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Autism spectrum disorder (ASD) is a range of neurodevelopmental disorders with
behavioral and cognitive impairment and brings huge burdens to the patients’ families
and the society. To accurately identify patients with ASD from typical controls is
important for early detection and early intervention. However, almost all the current
existing classification methods for ASD based on structural MRI (sMRI) mainly utilize
the independent local morphological features and do not consider the covariance
patterns of these features between regions. In this study, by combining the convolutional
neural network (CNN) and individual structural covariance network, we proposed a
new framework to classify ASD patients with sMRI data from the ABIDE consortium.
Moreover, gradient-weighted class activation mapping (Grad-CAM) was applied to
characterize the weight of features contributing to the classification. The experimental
results showed that our proposed method outperforms the currently used methods for
classifying ASD patients with the ABIDE data and achieves a high classification accuracy
of 71.8% across different sites. Furthermore, the discriminative features were found
to be mainly located in the prefrontal cortex and cerebellum, which may be the early
biomarkers for the diagnosis of ASD. Our study demonstrated that CNN is an effective
tool to build the framework for the diagnosis of ASD with individual structural covariance
brain network.

Keywords: autism spectrum disorder, individual morphological covariance brain network, convolutional neural
network, gradient-weighted class activation mapping, structural MRI

INTRODUCTION

Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental disorders. The core
symptoms of ASD comprise abnormal emotional regulation and social interactions, restricted
interest, repetitive behaviors, and hypo-/hyperreactivity to sensory stimuli (Guze, 1995). Many
individuals with autism spectrum disorder usually exhibit impairments in learning, development,
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control, and interaction, as well as some daily life skills. ASD
causes heavy economic burden for the patients’ families and the
society. It is urgent to establish an early and accurate diagnosis
framework to identify ASD patients from typical controls (TC).
Recently, noninvasive and in vivo neuroimaging techniques have
become an area of intense investigation to explore the auxiliary
diagnostic for ASD.

A variety of neuroimaging modalities, such as
structural MRI (sMRI), diffusion MRI, functional MRI,
magnetoencephalography, electroencephalography, and
electrocorticography, are widely adopted to uncover patterns
in both brain anatomical structure and function. Structural
MRI provides abundant measures to delineate the structural
properties of the brain (Wang et al., 2017, 2018, 2019; Wu et al.,
2017; Xu et al., 2019). Although there were many controversial
findings regarding brain structural changes in individuals with
autism (Chen et al., 2011), to identify ASD based on sMRI still
received a great deal of attention from researchers. Wang et al.
(2016) linearly projected gray matter (GM) and white matter
(WM) features extracted from sMRI onto a canonical space to
maximize their correlations. With the projected GM and WM
as features, they achieved the classification accuracy of 75.4%
with the data scanned at New York University (NYU) Langone
Medical Center from ABIDE. Recently, the classification
accuracy for ASD is up to 90.39%, which is obtained with sMRI
constrained to the same single-site dataset (Kong et al., 2019).
Although previous studies achieved high classification accuracy,
almost all these results were obtained from a single site, and
reproducibility and generation in a multisite remain uncertain
(Button et al., 2013).

It is well accepted that multisite datasets can represent
greater variance of disease and control samples to establish
more stable generalization models for replication across
different sites, participants, imaging parameters, and analysis
methods (Nielsen et al., 2013). Thus, there are some studies
focused on larger sample sizes from a multisite. However, the
classification accuracy drops significantly due to the complexity
and heterogeneity of ASD (Nielsen et al., 2013). In a study by
Zheng et al. (2018), the elastic network was utilized to quantify
corticocortical similarity based on seven morphological features
on 132 selected subjects from four independent sites of the
ABIDE dataset. Although the classification performance of
this study was 78.63%, the samples used in this study only
cover a small portion of the ABIDE dataset. Additionally,
there are few other studies that use larger datasets from
ABIDE but with low accuracy. For instance, Haar et al. (2016)
used linear and quadratic (nonlinear) discriminant analyses
to classify ASD and control subjects based on structural
measures of the quality-controlled samples from ABIDE, but
the accuracies were only 56 and 60% when using subcortical
volumes or cortical thickness measures. Katuwal et al. (2015)
used random forest (RF), support vector machine (SVM),
and gradient boosting machine (GBM) to classify 373 ASD
from 361 TC male subjects from the ABIDE database and
obtained 60% classification accuracy. The accuracy was
further improved to 67% when IQ and age information
were added to morphometric features. Although the existing

approaches can obtain high classification accuracy based on
sMRI measures in a single site or with a small number of
subjects, an acceptable method to achieve high classification
accuracy across different sites with different scanning paradigms
is still needed.

The low classification accuracy for different sites may mainly
result from the following reasons. First, the data collected from
different sites expand the variances of structural measures,
which increases the difficulty in learning high accuracy classifiers
with such data. Second, the brain is an integrative and
dynamic system for information processing between brain
regions (Vértes and Bullmore, 2014), yet most of the existing
methods only extract independent local morphological features
of different brain areas with sMRI and did not consider
the interregional morphological covariant relationships. Third,
although some deep neural network classifiers were used in
ASD/TC classification by transforming the features to a one-
dimensional vector followed by features selection algorithm,
the classification results are hard to interpret in the absence
of the contributions of the classification features leading to
lack of clinical significance. In view of the abovementioned
problems, to further explore an efficient classification method
is essential to establish the ASD diagnosis model. Here,
we combine a deep learning classifier and gradient-weighted
class activation mapping (Grad-CAM) (Selvaraju et al., 2020)
based on morphological covariance brain networks to identify
ASD patients from TC with all the ABIDE dataset. We
first constructed the individual-level morphological covariance
brain networks, and the interregional morphological covariance
values were used as the input feature for the classifier.
Next, the convolutional neural network (CNN) classifier with
Grad-CAM is applied to differentiate ASD from TC and to
identify features contributing the largest for the classification
in our framework.

MATERIALS AND METHODS

The ABIDE Dataset
Data used in this study are accessed from a large open
access data repository, Autism Brain Imaging Data Exchange I
(ABIDE1), which came from 17 international sites with no prior
coordination (Di Martino et al., 2014). ABIDE includes structural
MRI, corresponding rs-fMRI, and phenotype information for
individuals with ASD and TC and allows for replication,
secondary analyses, and discovery efforts. Although all data in
ABIDE were collected with 3 T scanners, the sequence parameters
as well as the type of scanner varied across sites. In this paper,
we used the structural MR images of 518 ASD patients and 567
age-matched normal controls (ages 7–64 years, median 14.7 years
across groups) aggregated from all 17 international sites. The key
phenotypical information is summarized in Table 1. As seen from
Table 1, the variation in age range across samples varied greatly,
and most of the ASD subjects are male with 25% of the sites
excluding females by design.

1http://fcon_1000.projects.nitrc.org/indi/abide

Frontiers in Neuroscience | www.frontiersin.org 2 January 2021 | Volume 14 | Article 629630

http://fcon_1000.projects.nitrc.org/indi/abide
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-629630 January 28, 2021 Time: 13:5 # 3

Gao et al. CNN Classifies ASD

TABLE 1 | Demographic information of subjects with autism spectrum disorder
(ASD) and typical controls (TC).

Site Autism spectrum disorder (ASD) Typical controls (TC)

Number of
subjects

Age
(years)

ADOS Number of
subjects

Age
(years)

CALTECH 19 (15 M/4 F) 27.4 13.1 18 (14 M/4 F) 28

CMU 14 (11 M/3 F) 26.4 13.1 13 (10 M/3 F) 26.8

KKI 20 (16 M/4 F) 10.0 12.5 28 (20 M/8 F) 10

LEUVEN 29 (26 M/3 F) 17.8 * 34 (29 M/5 F) 18.2

MAX MUN 24 (21 M/3 F) 26.1 9.5 28 (27 M/1 F) 24.6

NYU 75 (65 M/10 F) 14.7 11.4 100 (74 M/26 F) 15.7

OHSU 12 (12 M/0 F) 11.4 9.2 14 (14 M/0 F) 10.1

OLIN 19 (16 M/3 F) 16.5 14.1 15 (13 M/2 F) 16.7

PITT 29 (25 M/4 F) 19.0 12.4 27 (23 M/4 F) 18.9

SBL 15 (15 M/0 F) 35.0 9.2 15 (15 M/0 F) 33.7

SDSU 14 (13 M/1 F) 14.7 11.2 22 (16 M/6 F) 14.2

STANFORD 19 (15 M/4 F) 10.0 11.7 20 (16 M/4 F) 10

TRINITY 22 (22 M/0 F) 16.8 10.8 25 (25 M/0 F) 17.1

UCLA 54 (48 M/6 F) 13.0 10.9 44 (38 M/6 F) 13.0

UM 66 (57 M/9 F) 13.2 * 74 (56 M/18 F) 14.8

USM 46 (46 M/0 F) 23.5 13.0 25 (25 M/0 F) 21.3

YALE 28 (20 M/8 F) 12.7 11.0 28 (20 M/8 F) 12.7

Data Preprocessing
All structural MR images used in our work were preprocessed
by the deformable medical image registration toolbox—
DRAMMS (Ou et al., 2011). DRAMMS is a software package
designed for 2D-to-2D and 3D-to-3D deformable medical
image registration tasks. The preprocessing procedures in our
study include cross-subject registration, motion correction,
intensity normalization, and skull stripping. Especially, T1W
MRI images in different sites were registered to the SRI24 atlas
(Rohlfing et al., 2010) for the morphological covariance brain
network mapping.

Individual-Level Morphological
Covariance Brain Networks
The morphological features of the human brain have long been
characterized by structural MRI. In our study, the individual-
level morphological covariance brain network (Wang et al.,
2016) is used to estimate interregional structural connectivity
to characterize the interregional morphological relationship.
The detailed construction procedures were described below.
First, after preprocessing, the structural T1 images were
segmented into cerebrospinal fluid (CSF), WM, and GM by
the multiplicative intrinsic component optimization (MICO)
method (Li et al., 2014). Next, a GM volume map was obtained
for each participant in template space. Second, the large-scale
morphological covariance brain network for each participant
was constructed based on their GM volume images according
to a previous study (Wang et al., 2016). A brain network
is usually comprised of a collection of nodes and edges,
wherein the network nodes are defined as different regions
in SRI24 atlases and the edge is defined as the interregional

similarity in the distribution of the regional GM volume. The
SRI24 atlas (Rohlfing et al., 2010) parcellates the whole brain
into 116 subregions and 58 subregions in each hemisphere.
Because of low signal-to-noise ratio and blank values of gray
matter volume in Vermis during network analysis, we excluded
eight areas in the Vermis (the cerebellar Vermis labeled from
109 to 116) to ensure the reliability of our study. Finally, a
108 × 108 matrix was obtained for each subject for further
analyses. To be specific, the edge of the individual network
is calculated as follows: the kernel density estimation (KDE)
(Rosenblatt, 1956) is firstly used to estimate the probability
density function (PDF) of the extracted GM volume values
as Eq. (1).

P(i) =
fh(i)∑N
j=1 fh(j)

(1)

where P(i) is the PDF of the i-th brain area, N is the total number
of regions, and fh(i) is the kernel density of the i-th area defined
as (Wang et al., 2016):

fh(i) =
1

nh

N∑
j=1

K
(

v(i)− v(j)
h

)
(2)

where K(.) is a non-negative function that integrates to one
and has mean zero, h > 0 is a smoothing parameter called the
bandwidth, and v(i) is the GM volume value of the i-th ROI.

The variation of the KL divergence (KLD) is calculated
subsequently from the above PDFs as Eq. (3):

DKL(P, Q) =

N∑
i=1

(
P(i) log

P(i)
Q(i)
+ Q(i) log

Q(i)
P(i)

)
(3)

where P and Q are the PDFs of different ROI. The network edge
is formally defined as the structural connectivity between two
regions and is quantified by a KL divergence-based similarity
(KLS) measure (Kong et al., 2014) with the calculated variation
of KLD. Thus, the similarity matrix can be defined as:

KLS(P, Q) = e−DKL(P,Q) (4)

For more details of the calculation process, refer to the previous
literature (Wang et al., 2016).

Convolutional Neural Network Classifier
Deep CNNs have led to a series of breakthroughs for image
classification (Liu et al., 2017, 2018). The deep residual networks
(ResNet) (He et al., 2016) have recently achieved state-of-the-
art on challenging computer vision tasks, which consists of
an ensemble of basic residual unit. According to the study of
He et al. (2016), ResNet tries to learn both local and global
features via skip connections combining different levels to
overcome the incapability of integrating different level features
found in plain networks, as seen in Figure 1A. Here, X is
the input of the residual unit, and F(X) denotes the residue
mapping of the stacked convolution layers. The formulation
of F(X) + X can be realized by feedforward neural networks
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FIGURE 1 | Residual learning and architectures for our work. (A) The formulation of F (X ) + X can be realized by feedforward neural networks with shortcut
connections. (B) Architectures for our work. The downsampling is performed by Conv_1, Conv_2, Conv_3, Conv_4, and Conv_5 with a stride of 2.

with shortcut connections. Thus, a simple identity mapping
directly connects the input and output layers by using ResNet
with the skip connection. In our work, five bottlenecks are
used to perform the classification, and the detailed architecture
of ResNet used in our work is shown in Figure 1B. The
binary cross-entropy (BCE) cost function is used as the loss
function of our work in the residual learning, which is defined
as follows:

L = −(y ∗ log(
∧
y)+ (1− y) ∗ log(1−

∧
y)) (5)

where y is the ground-truth label, and ∧
y

is the prediction
result of our work.

Grad-CAM
The Grad-CAM is able to produce “visual explanations” for
decisions from a large class of CNN-based models and makes
them more transparent (Selvaraju et al., 2017, 2020). It uses
the gradient information flowing into the last convolutional
layer of CNN to assign importance values to each neuron for
a particular decision of interest to avoid the model structure
modification and refrainment to keep both interpretability and
accuracy (Selvaraju et al., 2020). Also, the produced localization
map highlights the important regions in the image for predicting
the concept. It is an important tool for users to evaluate and
place trust in classification systems (Selvaraju et al., 2020). In this
work, we only focus on the explaining output layer decisions by
identifying the contributions of the classification features to help
researchers focus on the highlighted regions and trust the model.
The gradient of the score yc for class c is computed with respect to
feature map activations Ak of a convolutional layer. In the study
by Selvaraju et al. (2020), the neuron importance weights αc

k
are

defined as:

αc
k =

1
Z

∑
i

∑
j

∂yc

∂Ak
i,j

(6)

where Ak
i,j

is the feature map activations Ak indexed by i and j.

Then, a ReLU function is applied to a weighted combination
of forward activation maps to obtain the Grad-CAM
(Selvaraju et al., 2020):

Lc
Grad−CAM = ReLU(

∑
k

αc
kAk) (7)

Finally, the heat map highlighting the regions with a
positive influence on ASD/TC classification is obtained by
upsampling Lc

Grad−CAM
.

Implementation
An overview of the proposed ASD/TC classification framework
in our work is shown in Figure 2. We first constructed
the individual-level morphological covariance brain network
according to the SRI24 atlas as the input images for the
classification. Subsequently, the ResNet network is used to
perform the classification. Meanwhile, the importance value
to each neuron is obtained from Grad-CAM to explain
model decisions. Specially, our implementation for ASD/TC
classification based on the morphological covariance brain
networks performs the following practice. The size of input
image for ResNet is 108 × 108, and the crop is not needed
to be sampled from an image or its horizontal flip. We adopt
batch normalization (Ioffe and Szegedy, 2015) right after each
convolution and before activation based on a previous study
(Ioffe and Szegedy, 2015). Moreover, we do not use dropout
(Hinton et al., 2012) which is the practice of a previous study
(Ioffe and Szegedy, 2015). We initialized the weights randomly
and trained all plain/residual nets from scratch. We use the Adam
optimization method (Zhang et al., 2016) with a minibatch size
of 32 to minimize the BCE in this study. Also, the learning
rate is settled as 1e-5 in our ResNet work. Furthermore, we use
a 10-fold cross-validation strategy in specific implementation
processes and repeat 20 times to evaluate our proposed method.
Specifically, all subjects used in our work are randomly equally
partitioned into 10 groups defined as {S1, S2, S3,..., S10} in
each classification process. Group S10 is usually set as the
testing set and the other nine groups are further randomly
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FIGURE 2 | The overall flow chart of our study. Briefly, the individual-level morphological covariance brain network is first constructed according to the SRI24 atlas
and gray matter volume map of each subject, as shown in the dashed boxes. The above morphological covariance brain network is used as the input feature for the
classifier. Subsequently, the ResNet network is used to perform the ASD/TC classification, as shown in the middle of this figure. Meanwhile, the Grad-CAM is
combined with the ResNet-based architecture based on the rectified convolution feature maps from the ResNet to obtain the heat map for explaining model
decisions, as shown at the bottom of this figure.
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equally repartitioned into 10 subgroups, one of which is selected
as the validation set and the other nine subgroups used as
the training data.

RESULTS

Four parameters, namely accuracy (ACC), sensitivity (SEN),
specificity (SPE), and F1 score, are calculated to evaluate the
performance of our proposed ASD/TC classification framework.
The deep convolutional neural network used in our work
achieved a mean classification accuracy of 71.8%, mean sensitivity
value of 81.25%, specificity value of 68.75%, and F1 score of
0.687 from cross-validation. Our results improved the mean
classification accuracy of the state-of-the-art from 70 to 71.8% in
the ABIDE data, and the former accuracy is obtained by DNN
based on fMRI in ABIDE (Heinsfeld et al., 2018). To evaluate
our results obtained with the deep convolutional neural network,
the performance of our model is compared with the results of
classifiers trained using RF (Vapnik, 1998), SVM (Ho, 1995),
XgBoost (XGB) (Chen and Guestrin, 2016), and autoencoder
(AE). With the purpose of using 2D input data for subject
classification by these conventional machine learning methods,
a vector of features is firstly retrieved by flattening the 2D
morphological covariance brain network (i.e., collapse it in a one
dimension vector). The number of resultant features is 11,664,
which is computed by 108 × 108. Evaluation of all the models
is based on a 10-fold cross-validation schema, which mixes data
from all 17 sites while keeping the proportions between different
sites. The results of comparing these methods are reported in
Table 2. Furthermore, the performance of these classifiers was
assessed by the area under the curve (AUC) values shown in
Figure 3. Our proposed framework has the best performances in
classifying ASD from TC with the highest ACC, SEN, F1 score,
and AUC values compared with the other methods. Furthermore,
the permutation test with 5,000 times is used to evaluate the
significance of the prediction accuracy. During the permutation
testing, 20% of the labels of the samples are changed randomly
in each time. The histogram of accuracy of the permutation test
is shown in Figure 4. The accuracy of our method (0.718) is
indicated by the red dotted line. As shown in Figure 4, the 71.8%
accuracy of our method is higher than 95% of the permutated
accuracy values.

To determine the weight values of the features contributing
to classification, the Grad-CAM method was adopted, and
the weight of each connectivity was obtained. The individual

TABLE 2 | Comparison of the classification performances between our method
and other methods.

Method Accuracy Sensitivity Specificity F1 score

Our method 0.718182 0.8125 0.6875 0.686869

AE 0.672727 0.6875 0.875 0.571429

RF 0.536364 0.352941 0.694915 0.413793

SVM 0.618182 0.529412 0.694915 0.5625

XgBoost 0.609091 0.529412 0.677966 0.556701

and fused connectivities supporting the correct classification of
ASD patients using Grad-CAM visualizations for our ResNet
framework are shown in Figure 5A. In order to make the fusion
of Grad-CAM more transparent and explainable, we selected
the covariance connectivities with the largest contribution to
classification. The largest contributions of the connectivities
were determined by identifying the weights above the mean
+ 3SD. Finally, 63 connectivities between 12 different regions
were found using the fused Grad-CAM approach. The top 12
regions correspond to the bilateral precentral gyrus (left and
right), superior frontal gyrus, orbital part of the superior frontal
gyrus, and cerebellum 8–10 (see Figure 5B).

DISCUSSION

As far as we know, the great majority of machine learning or deep
learning methods used to identify ASD patients from controls
are mainly based on the resting-state fMRI. Although fMRI
constructs individual brain networks by estimating interregional
functional connectivity, those networks are made by the graph
theory analytical method, which are only efficient for imaging
data with 4D time series. However, given the great individual
variability of fMRI, sMRI and its derived measures with high
reproducibility have been widely used for disease classification.
Although some previous studies extracted local conventional
morphological features, such as gray matter volume, thickness,
or volume of different regions from sMRI for machine learning,
the relationship between structural properties of different regions
has not been explored since the coordinated patterns of the
local morphological features between regions are important for
cognitive development (Bullmore and Bassett, 2010; Vértes and
Bullmore, 2014). Thus, the construction of a structural covariance
network with sMRI to explore individual brain topological
organization and to investigate its alterations or abnormalities
under both healthy and pathological conditions has attracted
increasing attention. The whole-brain morphological network at
the individual level based on sMRI characterizes the topological
organizations at both the global and nodal levels (Wang et al.,
2016). Thus, the individual-level morphological brain networks
can better reflect individual behavior differences in both typical
and atypical populations than the group-level morphological
network. Moreover, compared with the local regional measures
with sMRI, the individual morphological covariance network can
provide more features to meet the requirements for the number
of features during deep learning training. Thus, combining the
morphological covariance network and deep learning will open a
new avenue for future studies with sMRI.

In recent works, deep learning algorithms improve the
classification accuracy in the identification of ASD versus TC.
However, they are usually treated as “black-box” methods because
of the lack of understanding of their internal functions (Lipton,
2016). The black-box methods cannot explain their predictions
in a way that humans can understand. To fix this problem,
the Grad-CAM technique uses gradients of the target concept
(identification of ASD in a classification network for our work)
and produces a coarse localization map to identify the weight
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FIGURE 3 | Comparisons between our method and other methods for classification. The area under the curve (AUC) values were used to assess the classification
performances for our method, AE, RF, SVM, and XgBoost.

FIGURE 4 | The histogram of accuracy of the permutation test. The permutation test with 5,000 times was used to evaluate the significance of our method. The
accuracy of our method (0.718) is indicated by the red dotted line. The classification accuracy is higher than 95% of the permutated accuracy values.

of each feature of the image during classification or prediction,
which produces “visual explanations” for decisions from the
CNN-based models and makes them to be more transparent

and explainable (Selvaraju et al., 2020). Compared with other
visualization techniques, Grad-CAM can highlight the important
connectivities in the morphological covariance brain networks
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FIGURE 5 | Weights of the features for classification. (A) The individual and fused connectivities supporting the correct classification of ASD patients were mapped
using the Grad-CAM visualizations for our ResNet framework. The red regions correspond to high score for ASD class. (B) The top 12 regions and the
corresponding connectivities which have the largest contribution correctly classifying ASD patients were identified.

for discriminating ASD without model architectural changes or
retraining. Thus, Grad-CAM combined with our classification
model provides a reference for future study to determine the
important features in deep learning framework.

Using the Grad-CAM method, we found that the
morphological covariance between frontal and cerebellar
areas has the largest contribution for classification. The frontal
areas include the precentral gyrus, superior frontal gyrus, and
orbital part of the superior frontal gyrus. For the cerebellum,
cerebellum 8, 9, and 10 were found to contribute greatly for
classification. The precentral gyrus and cerebellum have been
widely demonstrated to be associated with motor processing
and integration of sensory information. Thus, the structural
covariance between the precentral gyrus and cerebellum
suggested that they may be related to the rigid, stereotyped, and
repetitive behaviors in ASD (Mei et al., 2020). Furthermore, we
also found the structural covariance connectivities among the
superior frontal gyrus, orbital part of the superior frontal gyrus,
and cerebellum contributing largely to the classification. The
cerebellum participates not only in motor functions but also in
emotion, memory, language, and social cognition processing
(Strick et al., 2009; Buckner, 2013). The superior frontal gyrus
has been demonstrated to be involved in social cognition (Monk
et al., 2009; Li et al., 2013). Thus, the superior frontal gyrus and its
orbital part and the cerebellum may be related to social cognition

processing in ASD. Given that rigid, stereotyped, and repetitive
behaviors and impaired social cognition are the core symptoms
of ASD, our findings further demonstrated the reliability and
feasibility of our proposed method for ASD classification. Also,
our proposed method may advance establishing the framework
for early diagnosis of ASD.

CONCLUSION

In this study, we proposed a convolutional neural network
framework based on the individual-level morphological
covariance brain network for ASD diagnosis. We found that our
proposed method outperformed other classification methods for
the classification of ASD in a multisite. Moreover, using Grad-
CAM, we can identify the weight of each feature for classification,
which solves the black-box problems of deep learning. Our study
proposes a new paradigm for ASD classification that has a good
performance in multisite datasets and will facilitate establishing
the diagnosis framework for ASD.
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