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The Brain Computer Interface (BCI) system is a typical neurophysiological application

which helps paralyzed patients with human-machine communication. Stroke patients

with motor disabilities are able to perform BCI tasks for clinical rehabilitation. This paper

proposes an effective scheme of transfer calibration for BCI rehabilitation. The inter- and

intra-subject transfer learning approaches can improve the low-precision classification

performance for experimental feedback. The results imply that the systematical scheme

is positive in increasing the confidence of voluntary training for stroke patients. In addition,

it also reduces the time consumption of classifier calibration.
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1. INTRODUCTION

Brain-computer interface (BCI) is developed as an extrinsic pathway for human-machine
interaction in a reliable way (Birbaumer, 2006). It is effective for the disabled to control external
devices by neural activities (Buch et al., 2008). Stroke patients with motor disabilities in particular,
are able to perform BCI tasks for clinical rehabilitation (Meng et al., 2016). In this treatment,
sensorimotor rhythm changes are used as neurological modulation for active intervention (Mane
et al., 2019).

During rehabilitation, the patients are requested to attempt or to imagine performing a
movement. Then, motor attempt (MA) or motor imagery (MI)-BCI systems will output a
synchronized sensory biofeedback (e.g., robotic arm recovery) by a trained classifier based on a
prior dataset (Pillette et al., 2020). In the intervention, the functional motor is significantly enabled
by neurophysiological activity (Xu et al., 2014). This is an ongoing process of brain plasticity and
functional recovery (Remsik et al., 2019). Recent studies have reported the improvement of limb
movement for stroke patients using long-term sensorimotor rhythm (SMR)-BCI interventions
(Ramos-Murguialday et al., 2013; Pichiorri et al., 2015; Bundy et al., 2017).

Nevertheless, BCI rehabilitation is limited by poor-efficiency recognition algorithms and
model-personalized variability (Grosse-Wentrup et al., 2011). Relevant work has proved that BCI
decoding accuracy was insufficient for rehabilitation outcomes (Mane et al., 2020). Moreover, the
failures of BCI feedback also reduce the confidence of trainees subtly (Foong et al., 2019). Hence,
various improvements of pattern recognition and model calibration should be made to enhance
SMR-BCI performance in the clinical application.
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Conventionally, SMR features are effectively extracted
by a time-frequency analysis for the healthy (Pfurtscheller
and Da Silva, 1999). For instance, the event-related
desynchronization (ERD) amplitudes oscillated in the µ

rhythm was detected during the motor imagery task for pattern
recognition (Huang et al., 2012; Saha et al., 2017). Furthermore,
the common spatial pattern (CSP) algorithm was proposed
for feature extracting in the spatial domain (Wang et al., 2006;
Arvaneh et al., 2013). It was efficient for mining the significant
difference of two-type motor tasks. However, the degeneration of
neural activation due to post stroke, has a negative impact on BCI
performance (Shu et al., 2018). Thus, the signal characteristics
are much lower than those of healthy individuals during motor
tasks (De Vries et al., 2013; Caria et al., 2020). Therefore,
increasing the precision of SMR-BCI using a mathematical
methods is meaningful for BCI intervention.

To solve this problem, transfer learning (TL), which applies
the dataset in source domains for compensating insufficient
labeled data in a target domain, has been proposed for MI-
BCIs (Samek et al., 2013b; Azab et al., 2018). This technology
is developed in several ways, such as instance selection (Wu,
2016; Hossain et al., 2018), feature calibration (Samek et al.,
2013a; Zhao et al., 2019) and classification domains (Vidaurre
et al., 2010; He and Wu, 2019). For instance, for selection,
active learning is typically presented for selecting training data
from intra- or inter-subject labeled trials (Hossain et al., 2018).
The target of this approach is to increase the informative
trials of the new subject by adding sufficient existing labeled
trials that were close to prior dataset. In the feature domain,
transfer calibration approaches mainly concentrate on regulating
the covariance matrix estimation and optimization function
for improving the performance of CSP models. For example,
researchers regularized the CSP filter by the average of the
common feature space from other subjects (Kang et al., 2009).
Moreover, the efficiency of domain adaptation has been verified
for MI-BCI in the classification domain (Vidaurre et al., 2010).
Kobler et al. constructed a Restricted BoltzmannMachine (RBM)
based on public baseline data and applied it for the MI-BCI
task (Kobler and Scherer, 2016). Recently, multi-task learning
has been presented in the relevant experiment (Jayaram et al.,
2016; Gao et al., 2019), where the weight parameters of inter-
subjective classifiers were learned jointly for minimizing the
dissimilarities between these existing classification models and
the target model. However, BCIs controlled by these approaches
have been proven to be only valid for healthy individuals. None
of them are experimentally evaluated for BCI rehabilitation.

This paper first proposes a transfer calibration scheme to
improve the rehabilitation outcomes of SMR-BCI. First, we
utilize a transfer learning algorithm, whose effects have been
verified in the task of MI-BCI (Azab et al., 2019), to validate
the reliability for stroke patients. Then, we discuss the respective
applicability between intra- and inter- subjective conditions. The
results show that our proposed approaches improved the low-
precision classification performance. Accordingly, we generalize
the scheme of transfer calibration for SMR-BCI intervention.
This methodology applies for other transfer learning algorithms
to increase the precision of BCI feedback.

2. MATERIALS AND METHODS

2.1. Experimental Paradigm and Subjects
Seven stroke patients aged between 30 and 65, recruited from
the Department of Rehabilitation Medicine of Huashan Hospital
participated in our experiments (Table 1). All of them were naive
to BCI and provided consent to be involved in the study. The
inclusion criteria for this study were as follows: (1) unilateral
motor dysfunction diagnosed by computer tomography or
magnetic resonance imaging (MRI); (2) first onset stroke patient;
(3) the time since stroke onset was more than 4 weeks and less
than 6 months; (4) the assessment of cognitive functions: Mini-
Mental State Examination score > 25. The exclusion criteria
were listed below: (1) unstable medical conditions; (2) severe
vision problems; (3) the intervention treatment by other brain
stimulations during the study period.

In the experiment, BCI intervention was performed in three
sessions a week for each patient. And it lasted 1 month, with
a total of 12 sessions. One session contained three runs, each
run had 30 trials for each mental task (motor attempt or idle
state) performed in a random order. Subjects underwent two
experimental tasks. In the task of motor attempt (MA), patients
were required to attempt motion of wrist extension with affected
hands continually, but not to have compensatory movements. In
the other task of idle state (IS), they needed to do nothing but rest
(Figure 1A).

The experimental paradigm is shown in Figure 1B. In one
trial, the duration time was about 11 s. The patient was asked to
sit in front of a computer screen, with arms resting on a desk.
A white arrow presented on the center of the screen from 0
to 3 s. The patient was instructed to keep still and rest. Then,
an alternative indicator (a red square or a red rectangle) was
displayed in the center of the screen, representing a task (MA
or IS). After the command disappeared, the subject was required
to perform the corresponding task for 5 s until the white cross
disappeared. Finally, the rest interval was adopted randomly
to relax.

2.2. EEG Recording and Signal
Preprocessing
EEG were collected using 32 channels consisting of Ag/AgCl
electrode of EEG cap (actiCAP; Brain Products, Germany)
according to the configuration of 10-C20 International System.
A bio-signal amplifier (Brain Products) was used for acquiring
the signals. The unilateral reference electrode was located in the
right mastoid process, and the ground electrode was located in
the forehead. The other 31 channels (FP1, FZ, F3, F7, FT9, FC5,
FC1, C3, T7, TP9, CP5, CP1, PZ, P3, P7, O1, O2, P4, P8, TP10,
CP6, CP2, CZ, C4, T8, FT10, FC6, FC2, F4, F8, FP2) were used
for calculation. Electrode impedances were kept below 5 k�. The
signals were amplified, digitalized with a sample rate of 200 Hz,
and bandpass-filtered between 1 and 35Hz.

2.3. Evaluation of BCI Performance
BCI performance was evaluated by classification accuracy for two
mental tasks. As shown in the figure of experimental paradigm,
the subject conducted the mental task from 4.5 s to 9.5 s. Hence,
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TABLE 1 | The baseline clinical characteristics of participants.

Patients Gender Affected hand Type of injury Time since injury (m) Site of injury

S1 Male Right Ischemia 5 Left, basal ganglia

S2 Male Left Hemorrhage 4 Right, basal ganglia

S3 Male Right Hemorrhage 1 Left, basal ganglia

S4 Male Right Ischemia 1 Left, paracele

S5 Male Right Ischemia 3 Left, basal ganglia

S6 Male Right Ischemia 5 Left, paracele, basal ganglia

S7 Male Left Ischemia 3 Right, basal ganglia

FIGURE 1 | (A) Experimental procedures of two different mental tasks. In the task of MA, patients were required to attempt motion of wrist extension with affected

hands continually, but not to have compensatory movements. In the other task of IS, they need not do anything for a rest. (B) Overview of BCI control paradigm.

EEG signals were extracted from [4.5 9.5] s of each single trial.
And the features were filtered with the common spatial pattern
(CSP) method, whose log-variance of the first and last three
components were selected as output vectors. Then, a transfer
learning scheme was used to improve the classification efficiency.
The Logistic Regression (LR) -based classifier was used as the
baseline approach. Its classification parameterswt were calibrated
using the following function,

L (wt) = min
wt

(

i=1
∑

nt

H(wt; l
i
t , f

i
t )+ λt ‖wt‖

2
2

)

, (1)

where H, ft , lt and ‖.‖2 denote the cross-entropy, feature
vectors extracted from the EEG dataset, label vector, and 2-
norm functions, respectively. Conventionally, the parameters
were supposed be trained by large prior data. Transfer learning
algorithms had been proposed for improving the efficiency of
parameter calibration of new subjects without subject-specific
data (Hossain et al., 2018). In the framework of logistic regression
-based transfer learning (LRTL), a regularization term penalizing
dissimilarities Rt was used for transferring the prior distribution
of the existing classification parameters into the calibration of
the present training of new target subjects or sessions. In this
opinion, the classification parameters were calculated as follows,

L′ (wt) = min
wt

(

i=1
∑

nt

H(wt; l
t
i , l

f
i )+ λtRt(wt)

)

, (2)

and the Rt was decided by estimating the similarity between
feature distribution of existing models and that of current few
training data,

Rt(wt) = 0.5[(wt − µ)T6−1
t (wt − µ)+ log(|6t|)], (3)

where µ and 6t were, respectively, obtained as

µ =
1

n

n
∑

t′=1

wt′ , (4)

6t =
diag

(

6n
t′=1(wt′ − µ)(wt′ − µ)T

)

trace
(

6n
t′=1(wt′ − µ)(wt′ − µ)T

) . (5)

Here, T denoted transpose of the matrix, the functions of diag
and trace were defined as the diagonal elements and the sum
of the diagonal elements of a matrix. Furthermore, Kullback-
Leibler (KL) divergence was added to solve the problem of weight
distribution between existing models and the target model. It was
supposed to give larger weights to more similar distributions and
smaller weights to less similar distributions. KL divergence of two
EEG sets (E0, E1) were represented as the following form,

KL[E0 ||E1] = 0.5[(µ1 − µ0)
T6−1

1 (µ1 − µ0)+ trace(6−1
1 60)

−ln

(

det(60)

det(61)

)

− K], (6)
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FIGURE 2 | The classification results of transfer learning algorithms and

baseline algorithm under the intra-subject condition. Specially, the accuracies

were missing for LRTL and wLRTL. Because the new subject had no

experience of relevant tasks. Hence, the transfer calibration was not

performed without prior dataset under this condition.

TABLE 2 | The average accuracy of low-precision sessions (≤ 60%) for transfer

learning algorithms (i.e., LRTL, wLRTL) and baseline algorithm (i.e., LR) under the

intra-subject condition.

Methods S1 S2 S3 S4 S5 S6 S7

LR (%) 56.5 53.6 52.8 55.6 55.6 54.7 54.2

LRTL (%) 60.2 56.8 56.7 58.9 58.2 59.8 59.1

wLRTL (%) 59.9 57.2 56.7 59.4 58.6 60.4 59.7

The accuracies of transfer learning approaches were higher than that of baseline

approach.

TABLE 3 | The average accuracy of low-precision sessions (≤ 60%) for transfer

learning algorithms (i.e., LRTL, wLRTL) and baseline algorithm (i.e., LR) under the

inter-subject condition.

Methods S1 S2 S3 S4 S5 S6 S7

LR (%) 56.5 52.9 52.8 55.6 55.6 55.1 54.2

LRTL (%) 60.2 57.3 58.9 58.3 58.3 58.9 59.5

wLRTL (%) 59.9 57.6 59.4 58.9 58.7 59.4 60.2

The accuracies of transfer learning approaches were higher than that of baseline

approach.

where det and K denoted the determinant function and the
dimension of the data, respectively. Thus, the 6t was updated as
below,

6tw =
diag

(

6n
t′=1(αt′wt′ − µt)(αt′wt′ − µt)T

)

trace
(

6n
t′=1(αt′wt′ − µt)(αt′wt′ − µt)T

) , (7)

where α and µ was computed as

αt′ =
(1/(KL[Es,Et′ ]+ ε)4)

(1/(KL[Es,Ei]+ ε)4)
, (8)

µt =
1

n

n
∑

t=1

αt′wt . (9)

Here, the divergence was calculated by averaging the KL
divergences calculated for each class separately. The details
of weighted LRTL (wLRTL) approach and the above other
algorithms can be reviewed in Azab et al. (2019).

In this study, we discussed the transfer scheme for several
subjective conditions of prior knowledge. Inter- and Intra-subject
transfer learning approaches were both used to evaluate the
methodological effectiveness. Inter-subject transfer calibration
trained this classifier with prior experimental trials from
other subjects while intra-subject transfer calibration performed
this work using its own existing dataset. The target of our
research was to find which kind of transfer strategies could
be made to improve the online single-trial accuracy of BCI
rehabilitation. The right bio-feedback (e.g., robotic arm) was able
to raise the subjective confidence and patience to improve the
therapeutic effect.

In this experiment, the performances of first sessions were
unavailable for intra-subject transfer learning algorithms on
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account of no prior dataset. We used the sequential collecting
of source data for transfer calibration. That meant that the
target session (e.g., Session 5) would be trained by all prior
collections (e.g., Session 1, Session 2, Session 3, Session 4). It was
consistent with the real condition of model training. Meanwhile,
the collection of source data was picked from all other subjects
under the inter-subject condition. Specifically, the dataset of each
subject which obtained the best performance in all sessions was
used for transfer learning. Moreover, 5-fold cross validation was
conducted for each approach. All 31 channels of the EEG data
were selected for pattern classification. The 45 trials of MA and
IS tasks (45 trials per class) were randomly divided into five sets.
Four sets were used to train the classifier and the other set was
tested to evaluate the performance.

3. RESULTS

3.1. The Experimental Performance of
Intra-Subject Based Transfer Learning
Approach
In our study, the precision of pattern recognition was considered
as the most important index for BCI rehabilitation. Figure 2
lists the classification results of the above intra-subject transfer
learning approaches (LRTL, wLRTL), as well as the baseline
approach (LR). The average classification accuracies of all
patients were higher than 60% for three different algorithms,
except for P6. And it was indicated that the pattern of
motor attempt could be distinctive from that of an idle state
without motor attempt. However, a paired t-test with Bonferroni
correction showed that no discriminatory differences were
presented between transfer learning approaches and the baseline
approach (LR vs. LRTL: p = 0.0277; LR vs. wLRTL: p = 0.0613;
LRTL vs. wLRTL: p = 0.6085). This result suggests that transfer
calibration did not significantly improve the BCI performance.

Furthermore, we analyzed the performance of low-precision
(≤ 60%) sessions for all patients (Table 2). Paired t-test with
Bonferroni correction showed that the classification results of
transfer learning approaches were significantly greater than that
of the baseline approach (LR vs. LRTL: p = 0.0001; LR vs.
wLRTL: p = 0.0001; LRTL vs. wLRTL: p = 0.0563). It was
meaningfully revealed that transfer calibration could improve the
BCI performance induced by poor model training.

3.2. Inter-Subject Based Transfer Learning
Approach for MI-Based BCI Rehabilitation
Similarly, Table 3 lists the classification results of all three
algorithms under the inter-subject condition. Paired t-test with
Bonferroni correction showed that no discriminative differences
were presented between transfer learning approaches and the
baseline approach (LR vs. LRTL: p = 0.0488; LR vs. wLRTL:
p = 0.1207; LRTL vs. wLRTL: p = 0.1744). This result suggested
that the non-significance was consistent with those under the
intra-subject condition.

Additionally, low-precision sessions were extracted for further
analysis (Figure 3). In this case, the statistical analysis indicated

FIGURE 3 | The classification results of transfer learning algorithms and

baseline algorithm under the inter-subject condition.

Frontiers in Neuroscience | www.frontiersin.org 5 January 2021 | Volume 14 | Article 629572

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Cao et al. Transfer Calibration for BCI Rehabilitation

FIGURE 4 | (A) The comparison of low-precision classification results for LRTL algorithm between intra-subject and inter-subject conditions. (B) The comparison of

low-precision classification results for wLRTL algorithm between intra-subject and inter-subject conditions.

that the accuracies of transfer learning approaches were
significantly higher than that of the baseline approach (LR
vs. LRTL: p = 0.0001; LR vs. wLRTL: p = 0.0001;
LRTL vs. wLRTL: p = 0.0210). It was revealed that
transfer calibration improved the BCI performance under the
inter-subject condition.

4. DISCUSSION

This study proposed a novel transfer calibration scheme to
improve low-precision performance for BCI rehabilitation. This
scheme of transfer learning could be used for new subjects
without the training dataset, as well as replacing the poor training
model–whose accuracy was close to the chance level. Cerebral
activities were also observed to clarify the benefit of transfer
calibration for feature selection.

4.1. Improvement of Low-Precision
Performance for BCI Rehabilitation
As we know, the critical issue of BCI rehabilitation revolves
around how to promote the biofeedback effect for active
intervention (Ko et al., 2019). It was positive for rehabilitation
outcomes, enhancing cortical activity for neural recovery, and
increasing confidences of voluntary training (Zhang et al., 2020).
Hence, the biofeedback of low-precision trials was negative
for patients. Furthermore, most of the sessions used by the
baseline classifier achieved the effective performance (> 60%)
for each patient, except for S6. It was indicated that very few
non-effective results of experimental sessions were unreliable
for evaluating this neural treatment. Improved performance of
transfer calibration could eliminate the confusion caused by the
precision fluctuation.

Moreover, we presented the comparison of transfer learning
algorithms between inter-subject (IERS) and intra-subject (IRAS)
conditions (Figure 4). Statistical analysis was used to compare
the classification accuracies among transfer conditions (LRTL:
IERS vs. IRAS: p = 0.3138; wLRTL: IERS vs. IRAS: p =

0.3501;). This result suggested that both of them were reliable
for improving low-precision performance of SMR-BCI tasks.
However, the advantage of inter-subject transfer calibration was
employed for new subjects without training.

The fluctuation of classification for LR resulted from the
differences of brain activity between consecutive sessions. It
was deduced that changes of cerebral activities were caused by
neural self-rehabilitation for patients. As a result, BCI-based
intervention was effective for stroke rehabilitation to some extent.
Nevertheless, the methodology needs to be further clarified for
high-efficiency treatment.

The efficiency of transfer learning has been verified by motor
imagery -based BCI tasks for healthy people. However, cerebral
impairment of stroke patients would influence the training effect
due to the weak neural activities. Therefore, our classification
result was lower than those of the above state-of-art BCI systems
(Azab et al., 2019, 2020; He and Wu, 2019). Nevertheless, the
improvement of low-precision performance was conductive to
treatment for the impatient. Compared to the feedback of the
random level, the subject was subjectively motivated by positive
feedback of right detection. It is meaningful for long-term
continuous rehabilitation.

4.2. Transfer Calibration Scheme for
SMR-Based BCI Intervention
In our study, an available scheme of transfer calibration was
proposed for model selection in the online task of SMR-BCI
rehabilitation (Figure 5). We summarized several rules as stated
below: (1) Instant self-training was necessary for new subjects.
The classification model based on current dataset was reliable for
BCI tasks. (2) If the patient was frustrated by tedious training,
intra- or inter-subject transfer calibration could be used to reduce
the calibration time. (3) Furthermore, we could train another
model when sufficient trials were finished in the task. If the
precision of current model was superior to prior transfer model,
the alternative could be automatically performed by our control
system. (4) If the model based on the current training dataset
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FIGURE 5 | The transfer calibration scheme of classifier model selection for SMR-BCI rehabilitation. For a new subject, intra- or inter-subject transfer calibration could

be used for reducing the calibration time. Meanwhile, we could train another model when sufficient trials were finished in the task. If the precision of current using

model was superior to that of the spare model, the alternative could be automatically performed by control system.

performed poorly on the experiment, intra- or inter-subject
transfer calibration was worth trying in order to replace the
under-performingmodel. (5) For transfer calibration, the volume
of EEG data was a crucial factor for model selection between
intra-subject and inter-subject conditions. Sufficient training data
was an essential precondition for transfer calibration. Specifically,
the only option for new subjects without prior experience was
inter-subject transfer calibration.

This scheme of transfer calibration was feasible for improving
the poor performance of SMR-BCI recognition. And it also
reduced the time consumption of model calibration. It was
inferred that this scheme was suitable for other transfer
learning algorithms.

4.3. Limitation of Current Work
In this study, some issues should be noted and considered
in our future work. First, the scheme of transfer calibration
needed to be verified for a large amount of stroke patients.
It will be addressed in future studies. Second, these patients
performed these experiments for 3 months. BCI training over
longer time periods should be observed to evaluate performances
of the patients in different stages of post-stroke time. Moreover,
the number of electrodes was supposed to be reduced by
data analysis. It could reduce the time consumption of BCI
rehabilitation. Thus, future studies should be conducted to solve
these problems to improve the performance of online SMR-BCI
rehabilitation.
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5. CONCLUSIONS

This paper proposed an effective scheme of transfer calibration
for SMR-BCI rehabilitation. The inter- and intra-subject
transfer learning approaches could improve the low-precision
classification model for BCI feedback. The results imply that
this systematical scheme is positive in increasing confidence of
voluntary training for stroke patients. It also reduced the time
consumption of model calibration.
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