 14 | Article 627276

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tiotto et al. Approximating Functions Using Memristors

to represent. A larger γ made each pulse to the memristors
have an increased effect on the network weights but, unlike a
learning rate κ , the magnitude of each update on the underlying
objects was not changed by γ , affecting only the translation to
network weights.

Our learning rule also presented an error threshold θǫ

hyperparameter whose role was to guarantee that a very small
error Ewould not elicit updates on thememristors, given that this
was seen to negatively impact learning. At this stage, the value
for the error threshold was experimentally determined but kept
constant and considered a static part of the model rather than
a hyperparameter.

The mPES learning rule went through the following stages at
each timestep of the simulation, in order to tune the resistances of
each memristor in every differential synaptic pair with the overall
goal of minimizing the global error E:

1. The global error signal vector E was taken as input to the
learning rule.

2. A local error ǫ vector was calculated as ǫ = −ejE.
ǫ is a projection of E onto each neuron’s response and,
consequently, encodes the contribution of each post-synaptic
neuron to the global error E (Note that the sign of E

is inverted).
3. If no value in the ǫ vector was greater than an experimentally

determined error threshold θǫ = 10−5 the updates in this
timestep were skipped. The reason for this check was 2-fold.
Firstly, if we didn’t filter for local errors very close to 0, the
learning performance would suffer. This is because a very
small error may have no consequence in a continuous-update
setting, as that where original PES is applied, but in our setup it
could trigger a voltage pulse on the corresponding memristor
and bring it to a new resistance state. As memristors move
between discrete resistance states, such an update would end
up having an outsized effect. Secondly, inhibiting the error
ensemble to terminate the learning phase did not completely
shut off its activity so E would never be exactly 0 and the
adjustments to the resistances would not stop, thus leading to
the learning phase going on indefinitely.

4. A delta matrix 1 = −ǫ ⊗ apre, whose entries were the
equivalent to the PES 1ωij in Equation (3), was calculated.
Each entry in1 has a one-to-one correspondence to a synapse
in the model and encodes the participation of each pair of pre-
and post-synaptic neurons (i, j) to the error E. Therefore, the
sign of each entry1ij determines if the corresponding synapse
should be potentiated (1ij > 0) or depressed (1ij < 0).

5. The apre vector of pre-synaptic activations’ elements were
discretized into binary values 0 and 1, as the only information
of interest was if a pre-synaptic neuron had spiked, not the
intensity of its activity.

6. The update direction V for each synapse was calculated as
V = sgn(1), in order to determine which memristor in each
pair needed adjusting:

a. The positive memristor M+
ij in a differential synaptic pair

was pulsed when the corresponding term Vij > 0.

b. The negative memristorM−
ij was pulsed when Vij < 0.

This lead to a facilitation of synapses whose neurons (i, j) had
a positive participation to the error E and a depression of
those for whom 1ij < 0. The synapses afferent to neurons
which “pushed” the post-synaptic signal y to be higher than
the reference one f (x) were depressed in order to reduce the
future activation of these same post-synaptic neurons. The
magnitude of change induced by each pulse was determined
by the memristive devices’ characteristic response, which in
this work was given by Equation (8).

7. Finally, Equation (2) was applied to each synapse in order to
convert fromM±’s resistances to network weightsW.

2.6. Optimization Experiments
In order to assess the effect that the gain γ hyperparameter had
on the learning capacity of the model, we set up a series of
eight experiments, one for each combination of the three binary
parameters: input function (sine wave or white noise), learned
transformation (f (x) = x or f (x) = x2), and ensemble size
(10 or 100 pre- and post-synaptic neurons). In each experiment
we ran 100 randomly initialized models for each value of γ

logarithmically distributed in the range [10, 106] and recorded
the average mean squared error and Spearman correlation
coefficient measured on the testing phase of each simulation,
during the final 8 s.

2.7. Learning Experiments
To assess the learning capacity of our model and learning rule
(mPES) we compared them against a network using prescribed
error sensitivity (PES) as learning algorithm and continuous
synapses together with noiseless weight updates. The default
model with mPES used to generate our results was run with 15%
of injected Gaussian noise on both the memristor parameters and
the initial resistances, as previously described. To show that our
model was not just learning the transformed input signal f (x)
but the actual function f , we tested both on the same signal that
had been learned upon, and on the other. In other words, the
model learned the f (x) transformations from both a sine wave
and a white noise signal, using either 10 or 100 neurons, and the
quality of the learning was then tested on both functions. Both
input learning and testing signals were 3-dimensional in all cases.

To have a quantitative basis to compare the two models, we
measured themean squared error (MSE) together with Spearman
correlation ρ between the pre- and post-synaptic representations
in the testing phase of the simulation (corresponding to the
last 8 of the total 30 s). We took PES as the “golden standard”
to compare against, but also looked at what the error would
have been when using the memristors without a learning
rule modifying their resistances. A lower mean squared error
indicates a better correspondence between the pre- and post-
synaptic signals, while a correlation coefficient close to +1
describes a strong monotonic relationship between them. A
higherMSE-to-ρ ( ρ

MSE ) ratio suggests that amodel is able to learn
to represent the transformed pre-synaptic signal more faithfully.
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A B

FIGURE 4 | (A) Device response to the application of multiple RESET pulses of −4 V. Supplementary Figure 1 shows the results for varying RESET amplitudes. (B)

Device response to the application of multiple SET pulses of varying amplitudes of +0.1 V (black), +0.5 V (blue), and +1 V (red). 10 RESET pulses of −4 V are applied

to increase the resistance before the application of the potentiation pulses.

2.8. Other Experiments
We also tested the learning performance of the network
for varying amounts of noise, as defining models capable
of operating in stochastic, uncertain settings is one of the
fundamental goals of the field on Neuromorphic Computing.
To this end, we defined the simplest model possible within our
learning framework (10 neurons, learning identity from sine
input) and used it to evaluate the learning performance for
varying amounts of Gaussian noise and for different values of the
c parameter in the resistance update Equation (8).

We ran 10 randomly initialized models for each of 100 levels
of noise—expressed as coefficient of variation σ

µ
—in the range

[0, 100%] and reported the averaged MSE-to-ρ ratio for each
noise percentage. The Gaussian noise was added in the same
amount to the R0, R1, and c parameters in Equation (8) as well as
to the initial resistances of the memristors. The methodology we
followed closely resembled that reported in Querlioz et al. (2013),
but is should be noted that, in doing so, the magnitude of the
uncertainty of each memristance update depends on the devices’
current resistance state; it is presently unclear if this method
best models the actual behavior that would be seen in a physical
device, but it suffices for the scope of this work.

Using the same methodology, we also ran a parameter search
for the exponent c in Equation (8) in order to find the SET
voltage magnitude best able to promote learning. To realize this,
we evaluated the MSE-to-ρ ratio of randomly initialized models
with 15% noise for 100 values of c uniformly distributed in the
range [−1,−0.0001].

3. RESULTS

3.1. Device Experimental Evaluation
We investigated the effect of applying pulses across the interface
by administering a long SET pulse followed by 25 RESET pulses.
Due to the resistance’s dependence on the memristor’s previous
history, there is some variation in the starting state, shown by the
measurement at pulse number 0. Figure 4A shows the results for
pulses of −4 V in amplitude. Results for other pulse amplitudes
can be found in Supplementary Figure 1. The first pulse gave rise

to the largest increase in resistance, with subsequent ones having
a much smaller effect. The change in resistance quickly leveled off
and the influence of subsequent pulses was significantly smaller.
The application of a RESET pulse resulted in a switch to a high
resistance state that depended strongly on the amplitude of the
applied pulse, but not particularly on the number of pulses of that
amplitude that were applied.

We also explored the devices’ response to SET voltages. It
should be pointed out that in Figure 4B the initial state (and
hence also the large difference induced by the first RESET pulse)
after applying a long SET voltage, which would correspond
to pulse number 0, is not shown. Note that different pulse
amplitudes were chosen for SET and RESET pulses because
the asymmetric nature of the charge transport results in much
larger currents in forward bias (Goossens et al., 2018). With
the application of positive pulses, the device saw its resistance
gradually decrease, i.e., it was potentiated. It is clear that in this
case both the pulse amplitude and the number of applied pulses
had a great impact on the resistance state of the device. The
larger the amplitude of the SET pulse, the greater the induced
difference to the resistance with each applied pulse. Interesting,
compared to applying RESET pulses, the difference between the
change induced by the first and later pulses was not severe.
While 10 applied RESET pulses gave rise to close to saturated
high resistance states, this was not observed when positive pulses
were applied.

3.2. Device Memristive Response
In order to simulate our memristive devices in Nengo, we
modeled their behavior in response to SET pulses on the basis
of the experimental measurements we carried out.

The device behavior when applying a series of SET pulses, i.e.,
its forward bias response, was seen to be well-described by an
exponential equation of the form:

R(n,V) = R0 + R1n
a+bV (5)

in which V represented the amplitude of the SET pulse, n the
pulse number, R0 the lowest value that the resistance R(n,V)
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A B

FIGURE 5 | (A) Circles show the experimental data of device resistance after the application of multiple SET pulses with amplitudes varying from +0.1 V (top branch)

to +1 V (bottom branch). Lines represent fits to Equation (5). (B) Black circles show the exponents extracted from the fits in (a) as a function of pulse voltage. The red

line is a linear regression fit from which the a and b parameters are obtained.

could reach, and R0 + R1 the highest value. One of the reasons
we chose a fit of this form was because of the parallel we saw with
the classic power law of practice, a psychological and biological
phenomenon by virtue of which improvements are quick at the
beginning but become slower with practice. In particular, skill
acquisition has classically been thought to follow a power law
(Newell and Rosenbloom, 1981; Hill et al., 1991).

By solving Equation (5) for n, we can calculate the pulse
number from the current resistance R(n,V) by:

n =

(

R(n,V)− R0

R1

)
1

a+bV

(6)

Parameters a and b were found based on the data measured by
applying SET voltages between+0.1 and+1 V to the memristive
devices, as shown in Figure 5A. The exponents of the curves best
describing the memristors’ behavior were then fitted with linear
regression on the log-transformed pulse numbers and resistances,
shown in Figure 5B, in order to obtain a linear expression a+bV .
This process yielded an estimated best fit for the memristor
behavior of:

R(n,V) = 200+ 2.3× 108n−0.093−0.53V (7)

In our current work we always supplied SET pulses of +0.1 V
so we could subsume the exponential term a + bV into a single
parameter c:

R(n) = R0 + R1n
c

= 200+ 2.3× 108n−0.093−0.53×0.1

= 200+ 2.3× 108n−0.146 (8)

3.3. Optimization Experiments
The gain factor γ in Equation (2) was analogous to the learning
rate κ in Equation (3)—present in most machine learning
algorithms—in that it defined how big an effect each memristor
conductance update had on the corresponding network weight.

The rationale behind this experiment was to execute
an equivalent of hyperparameter tuning—routinely done for

artificial neural networks—as we had realized that γ was
homomorphous to a learning rate. Therefore searching if there
existed a “best” value of γ was integral in helping mPES obtain
good learning performance from the models.

The results for this experiment are shown in Table 1, with
the optimal value of the hyperparameter γ that was found for
each combination of factors highlighted in bold. This “best”
gain value was selected as the one giving the highest mean
squared error-to-Spearman correlation coefficient ratio ( ρ

MSE )
across the various models. In our case this value was γ = 104,
which would be the hyperparameter used in our subsequent
experiments to evaluate the learning performance of our models
in greater depth. Most modern Machine Learning algorithms
employ some form of scheduling of the learning rate in order
to help convergence. We had considered adding a decay to
our gain factor but elected against this because, as previously
stated, our eventual goal is tomove ourmemristor-based learning
model from simulation to physical circuit implementation and
adding a schedule to our gain factor would entail a more
complex CMOS logic. It should also be noted that the memristors
themselves naturally implement a decaying learning schedule
as their memristance behavior is described by a power law
(Equation 5); each subsequent SET learning pulse will have a
smaller effect on the resistance than the previous one.

3.4. Learning Experiments
The results for the experiments comparing learning a function
using PES or mPES are shown in Table 2, where it can be
immediately seen that our mPES learning rule is competitive
with PES by noticing that the statistics encoding the quality
of the learning, the mean squared error (MSE) and Spearman
correlation coefficient (ρ), are consistently more favorable to
mPES—or when not, very close to equal—across the spectrum
of tested models.

Figures 6A–D show a selection of results from our
simulations for various combinations of neuronal ensemble
sizes, desired transformations f and input signals. The plots
show the decoded output for the post-synaptic neuronal
ensemble (filled colors), overlaid to the signal represented in the
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TABLE 1 | Influence of the γ hyperparameter on the learning performance, expressed as mean squared error (MSE), Spearman correlation coefficient (ρ), and MSE-to-ρ

ratio - measured in the testing phase - of the model for different combinations of ensemble size, input signal, and learned transformation.

10 neurons, sine, f(x) = x 10 neurons, sine, f(x) = x2

Gain γ MSE ρ
ρ

MSE Gain γ MSE ρ
ρ

MSE

101 0.3058 0.0422 0.1381 101 0.1710 0.0061 0.0356

102 0.2737 0.3234 1.1814 102 0.1389 0.0364 0.2620

103 0.1416 0.7997 5.6478 103 0.1188 0.1745 1.4696

104 0.1183 0.8674 7.3303 104 0.1346 0.2306 1.7129

105 0.2190 0.7670 3.5016 105 0.2752 0.1161 0.4219

106 0.3177 0.6802 2.1408 106 0.4189 0.0747 0.1784

10 neurons, white, f(x) = x 10 neurons, white, f(x) = x2

Gain γ MSE ρ
ρ

MSE Gain γ MSE ρ
ρ

MSE

101 0.1733 0.0107 0.0618 101 0.0863 0.0030 0.0349

102 0.1631 0.1070 0.6563 102 0.0752 0.0280 0.3722

103 0.1352 0.5313 3.9290 103 0.0869 0.0882 1.0149

104 0.1287 0.7599 5.9052 104 0.1298 0.1542 1.1882

105 0.1830 0.7308 3.9923 105 0.1831 0.1332 0.7276

106 0.2302 0.6136 2.6655 106 0.2866 0.0936 0.3268

100 neurons, sine, f(x) = x 100 neurons, sine, f(x) = x2

Gain γ MSE ρ
ρ

MSE Gain γ MSE ρ
ρ

MSE

101 0.3049 0.0357 0.1172 101 0.1817 0.0065 0.0360

102 0.2740 0.3171 1.1571 102 0.1439 0.0452 0.3144

103 0.1461 0.7886 5.3989 103 0.1169 0.1511 1.2920

104 0.1239 0.8741 7.0567 104 0.1924 0.2143 1.1138

105 0.2341 0.7785 3.3254 105 0.2710 0.1426 0.5261

106 0.3649 0.6649 1.8220 106 0.4395 0.0843 0.1918

100 neurons, white, f(x) = x 100 neurons, white, f(x) = x2

Gain γ MSE ρ
ρ

MSE Gain γ MSE ρ
ρ

MSE

101 0.1761 0.0130 0.0736 101 0.0790 0.0031 0.0389

102 0.1667 0.1001 0.6005 102 0.0710 0.0255 0.3590

103 0.1413 0.5155 3.6488 103 0.0928 0.0797 0.8583

104 0.1219 0.7689 6.3070 104 0.1255 0.1593 1.2694

105 0.1769 0.7292 4.1219 105 0.1797 0.1373 0.7642

106 0.2225 0.6467 2.9062 106 0.2844 0.0767 0.2696

The bolded entries highlight the optimal value found for each statistic, and the best γ chosen for each model. NB: the γ chosen for the [100 neurons, white, f(x) = x] model was

γ =104 even though the ρ

MSE
was lower for γ =103.

pre-synaptic ensemble (faded colors) during the testing phase of
the simulation. The x-axis shows the final 8 s of the simulation,
while the y-axis is fixed to [−1,+1] to show the value of the
signals. In all cases the training input and testing signals were
3-dimensional, with the first dimension plotted in blue, the
second in orange, and the third in green. These results were
chosen to give an intuition on the outcome of learning from a
qualitative point of view, given that mere statistics might not
encode the notion of what an observer would deem a “good” fit.

Figure 6A shows how pre, post and error ensembles of
10 neurons each, after the learning period, were able to

learn the identity function from a 3-dimensional sine wave.
Increasing the model’s ensembles to 100 neurons (see Figure 6B)
gave a much cleaner output that better approximated the
pre-synaptic signal. It should also be noted that the signal
decoded from the smaller neuronal ensembles is much
noisier, apart from having a worse average fit (i.e., has both
higher MSE and lower ρ). Figure 6C shows that 100-neuron
ensembles could learn the identity function after being trained
on a white noise signal. Finally, Figure 6D indicates that
neuronal ensembles of 100 neurons each could also learn to
approximate the square from an input sine wave, with the
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TABLE 2 | Mean squared error (MSE), Spearman correlation coefficient (ρ), and MSE-to-ρ—averaged over 100 runs—for models trying to learn either y = x or y = x2

using PES or mPES as learning rule, from a 3-dimensional learning input signal.

Neur. Learn x f(x) Test x PES mPES No learning

MSE ρ
ρ

MSE MSE ρ
ρ

MSE MSE ρ
ρ

MSE

10

Sine

x
Sine 0.2088 0.8283 3.9673 0.1283 0.8719 6.7957 0.5675 0.0511 0.0900

White 0.2800 0.5526 1.9735 0.1822 0.6268 3.4412 0.4044 −0.0128 −0.0317

x2
Sine 0.2048 0.2132 1.0411 0.1673 0.2032 1.2146 0.1849 −0.0075 −0.0406

White 0.1783 0.0390 0.2189 0.1322 0.0992 0.7499 0.1005 0.0153 0.1524

White

x
Sine 0.1315 0.8708 6.6223 0.1712 0.8058 4.7077 0.8719 0.0222 0.0255

White 0.1515 0.8322 5.4928 0.1307 0.7719 5.9074 0.8021 0.0006 0.0008

x2
Sine 0.1561 0.2786 1.7854 0.1766 0.2024 1.1465 0.1676 0.0007 0.0042

White 0.1586 0.2266 1.4288 0.1247 0.1374 1.1013 0.0002 −0.0009 −5.6996

100

Sine

x
Sine 0.1385 0.8812 6.3601 0.1197 0.9421 7.8731 0.4208 −0.0305 −0.0724

White 0.1905 0.6810 3.5742 0.1847 0.7344 3.9758 0.2204 −0.0179 −0.0811

x2
Sine 0.0816 0.5956 7.3007 0.1316 0.4796 3.6441 0.2579 −0.0322 −0.1249

White 0.0997 0.1739 1.7445 0.1724 0.1215 0.7047 0.1222 −0.0139 −0.1140

White

x
Sine 0.0176 0.9865 56.1002 0.0867 0.9614 11.0912 0.4653 −0.0152 −0.0327

White 0.0162 0.9784 60.2713 0.0654 0.9554 14.6141 0.2508 0.0186 0.0742

x2
Sine 0.0385 0.8384 21.7865 0.1405 0.5152 3.6670 0.2465 −0.0008 −0.0031

White 0.0248 0.7957 32.0590 0.1013 0.5604 5.5338 0.1122 −0.0014 −0.0129

The models are given by a combination of number of neurons in their ensembles, training input signal, and function learned. Each model was tested on both kinds of testing input. The

results where mPES is run with no learning time allotted are also included in the “No learning” column.

caveat being that the quality of the learned transformation
was noticeably lower—which is also reflected by the
statistics in Table 2.

An argument in support of reporting the notion of qualitative
fit is given by analysing the results in Table 2 for the models in
Figures 6B,D. Here we see how these particular models perform
similarly in regards to the measured mean squared error when
trying to learn the identity and square function from a sine wave,
but how the Spearman correlation coefficient is two times worse
when learning the latter. The answer to the dilemma can be found
by looking at the qualitative fits of the simulations (Figures 6B,D)
and noticing that, even though the pre- and post-synaptic signals
are—on average—close in both cases, when trying to learn the
square the post-synaptic signal is much noisier. A noisy signal
negatively impacts the correlation coefficient as the pre- and
post-synaptic signals are nearly never moving in tandem, even
when the oscillations are around the correct value. This could
be ascribed to the square being a harder function to learn than
the identity, as already noted throughout, which could lead to a
model being “overpowered,” in the sense that its representational
power is allotted to trying to learn the harder function, decreasing
the resources available to represent the signal.

The sizes of the neuronal ensembles were not fine-tuned for
compactness so it may well be possible to learn representations
of similar quality using smaller neuronal ensembles.

3.5. Other Experiments
3.5.1. Increasing Noise Experiments
As previously mentioned, the impact of noise is not linear across
the resistance range, with memristors in a HRS seeing their
response to pulses having a higher uncertainty. This is due to the

fact that we were introducing variation on the update equation
itself and not on the resulting resistance state.

As can be seen in Figure 7A, learning performance decreased
for high levels of noise and this degradation was graceful, as
the MSE-to-ρ monotonically decreased toward 0. As previously
stated: a lower MSE-to-ρ ratio ( ρ

MSE ) indicates a model that
cannot faithfully represent the transformed pre-synaptic signal
f (x). Performance was well-maintained up until ≈ 15% of
variation of the parameters and smoothly decreased until
stabilizing around 0 for noise > 60%. An example of how the
memristor resistances behave in the presence of various amounts
of noise is shown in Supplementary Figure 4.

3.5.2. Exponent Search Experiments
The results for the exponent parameter search are shown in
Figure 7B and here we can see how strongly the performance
of the model depends on the magnitude of the exponent in
the power law (Equation 8). The quality of the fit is in direct
correspondence with the value of c up until c ≈ −0.162, with a
rapid decrease in learning performance thereafter. The highest
performance is found for c ∈ [−0.17,−0.16]. Our choice of
supplying learning SET pulses of +0.1 V implied c = −0.146
(Equation 8), suggesting that a slightly higher tension could have
led to better performance in the task at hand.

The decrease in MSE-to-ρ for the smallest values of the
exponent is most likely the result of the memristors having too
small of a response for the training time supplied (which was 24
s in all out experiments) to be able to learn the function. This is
the equivalent to having too small a learning rate in a traditional
machine learning model.
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A B

C D

FIGURE 6 | (A) Decoded output from pre- and post-synaptic ensembles of 10 neurons on a sine wave input, after being trained on a sine wave to learn to represent

the identity function f (x) = x. The quality of learning is ρ

MSE = 16.3398. (B) Decoded output from pre- and post-synaptic ensembles of 100 neurons on a sine wave

input, after being trained on a sine wave to learn to represent the identity function f (x) = x. The quality of learning is ρ

MSE = 132.9364. (C) Decoded output from pre-

and post-synaptic ensembles of 100 neurons on a white noise input, after being trained on a white noise signal to learn to represent the identity function f (x) = x. The

quality of learning is ρ

MSE = 10.5064. (D) Decoded output from pre- and post-synaptic ensembles of 100 neurons on a sine wave input, after being trained on a sine

wave to learn to represent the square function f (x) = x2. The quality of learning is ρ

MSE = 12.2479.

ρ ρ

A B

FIGURE 7 | (A) The black line shows the MSE-to-ρ ( ρ

MSE ) measured on the testing phase of the simulation as a function of the percentage of noise—expressed as

coefficient of variation σ
µ
of each parameter—injected into the model. The red line shows the rolling average for the measured MSE-to-ρ. (B) The black line shows the

MSE-to-ρ as a function of the magnitude of the exponent c in Equation (8). The red line shows the rolling average for the measured MSE-to-ρ.

4. DISCUSSION

Even with the restrictions imposed by the devices’ physical

characteristics, our experiments showed that we could
enable the post-synaptic neuronal ensemble to well-represent

transformations of the pre-synaptic signal by applying our novel
mPES learning rule to synapses based on Nb:STO memristive
devices. This process leads to a set of memristor resistances
that can be mapped to network weights, which transform the
supplied input into the desired output by encoding the learned
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function. Crucially, our results are not limited to our Nb:STO
memristors but generalize to any memristive device whose
memristance follows a power law. We showed that our model
could learn to approximate both the identity f (x) = x and square
f (x) = x2 functions—the latter being a qualitatively harder
problem to solve—with no theoretical reason limiting it to only
representing these transformations. Learning was effective both
when the input signal was a periodic sine wave and also when it
was random, as the case where the pre-synaptic ensemble was
fed white noise, or was switched between learning and testing
phases; this second result is important in that it shows that the
model was able to learn the transformation independently of the
regularity of the supplied training data and of the input signal
itself. It had already been suggested that the original PES learning
rule, on which our mPES algorithm is based, would be able to
learn arbitrary vector functions (Bekolay, 2010; MacNeil and
Eliasmith, 2011). The fact that our learning rule is derived from
one already capable of approximating arbitrary functions leads
further credence to our conclusion that our model is capable of
learning any transformation of n-dimensional vectors. Critically,
as our model aimed to present strong neuromorphic credentials,
these results are robust to the presence of noise on the updates
and on the initial state of the memristors’ resistances.

The results in the learning experiments—during which we
compared the quality of the representations in the pre- and
post-synaptic ensembles-were competitive with the original
PES learning rule even though the latter had the advantage
of operating on ideal, continuous network weights, with no
uncertainty on their updates. Our mPES learning rule showed a
post-trainingMSE-to-ρ ratio that was consistently close to that of
PES; the results were especially favorable when trying to learn the
identity function f (x) = x. In general, the MSE-to-ρ ratio was
consistently lower for both algorithms when trying to learn the
square transformation f (x) = x2 compared to the f (x) = x case,
but the drop in performance for mPES was more marked. These
observations suggest that the square function is a harder problem
to learn and that the gap in performance between PES and
mPES when trying to learn this transformation could be bridged
by using a higher number of neurons in conjunction with our
learning rule. Both learning rules exhibited higher performance
when trained on a white noise input signal compared to a sine
wave; we attribute this difference to the dissimilarity in how
the input spaces are sampled but have no grounded theoretical
explanations to explain this influence. Most importantly, we
did see a decline in learning performance when switching to a
different input signal between learning and testing phases, but
this effect was limited; this lends credence to the belief that our
model is actually able to generalize and thus is learning the
function f , not just the transformed input signal f (x).

The evaluations on the learning performance for increasing
amounts of noise were done with models composed of a very
small number of neurons, which could potentially predispose the
network to be more susceptible to the injected randomness; this
suggests that using our memristive devices and learning rule can
lead to robust performance. As previously reported, the model
maintained its best performance up to a moderate amount of
Gaussian noise on the initial memristor resistances and on the

parameters of the update equation (Equation 8). The measured
performance in the presence of increasing noise is less than that
reported in previous work, but in our case we did not have a
well-defined metric to measure performance against, for example
recognition rate as in Querlioz et al. (2013). Again we raise
the question of what constitutes a “good enough fit,” reiterating
that—in our view—this is entirely dependent on the observer and
the task at hand. The results also suggest that noise aids themodel
to a certain degree, given that the act of initializing each network
weight to a different value is, in Machine Learning terminology,
known as “symmetry breaking”; failing to do so canmake amodel
difficult or impossible to train. Therefore, the noise on the initial
resistance state could be effectively “breaking the symmetry” of
the weights.

It is notable that the learning performance was maintained
even though our mPES learning rule had absolutely no
knowledge of the magnitudes of the updates and that the only
hyperparameter tunedwas the gain γ , whose effect was analogous
to a learning rate. The learning rule was also only able to adjust
thememristors toward lower resistance states, potentiallymaking
it harder to backtrack on any error. We experimentally found,
as reported in Table 1, that a value of γ = 104 lead to the best
learning performance—defined as balance between testing error
and correlation MSE-to-ρ ratio ρ

MSE—for all models given by
combinations of neuronal ensemble size, training input signal,
and desired transformation. The best values for mean squared
error (MSE) and Spearman correlation coefficient (ρ) were both
found for the same value of γ = 104 in all the instances where the
models were instructed to learn the identity function f (x) = x.
Instead, when the models were attempting to learn the square
function f (x) = x2 there was a discrepancy between the values
of γ leading to the lowest MSE and to the highest ρ. The two
models learning the square from the regular sine wave input still
had best ρ for γ = 104, but showed the lowest error for a smaller
gain factor of γ = 103; the combined MSE-to-ρ statistic still
indicated γ = 104 as the best choice for this class of model as the
positive gains in correlation counterbalanced the higher error.
The models learning the square transformation from the random
white noise input followed the same pattern as they also showed
highest correlation for γ = 104 and required a smaller gain factor
to exhibit the lowest error: γ = 102 in their case. The measured

ρ
MSE for this last class of models was close for both γ = 103 and
γ = 104 as the correlation ρ did not suffer as much as when
trying to learn the square from the sine wave input.

In the [100 neurons, sine, f (x) = x2] instance the best MSE-
to-ρ ratio was found for γ = 103 but, given that the result was
very close to the one obtained with γ = 104, the latter was chosen
for consistency with all other cases.

The magnitude of γ was crucial to enable learning as it
brought the normalized conductances calculated in Equation (2)
to a scale compatible with the model and the input signal. The
need to precisely tune the learning rate when using memristors
presenting non-linear and asymmetric response has already
been recognized (Burr et al., 2015) and this effect is somewhat
confirmed here, as a too small or too large γ completely
disabled the learning capacity of the model, while a sub-
optimal value hindered the learning performance. Having to tune
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hyperparameters in order to achieve better learning performance
is, unfortunately, the norm in Machine Learning so it is not
surprising that we ran into the same requirement. The search was
not fine-grained, but gave a good indication of the magnitude of
γ we could expect to lead to reasonable performance. It could be
argued that, in a neuromorphic setting, it is more advantageous
to have a “rough” estimate for the hyperparameter—γ = 104 in
our case—leading to “robust” learning in a variety of situations,
rather than focusing on finding the optimal value for a specific
setup. Future work should focus on establishing a theoretical link
between the model setup, including input signal characteristics
and magnitude, and the expected range for finding a γ leading to
sufficiently robust learning performance.

The memristive response of our device had notable
implications on its use as a substrate for learning (Burr et al.,
2015; Sidler et al., 2016). There is contention regarding the best
characteristics that devices’ memristance should have in order to
effectively support learning. Recent works highlight how there
is currently no consensus on if a linear response (Krishnaprasad
et al., 2019) or a non-linear (Brivio et al., 2018; Frascaroli et al.,
2018) behavior of memristive synapses is more advantageous.
On our side, we can add to the discourse by pointing out that our
learning experiments (results in Table 2) showed that our mPES
algorithm, modulating the resistance of non-linear Nb:STO
memristors, was competitive with the original PES learning rule,
which operated on linear, ideal synaptic weights. Figure 3 adds
some intuition to why a power-law update would be beneficial for
learning compared to a linear synaptic response: the decreasing
effect of each training pulse effectively mimics the cooling in
simulated annealing and therefore helps the weights converge to
an optimal value.

In our current work we only used SET pulses of +0.1 V
while negative RESET pulses were largely ignored as the effect
of sequential negative pulses was seen to quickly diminish with
pulse number. Our initial choice to apply positive learning pulses
of +0.1 V implied having an exponent c = −0.146 for the
power law governing the memristor updates, which put the
model close to the region exhibiting best learning performance.
From a physical point of view, the magnitude of the SET pulses
could be set very low as the current-voltage characteristics of
our memristors are continuous, without any step-like features
reminiscent of a switching threshold voltage. Hence, in principle
we expect even small pulse magnitudes to influence the resistive
state of the device. In addition, by utilizing a read voltage of
a different polarity than that of the SET pulses, we created an
asymmetry between the writing and reading processes that made
it possible to use very small voltage amplitudes for the SET
pulses. Thus it should be possible, in principle, to use physical
voltage pulses as small as needed to guarantee the best learning
performance. Different mechanisms govern charge transport in
forward and reverse bias; this leads to asymmetries in current-
voltage characteristics and may also result in differences between
the SET and RESET processes.

The disadvantage of only focusing on the forward bias is that
long training regimes could potentially lead to the memristors’
resistances to saturate. That is, using only positive pulses
progressively brings the devices to a low resistance state with

no way to backtrack. This issue could be alleviated by a careful
pulsing scheme where memristor close to saturating were “re-
initialized” to a high resistance state by supplying RESET voltage
pulses, at the cost of losing some precision in the represented
network weights (Burr et al., 2015). This could be done by re-
initializing both memristors in a pair to their initial resistances
with RESET pulses and then supplying a number of SET pulses
proportional to the magnitude of the weight before the reset,
on either the positive of negative memristor depending on the
polarity of the weight. After the resetting, a highly positive weight
would thus see its memristor M+ receiving more pulses than a
lightly positive one, as a moderately negative weight might have
its memristorM− receive fewer SET pulses than a highly negative
one. This approach could have the disadvantage of requiring
quite a complex meta-architecture, but it is possible that the
current learning approach may already be robust enough to deal
gracefully with the resetting of a small percentage of its synapses.

Another path that could improve the learning performance
could be to grade the number, the duration, or the magnitude
of pulses applied to each memristor, based on the participation
of its pre- and post-synaptic neurons to the global error. This
could prove to be a less demanding undertaking than shaping the
pulses based on the memristors’ current state, while still resulting
in positive gains to learning performance.

5. CONCLUSIONS

In this work we fabricated memristive devices based on Ni/Nb-
doped SrTiO3 and found that their memristance followed
a power law. These memristive devices were used as the
synaptic weight element in a spiking neural network to simulate,
to our knowledge, one of the first models of this kind
capable of learning to be a universal function approximator.
The performance was tested in the Nengo Brain Builder
framework by defining a simple network topology capable
of learning transformations from multi-dimensional, time-
varying signals. The network demonstrated good learning
performance with robustness to moderate noise levels of up to
≈ 15%, showing that this class of memristive devices is apt
to being used as component of a neuromorphic architecture.
It is worth restating that the network weights were found
using only discrete updates to the memristors, based on
knowledge local to each pre- and post-synaptic neuron pair;
this means that our learning model presents many more
neuromorphic characteristics than, for example, previous works
where memristors are used as mere hardware implementations
for artificial neural network weights (for example, see Li et al.,
2019).

Using memristive devices as weights can enable efficient
computing—which is also one of the cornerstones of
the neuromorphic approach—but not pairing them with
a neuromorphic learning algorithm and a spiking neural
network imposes quite stringent requirements on the physical
characteristics of the device. For example, a memristor simply
used as a physical implementation of a network weight works
best if it exhibits reliable, linear, and symmetric conductance
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response in order to approximate the idealized weight it stands
in for Li et al. (2018). Present-day machine learning models
suffer from “brittleness” (i.e., small changes in input can give rise
to large errors) and do not seem well-positioned in being able
to match human adaptability across a wide variety of tasks. It is
becoming accepted that stochasticity is itself a computational
resource (Xia and Yang, 2019)—even though it is still not
formally proven as such—and the fact that our model seems to
perform best with a moderate amount of noise could be a result
of this effect. It had already been proposed that networks using
memristors as synapses could match the learning performance of
traditional artificial neural networks (Burr et al., 2015) and our
results are in line with this conjecture.

CODE AVAILABILITY

All code used in this study is publicly available on GitHub at
https://github.com/Tioz90/Learning-to-approximate-functions-
using-niobium-doped-strontium-titanate-memristors.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this
article will be made available by the authors, without
undue reservation.

AUTHOR CONTRIBUTIONS

TT, AG, JB, TB, and NT developed the ideas and wrote the
paper. AG conducted the experimental work. TT, AG, and NT
derived the mathematical results. TT designed and ran the
simulations. All authors contributed to the article and approved
the submitted version.

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at arXiv.org
(arXiv:2011.02794) (Tiotto et al., 2020).

AG and TB would like to thank all members of the Spintronics
of Functional Materials group at the University of Groningen,
in particular Arijit Das for help with device fabrication. Device
fabrication was realized using NanoLab NL facilities. AG and
TB acknowledge technical support from J. G. Holstein, H. H. de
Vries, T. Schouten, and H. Adema. AG and TT were supported
by the CogniGron Center, University of Groningen.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.627276/full#supplementary-material

REFERENCES

Ambrogio, S., Ciocchini, N., Laudato, M., Milo, V., Pirovano, A., Fantini,

P., et al. (2016). Unsupervised learning by spike timing dependent

plasticity in phase change memory (PCM) synapses. Front. Neurosci. 10:56.

doi: 10.3389/fnins.2016.00056

Amer, S., Rose, G. S., Beckmann, K., and Cady, N. C. (2017). “Design techniques

for in-field memristor forming circuits,” in 2017 IEEE 60th International

Midwest Symposium on Circuits and Systems (MWSCAS) (Boston, MA: IEEE),

1224–1227. doi: 10.1109/MWSCAS.2017.8053150

Bekolay, T. (2010). Learning Nonlinear Functions on Vectors: Examples and

Predictions. Technical report, CTN-TR-20101217-010, Centre for Theoretical

Neuroscience, Waterloo.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen,

D., et al. (2014). Nengo: a python tool for building large-scale functional brain

models. Front. Neuroinform. 7:48. doi: 10.3389/fninf.2013.00048

Brivio, S., Conti, D., Nair, M. V., Frascaroli, J., Covi, E., Ricciardi, C., et al. (2018).

Extended memory lifetime in spiking neural networks employing memristive

synapses with nonlinear conductance dynamics. Nanotechnology 30:015102.

doi: 10.1088/1361-6528/aae81c

Burr, G. W., Shelby, R. M., Sidler, S., Nolfo, C., d., Jang, J., et al. (2015).

Experimental demonstration and tolerancing of a large-scale neural network

(165,000 synapses) using phase-changememory as the synaptic weight element.

IEEE Trans. Electron Devices 62, 3498–3507. doi: 10.1109/TED.2015.24

39635

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Du, C., Cai, F., Zidan, M. A., Ma, W., Lee, S. H., and Lu, W. D. (2017). Reservoir

computing using dynamic memristors for temporal information processing.

Nat. Commun. 8:2204. doi: 10.1038/s41467-017-02337-y

Eliasmith, C., and Anderson, C. H. (2003). Neural engineering: Computation,

Representation, and Dynamics in Neurobiological Systems. Cambridge, MA;

London: MIT Press.

Frascaroli, J., Brivio, S., Covi, E., and Spiga, S. (2018). Evidence of soft bound

behaviour in analogue memristive devices for neuromorphic computing. Sci.

Rep. 8:7178. doi: 10.1038/s41598-018-25376-x

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Goossens, A. S., Das, A., and Banerjee, T. (2018). Electric field driven memristive

behavior at the Schottky interface of Nb-doped SrTiO3. J. Appl. Phys.

124:152102. doi: 10.1063/1.5037965

Hill, L. B., Rejall, A. E., and Thorndike, E. L. (1991). Practice

in the case of typewriting. J. Genet. Psychol. 152, 448–461.

doi: 10.1080/00221325.1991.9914706

Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G. S., and Linderman, R.

W. (2014). Memristor crossbar-based neuromorphic computing system:

a case study. IEEE Trans. Neural Netw. Learn. Syst. 25, 1864–1878.

doi: 10.1109/TNNLS.2013.2296777

Hu, P., Wu, S., and Li, S. (2018). “Synaptic behavior in metal oxide-based

memristors,” in Advances in Memristor Neural Networks-Modeling and

Applications (London: IntechOpen). doi: 10.5772/intechopen.78408

Jang, J. T., Ko, D., Ahn, G., Yu, H. R., Jung, H., Kim, Y. S., et al. (2018). Effect of

oxygen content of the LaAlO3 layer on the synaptic behavior of Pt/LaAlO3/Nb-

doped SrTiO3 memristors for neuromorphic applications. Solid State Electron.

140, 139–143. doi: 10.1016/j.sse.2017.10.032

Kim, G. S., Song, H., Lee, Y. K., Kim, J. H., Kim, W., Park, T. H., et al.

(2019). Defect-engineered electroforming-free analog HfOx memristor and its

application to the neural network.ACSAppl. Mater. Interfaces 11, 47063–47072.

doi: 10.1021/acsami.9b16499

Kim, M. K., and Lee, J. S. (2019). Ferroelectric analog synaptic transistors. Nano

Lett. 19, 2044–2050. doi: 10.1021/acs.nanolett.9b00180

Kim, S., Du, C., Sheridan, P., Ma, W., Choi, S., and Lu, W. D. (2015).

Experimental demonstration of a second-order memristor and its ability

to biorealistically implement synaptic plasticity. Nano Lett. 15, 2203–2211.

doi: 10.1021/acs.nanolett.5b00697

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated

annealing. Science 220, 671–680. doi: 10.1126/science.220.4598.671

Frontiers in Neuroscience | www.frontiersin.org 15 February 2021 | Volume 14 | Article 627276

https://github.com/Tioz90/Learning-to-approximate-functions-using-niobium-doped-strontium-titanate-memristors
https://github.com/Tioz90/Learning-to-approximate-functions-using-niobium-doped-strontium-titanate-memristors
https://arxiv.org/abs/2011.02794v1
https://www.frontiersin.org/articles/10.3389/fnins.2020.627276/full#supplementary-material
https://doi.org/10.3389/fnins.2016.00056
https://doi.org/10.1109/MWSCAS.2017.8053150
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1088/1361-6528/aae81c
https://doi.org/10.1109/TED.2015.2439635
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1038/s41467-017-02337-y
https://doi.org/10.1038/s41598-018-25376-x
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1063/1.5037965
https://doi.org/10.1080/00221325.1991.9914706
https://doi.org/10.1109/TNNLS.2013.2296777
https://doi.org/10.5772/intechopen.78408
https://doi.org/10.1016/j.sse.2017.10.032
https://doi.org/10.1021/acsami.9b16499
https://doi.org/10.1021/acs.nanolett.9b00180
https://doi.org/10.1021/acs.nanolett.5b00697
https://doi.org/10.1126/science.220.4598.671
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tiotto et al. Approximating Functions Using Memristors

Krishnaprasad, A., Choudhary, N., Das, S., Dev, D., Kalita, H., Chung,

H.-S., et al. (2019). Electronic synapses with near-linear weight

update using MoS2/graphene memristors. Appl. Phys. Lett. 115:103104.

doi: 10.1063/1.5108899

Kuzum, D., Jeyasingh, R. G. D., Lee, B., andWong, H. S. P. (2012). Nanoelectronic

programmable synapses based on phase change materials for brain-inspired

computing. Nano Lett. 12, 2179–2186. doi: 10.1021/nl201040y

Le Cun, Y. (1986). “Learning process in an asymmetric threshold network,” in

Disordered Systems and Biological Organization (Berlin; Heidelberg: Springer),

233–240. doi: 10.1007/978-3-642-82657-3_24

Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., et al. (2018). Efficient and

self-adaptive in-situ learning in multilayer memristor neural networks. Nat.

Commun. 9:2385. doi: 10.1038/s41467-018-04484-2

Li, C., Wang, Z., Rao, M., Belkin, D., Song, W., Jiang, H., et al. (2019). Long

short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell.

1, 49–57. doi: 10.1038/s42256-018-0001-4
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