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The study of consumer responses to advertising has recently expanded to include the
use of eye-tracking to track the gaze of consumers. The calibration and validation of
eye-gaze have typically been measured on large screens in static, controlled settings.
However, little is known about how precise gaze localizations and eye fixations are on
smaller screens, such as smartphones, and in moving feed-based conditions, such as
those found on social media websites. We tested the precision of eye-tracking fixation
detection algorithms relative to raw gaze mapping in natural scrolling conditions. Our
results demonstrate that default fixation detection algorithms normally employed by
hardware providers exhibit suboptimal performance on mobile phones. In this paper,
we provide a detailed account of how different parameters in eye-tracking software can
affect the validity and reliability of critical metrics, such as Percent Seen and Total Fixation
Duration. We provide recommendations for producing improved eye-tracking metrics for
content on small screens, such as smartphones, and vertically moving environments,
such as a social media feed. The adjustments to the fixation detection algorithm we
propose improves the accuracy of Percent Seen by 19% compared to a leading eye-
tracking provider’s default fixation filter settings. The methodological approach provided
in this paper could additionally serve as a framework for assessing the validity of applied
neuroscience methods and metrics beyond mobile eye-tracking.

Keywords: mobile eye-tracking, smartphone, mobile environment, social media marketing, validity, reliability,
fixation algorithms

INTRODUCTION

With the advent of smartphones around the turn of this decade, the use of mobile phones has now
expanded well beyond regular phone calls. Smartphones are today becoming devices that are used
ubiquitously around the globe (Wike and Oates, 2014), and are used not only for social interaction
but for additional behaviors, such as the consumption of information and entertainment and the
ordering of goods and services. As a result, there is increased interest in understanding the use of
smartphones as part of the customer journey. Here, the combination of small screens packed with
information at a close focal distance, coupled with vertical movement during scrolling behaviors,
poses a particular challenge to those who want to use methods such as eye-tracking glasses with
off-the-shelf fixation detection software in assessing different aspects of customer attention.
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As interest and usage of eye-tracking methods have increased,
so has the discussion of how to define and operationalize
fixations, particularly how to define and measure fixations so
that meaningful visual processing is captured under a specific
environment. Indeed, much work has been performed related
to the validity and reliability of stationary eye-tracking measures
(Blignaut, 2009; Nyström et al., 2013), and it has become clear
that there is no universal definition for a fixation, which varies
operationally in different settings. For example, comparing the
results of ten eye-movement event-detection algorithms with
the ratings of two human experts, Andersson et al. (2017)
showed that the resulting event durations varied substantially
depending on what algorithm was used. The authors also
found that while the existing approaches work well for static
stimuli, the detection of fixations and saccades for dynamic
stimuli is barely better than chance (Andersson et al., 2017).
Additionally, Tobii, a leading eye-tracking vendor, explicitly
states that the fixation filter settings have a substantial impact
on the results of eye-tracking research (Olsen, 2012). With more
recent advances that allow eye-tracking in mobile environments,
this discussion about the validity and reliability of eye-tracking
measures has received renewed interest, and along with it, a desire
to establish an operationalized definition of a fixation in vertically
moving mobile feeds.

One widely used application for eye-tracking research is
understanding how consumers interact with information in
digital platforms. Eye-tracking allows for the quantification of
attention paid to crucial advertising elements, such as a brand
logo. Brand attention is a critical part of advertising effectiveness.
An ad that produces good attention and enjoyment of the
creative, may still fail to generate brand attention and associate
with the brand (Pieters et al., 2002). Therefore, the quantification
of visual attention to branded elements is an important and
sought-after measurement and is a suitable test case to study
whether an eye-tracking solution has the necessary sensitivity and
specificity to measure brand attention (Plassmann et al., 2012).

Mobile eye-tracking glasses allow the study of visual attention
with minimum intrusiveness and are popularly used for
consumer research. In the literature, this method has been used
for studying the visual parameters during reading from different
digital devices, including smartphones (Miranda et al., 2018).
However, regardless of the manufacturer’s recommendations,
to our knowledge, there are no examples of studies where the
settings of fixation detection algorithms have been adjusted to
the specific viewing conditions of stimuli presentation on a
smartphone. We believe this leaves room for inaccurate research
results for eye-tracking studies conducted on smartphone screens
with vertically moving content. In this paper, we employ brand
elements in advertising presented in mobile phone screens to
investigate and suggest settings for smartphone-specific fixation
detection algorithms and offer a framework for selecting the
parameters for other use-cases.

This paper will first present the theoretical, practical, and
empirical background for the selection of eye-tracking fixation
detection algorithm settings, including presenting the need for
mobile-specific recommendations for fixation filters and the
parameters that are under consideration. As a case for this
treatment, we will focus on the most abundantly used and

dominant vendor, Tobii1, and their Pro Glasses 2 solution,
alongside the challenges faced in measuring fixations on
smartphones. After this, we will discuss a study designed to
observe natural eye movements in mobile feed environments and
compare performance of various filter options against human
classification, as well as considering the validity and reliability of
eye-tracking metrics. Here, we will use a model where we focus
on advertising content presented on mobile phone screens. This
is, to the best of our knowledge, the first study to report the results
of a comprehensive and dedicated study on eye-tracking fixation
detection algorithms for consumer behavior relevant behaviors
on mobile phones. This work was supported by Facebook Inc
and by the European Commission project RHUMBO – H2020-
MSCAITN-2018-813234 TR.

BACKGROUND

Operational Definition of a Fixation
Visual attention is inferred from patterns of eye movements,
where visual information is acquired during brief periods when
the eye remains relatively stable, which are called fixations. Eye-
tracking systems record raw eye movement samples with specific
gaze coordinates and timestamps at a specific frequency, and
these raw gaze samples are usually filtered according to spatial
and temporal parameters in order to calculate fixations. Filtering
involves applying an event detection algorithm that eliminates
the oculomotor events that do not meet the preset criteria from
the fixation dataset (Holmqvist et al., 2011), but what constitutes
a fixation can vary significantly depending on the characteristics
of eye-tracking hardware and software parameters. The lack of
consensus related to defining a fixation is further emphasized
in a study by Hooge et al. (2017), which demonstrated that
even though human classification of fixations is a common
method for validating event detection algorithms, human coders
apply different thresholds and selection rules, thereby arriving at
different results. In the context of this paper, we use the term
’fixation’ to signify a cluster of gaze samples during which the
acquisition of visual information is likely to take place, and we
suggest an improved approach for quantifying eye movement
data for visual attention research on smartphones.

Strengths of Measuring Fixations Instead
of Relying on Raw Gaze Samples and
Dwells
Mobile eye-tracking has been employed in various studies in
dynamic real-life environments. In most of the cases, researchers
analyze the recordings frame by frame and code the gaze behavior
based on raw data samples. This means that instead of detecting
and extracting fixations, the analysis of visual attention is based
on dwells, i.e., gaze samples residing in the same area of interest
(AOI). The problem with using raw gaze samples is that, in
addition to eye movements that reflect the intake and processing
of visual information, raw samples also include noise, such as
saccades, drifts, tremors, and flicks. This implies that using raw

1https://www.tobii.com/
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gaze samples is likely to lead to an overestimation of visual
attention allocated to the AOIs. On the one hand, when the same
data is analyzed based on dwell durations rather than the sum
of fixation durations, the values are approximately 20% higher
(Holmqvist et al., 2011). As this increase in total viewing time
applies to all AOIs, the conclusions based on the two different
approaches may be fairly similar. However, in studies with high
visual clutter (as is the case for digital media related stimuli),
one of the metrics commonly used is the ratio or proportion
of participants who gazed or fixated on an AOI (Percent Seen).
When interpreting all raw gaze samples as indicators of an AOI
having been seen, the inclusion of noise will distort the data and
will likely lead to erroneous results. Because of this, it is most
appropriate to apply a minimum threshold when calculating total
viewing time in order to remove noise from the data.

Datasets of raw samples usually contain a substantial amount
of ‘stand-alone’ gaze points that are located in the proximity of
or between two target locations. As these gaze points have the
duration too short to be reflective of information processing,
they are usually considered noise and removed from the dataset.
Studies employing mobile eye-tracking methodology in dynamic
environments have used the cutoff point for dwells ranging from
100 ms (Gidlöf et al., 2017) to 120 ms (Visschers et al., 2010;
Clement et al., 2013; Gidlöf et al., 2013), which aligns with the
observation that human fixations generally last between 150 and
600 ms (Duchowski, 2007). However, it has also been shown that
during reading tasks the fixation durations can be as short as 50–
75 ms, and in visual search tasks, the range of fixation duration
is greater, with the average fixation duration similar to reading
tasks (Rayner, 2009). Since natural interactions with a digital
media platform can be thought of as a free-viewing task that
includes a combination of both reading and visual search (that
is, of engaging information), the cutoff point for dwells should be
set accordingly.

The Need for Mobile-Specific
Eye-Tracking Fixation Filters
One substantial challenge in applying the existing fixation
detection algorithms to smartphone eye-tracking studies is
that the conditions in which the default parameters for the
fixation detection algorithm are developed can be markedly
different from the study setup where the stimuli appear on a
smartphone screen.

What is commonly overlooked about the Tobii I-VT Fixation
Filter is that its default parameters were developed based on
a stationary setup where participants were seated at a 65 cm
distance from the screen that ranged from 43 to 61 cm in size
(i.e., the resolution of 1280 × 1024 to 1920 × 1200 pixels)
(Olsen, 2012). In contrast, the distance for viewing a smartphone
is generally half of the viewing distance to a monitor. As an
example of its application, in a study by Öquist and Lundin
(2007), the distance from the smartphone was kept constant at
33 cm and smartphone screens are in the proximity of 13 cm,
in contrast to the 65 cm distance and 43–61 cm screen size
that the Tobii parameters were developed under. Furthermore,
it is explicitly stated in Tobii’s white paper that the aim of their

Fixation Filter development was to identify a set of default values
that are suitable for the stationary eye trackers, which excludes
head-mounted eye-tracking glasses, yet the fixation detection
algorithm is widely used for studies utilizing Tobii Pro Glasses
2, nonetheless.

As an example of the challenges of using the Tobii I-VT
Fixation Filter, the Tobii Studio User’s Manual v3.4.5 states:

“The I-VT fixation filter will fail to correctly classify eye
tracking data recorded with Tobii Glasses even though the I-VT
fixation filter may be enabled by default during analysis of
snapshots. Tobii Glasses users should manually switch from I-VT
fixation filter to Raw data filter. For information concerning
limitations of the Raw data filter applied on Tobii Glasses
recordings, please refer to the Tobii Glasses User manual.”

Despite this, many researchers continue to use Tobii Pro
Glasses 2 hardware with the Tobii I-VT Fixation Filter, such as a
study investigating visual parameters during reading from paper
and various digital devices – smartphone, tablet, and computer
screen (Miranda et al., 2018).

Lack of Evidence for Mobile Filter
Development and Usage
As previously mentioned, in a study by Miranda et al. (2018),
mobile eye-tracking glasses were used to investigate visual
parameters during reading from different modalities. Applying
the default, I-VT Fixation Filter with the velocity threshold
parameter of 30◦/s, the authors suggested that similar criteria
have been used also with other systems (e.g., Macedo et al., 2011).
Mobile eye-tracking methodology has also been employed in
various studies in dynamic real-life environments that rely on
fixation data and only mention the software used (e.g., Tobii
Studio), but do not discuss the parameters based on which the
fixations were detected (Tonkin et al., 2011; Snyder et al., 2015).
Also, the manual work of "experienced human coders" has been
used for generating fixation data (Otterbring et al., 2016). There
are also studies where no fixation detection algorithm is applied
and the analysis of visual attention is based on dwells, i.e.,
gaze samples residing in the same AOI (Visschers et al., 2010;
Clement et al., 2013; Gidlöf et al., 2013, 2017). A more ambiguous
approach in the analysis of visual attention can be considered
the "number of observations," defined as "viewing an AOI until
switching away" (Wästlund et al., 2015). Thus, it can be stated that
there are no standardized or preferred approaches when it comes
to the analysis of mobile eye-tracking data, and to the authors’
knowledge, there have not been any attempts of optimizing the
parameters of the fixation detection algorithms to the viewing
conditions or stimuli.

Challenges Posed by Eye-Tracking on
Mobile Phone Screens
Size and Distance of Display Impacts Saccade
Length and Velocity
The stimulus presentation method on a smartphone and,
more specifically, the size of the display is likely to have an
impact on saccade length and velocities of the eye movements.
Namely, larger stimulus areas induce longer-distance saccades,
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FIGURE 1 | (A) Mock image of stimulus presentation on a smartphone screen versus a computer screen (obtained and published with consent). The default settings
for the Tobii I-VT algorithm are based on a stationary setup with the viewing distance of approximately 65 cm. When looking at a smartphone screen the stimulus
area is smaller and located at a closer distance, resulting in reduced saccade lengths and velocity of the eye movements. (B) Mock image of smooth pursuit while
gazing at a dynamic stimulus (obtained and published with consent). The respondent is scrolling the screen while the gaze is fixated on a moving stimulus object,
resulting in smooth pursuit. The eye-tracking system recognizes the movement of the eye and depending on the parameters of the fixation detection algorithm, may
classify the gaze samples as saccades, excluding them from the fixation dataset.

which have been shown to generate higher velocities than
shorter-distance saccades (Collewijn et al., 1988). Figure 1A
visualizes the two viewing conditions with the stimuli presented
on a smartphone screen versus a computer screen. A small
stimulus display located at a close distance to the viewer
induces shorter saccades with lower velocities, as well as
more eye convergence, indicating that the Velocity-Threshold
Identification (I-VT) fixation classification parameters need to be
adjusted to the study setup.

If the velocity parameter value of the I-VT fixation detection
algorithm is set too high, short saccades will be missed and
fixations that should be separated are merged together. However,
a velocity threshold set too low can lead to the fixations being
split into a number of short fixations due to noise or short data
losses (Olsen, 2012). This becomes especially important within
a smartphone experience, where the smooth pursuit of vertically
scrolling content could be mistaken for saccades and discarded if
suboptimal settings are used.

Smooth Pursuit of Small, Moving Areas of Interest
One of the major problems associated with detecting fixations
in mobile environments is that gaze data is recorded relative
to the eye tracker coordinate system (i.e., head-mounted eye-
tracking glasses), not that of the stimulus. This means that when
the respondent’s eyes remain fixated on the stimulus while the
respondent’s head or the stimulus is moving, the eyes are moving
relative to the eye-tracker, resulting in vestibulo-ocular reflex or
smooth pursuit. If the movement of the eyes exceeds the velocity

threshold of Tobii’s I-VT Fixation Filter, these gaze samples
are typically classified as saccades or unknown eye movements
and excluded from the fixation data (Tobii Technology, 2019).
Figure 1B explains the occurrence of a smooth pursuit while the
respondent is scrolling the screen of a smartphone.

Incorrect Fixation Detection Can Create Gaze
Mapping Issues
In relation to eye-tracking research that involves viewing mobile
devices, there are stationary solutions where the restrictive setup
allows for automated mapping of gaze locations. As an example,
Öquist and Lundin (2007) used a setup with chinrest and
goggles, and a smartphone that was kept at a fixed position.
A downside for the setup where the participants’ head is held in
a fixed position is that it substantially reduces ecological validity.
Researchers who prioritize investigating natural viewing behavior
with minimum intrusiveness are likely to prefer head-mounted
eye-tracking sensors, which inevitably require an additional
phase of data pre-processing, namely, mapping the gaze positions
from a video recording to reference images. This work is typically
done by human coders, and considering that a device with the
sampling frequency of 50 Hz records a new gaze sample at every
20 ms, the number of man-hours required to pre-process the
data for even a small study, quickly becomes overwhelming and
expensive. This issue has also been reported in the literature –
Pfeiffer et al. (2014) utilized 30 Hz eye-tracking glasses and
reported that the manual coding of the eye movements of 20
respondents in four decision situations required about 80 h. The
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manual coding for the dataset presented in this paper alone
required 321 labor hours, or roughly 2 h per respondent to
code all raw data samples from 152 individuals. This illustrates
an obstacle for running studies with larger samples, which, in
turn, can have a negative impact on the reproducibility of the
findings. Until there are solutions for automated annotations,
one way to reduce that manual workload is by using a fixation
detection algorithm, which significantly reduces the amount of
data prior to remapping the eye movements and is one of the
motivations for this study.

Existing, Widely Adopted Mobile
Eye-Tracking Fixation Detection
Algorithms and Approaches
Because Tobii Pro Lab Filters are the most widely used fixation
detection algorithms in the body of research we examined and
discussed above, this article will begin by focusing on the settings
that can be manipulated in those filters and the function of
each, in order for the findings presented in this paper to have
the most relevance for industry applications. Depending on the
sampling rate of the eye tracker, raw eye movement samples
with specific gaze coordinates and timestamps are recorded at a
specific frequency (for Tobii Pro Glasses 2, the sampling rate is
50 Hz). Tobii Pro Lab uses a fixation detection algorithm called
the Velocity-Threshold Identification (I-VT) Fixation Filter (e.g.,
Salvucci and Goldberg, 2000; Komogortsev et al., 2010). The
function calculates the angular velocity for each data point and
depending on the threshold value classifies data points as being
part of a fixation or a saccade (Olsen, 2012).

Tobii Pro Lab has three preset data processing functions that
can be applied to the eye movement data, as presented in Table 1.

After having applied the data processing functions to the
eye movement data, gaze samples or fixations are overlaid on a
video recording. In order to aggregate gaze data and calculate
eye-tracking metrics, the gaze samples or fixations need to be
remapped from scene recordings to a reference image (Tobii
Technology, 2019), which, as mentioned earlier, can take a
substantial amount of time to map.

Tobii Pro Glasses 2 and the Fixation
Detection Algorithm
The Tobii Pro Glasses 2 rely on an absolute measurement of
pupils and use corneal reflection and the dark area of the pupil
to detect the position of the eyes. The compensation for parallax

is automatic and the method is based on binocular eye-tracking
technique with 50 or 100 Hz frequency (Tobii, 2015).

Tobii Pro Lab software allows the use of preset settings for
fixation detection algorithms, but also to create new fixation
filters (Tobii Technology, 2019). In total there are seven different
parameters that can be adjusted, including Gap fill in, Eye-
selection, Noise reduction, Window length, Velocity threshold,
Merging adjacent fixations, and Discarding short fixations.

Study Overview
In this study we compared the output gaze metrics produced
with a commonly used fixation detection algorithm against the
output of a manual mapping of raw gaze on AOIs. A difference
between these two techniques is the order of mapping raw
gaze data on to AOIs. The Tobii I-VT Fixation Filter calculates
fixations prior to mapping gaze to AOIs, meaning any gaze
data that is not counted as a fixation does not get mapped
on to an AOI. Depending on the settings, this can lead to the
possibility of miscounted fixations when the eye is following
a moving target. Additionally, fixations on two nearby AOIs
may be averaged together, making it possible for the coordinates
of a fixation to be uncounted in gaze metrics if the fixation
coordinates fall outside of the AOI boundaries. In contrast, the
ground truth in this study relies on manual gaze mapping from
raw eye gaze data, which maps all raw gaze data coordinates to
AOIs prior to filtering for fixations or calculating gaze metrics
at the AOI-level for moving targets. This enables researchers
to capture more accurate metrics at the AOI-level — such as
the percentage of people who saw the AOI (Percent Seen) or
how long each person spent looking at the AOI (Total Fixation
Duration)— when the eye is following a moving target. As
noted in section “Operational definition of a fixation,” human
classification of fixations is a common method for validating
event detection algorithms (Hooge et al., 2017), therefore,
human classification is what we have employed for validation in
this study.

In this paper, we utilized a common scenario where eyes
follow moving targets, a vertically scrolling mobile phone feed,
and compare outputs of the Tobii I-VT Fixation Filter to the
outputs of manual mapping of raw gaze data on AOIs with a
fixation defined as >60 ms consecutive gaze points within an
AOI, based on the appropriate fixation length of reading and
visual search described above in section “Strengths of measuring
fixations instead of relying on raw gaze samples and dwells.”

TABLE 1 | The three preset data processing functions of Tobii Pro Lab. Source: adapted from Tobii Technology (2019).

Preset function Raw Gaze Filter Fixation Filter Attention Filter

Description: Extracts raw gaze samples with
three pre-processing functions

Applies I-VT fixation classifier algorithm
with the velocity threshold of 30◦/s

Applies I-VT fixation classifier algorithm
with the velocity threshold of 100◦/s

Data composition: Data includes all gaze samples
(including all noise)

Excludes smooth pursuit and
vestibulo-ocular reflex (VOR)

Includes smooth pursuit, VOR and
10–15% of saccades

Attention allocated to the
stimulus:

Overestimated Slightly underestimated Slightly overestimated

Best suited for: Studies focusing on mechanisms of
vision and dwells

Controlled studies with only fixations
and saccades

Mobile environments with movement
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The purpose of utilizing existing widely available hardware
and software, as well as the application to mobile feed
environments, was to ensure that the results were readily
applicable to industry use-cases. In order to observe velocities
and patterns of natural eye movements that occur when people
view a vertically scrolling mobile feed, and for the results of the
study to be applicable to future research on advertisements in a
mobile social media feed, we conducted this study in a self-paced,
natural environment with insertion of 10 controlled test stimuli
into the feed. While this paper focuses on capturing natural
behaviors in feed environments, future research is recommended
to explore the spatial accuracy of eye-tracking measurement on
highly controlled target stimuli on mobile phones.

Prior to the present study, we conducted studies to explore
a broader space of filter settings options, and thereby to narrow
down the filter settings for the present study (see Supplementary
Materials). The goal of this study was to compare 56 possible
fixation filter settings to determine which settings most closely
align with human classification of fixations and gaze metrics in
a social feed with vertical motion. The output is intended to
inform settings for future research that examines eye-tracking on
advertisements in a mobile social feed environment.

MATERIALS AND METHODS

This study was performed in accordance with the Declaration of
Helsinki. Neurons Inc. follows the rules and laws of the Danish
Data Protection Agency2. Neurons’ data protection policy also
follows the European Union law of the General Data Protection
Regulation3, as well as the ethical regulations imposed by the
Neuromarketing Science and Business Association, Article 64.
Each person’s biometric data, survey responses, and other types
of data were anonymized and only contained the log number as
the unique identifier. No personally relevant data can be extracted
from the log number.

Tobii Pro Glasses 2 50 Hz were used for binocular data
collection and Tobii Pro Controller (v.1.7.6) software was used
for recording the data. Participants were exposed to 10 controlled
static ads in their own Facebook feed environment. The ads were
inserted using Neurons Inc’s ad-insertion solution to provide a
true to nature experience for the participants. All participants
were exposed to all ads in a fully randomized order, with four
organic posts in-between each ad. Stimuli were presented on
Samsung Galaxy S7 Edge smartphones with 13 cm screens.
The study took place in New York City in a quiet room with
consistent overhead LED and incandescent lighting conditions of
approximately 300 lux, with each participant monitored 1:1 in an
individual room.

The study was conducted with 172 respondents with normal
or corrected-to-normal vision and no history of neurological or
psychiatric disease. Participants were permitted to wear contact
lenses during the session, but glasses-wearers were excluded

2https://www.datatilsynet.dk/generelt-om-databeskyttelse/lovgivning/
3https://ec.europa.eu/info/law/law-topic/data-protection_en
4https://www.nmsba.com/buying-neuromarketing/code-of-ethics

from the recruitment sample. Participants recruitment criteria
included an even split of males and females, a mix of ethnicities,
above the age of 18. The participants were individually seated at
a table and held the smartphone in their hands throughout the
session. Only one participant was in the room during a session.
The eye-tracker was individually calibrated by participants
focusing their gaze on the center of a target calibration card.
The accuracy of the recording was then tested via live view
function, where participants were instructed to look at static
target objects displayed on the smartphone screen, which was
visually validated by moderator.

After ensuring accurate calibration, the study session was
started. The participants were instructed to maintain an optimal
viewing posture and refrain from moving the phone during the
viewing tasks. The optimal viewing posture was measured to 30–
35 cm from the glasses to the phone. People held the phones
themselves to provide a normal reading/browsing experience,
while going through the social feed. The experimenter monitored
the participant’s viewing posture for the correct distance from
glasses to phone and would instruct the participant to return to
the desired distance as needed. All instructions related to the
viewing tasks were presented in text form on a laptop screen.
After the viewing tasks were completed, the accuracy of the gaze
recording was again tested based on static target objects. The
participants were then thanked for their time and could leave
the testing area.

The study consisted of a natural browsing session in each
participant’s own social media feed. Participants were instructed
to log in to their social media account and browse through their
feed as they normally do. Ten individual static ads were inserted
into each person’s feed using an in-house ad insertion software
running on Android 8.0.0 version. Prior internal pilot research
showed that ten advertisements was the maximum number of
ads that could be presented within the study time window while
maintaining attention from participants. Ten ads were chosen
to provide a larger sample and variance in the type of ads
ensuring ecological validity for future application of the filters.
A visual representation of this task can be seen in Figure 2.
The duration of the sessions varied due to the natural exposure
setting. A total of 10 advertising stimuli were presented in the
feed with four organic posts in between each ad, with the order of
ad presentation balanced across groups. Duration of ad exposures
varied due to the natural exposure setting.

Mobile Fixation Filter Development
Defining a Fixation
The purpose of this study is to investigate the impact of different
parameters of the above fixation detection algorithms on eye-
tracking metrics of natural viewing behavior. Establishing an
optimal fixation definition for a research study requires several
considerations, such as an investigation into various aspects of
natural viewing behaviors in a specific setting. It was previously
established that for a study that involves interacting with digital
media, the cutoff point for minimum dwell length should be set
in accordance with the characteristics of the viewing behavior.
Based on the argumentation that during reading and visual search
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FIGURE 2 | An illustration of the participant study flow. Step 1: The participant goes through an eye-tracking calibration scenario. Step 2: The eye-tracking
calibration is validated with a 5-point validation scenario presented on a smartphone screen. Step 3: The participant logs in to their social media account and opens
the main feed. Step 4: The participant browses their feed in a self-paced session, where the ads have been inserted every 5th post.

tasks the fixations can be markedly shorter than fixations during
scene perception, that is, as short as 50–75 ms (Rayner, 2009),
we consider the cutoff point 60 ms as the optimal setting for
minimum dwell length. As we are focusing on a device that
has a sampling frequency of 50 Hz, this corresponds to three
consecutive gaze samples in an AOI.

Considering the problems with the standard preset filters,
there are strong arguments in favor of using dwells with the cutoff
point of 60 ms as a more objective and accurate approach for
measuring eye movements. This, however, preserves the problem
of extensive resources that are needed for remapping raw gaze
samples. As previously mentioned, the number of man-hours
can be reduced significantly if the raw gaze samples are filtered
with a fixation detection algorithm prior to remapping the eye
movement data from video streams to reference images.

Selecting the Fixation Filter Parameters to Be
Modified
Based on an investigation of relevant literature, together
with qualitative observations of how the changes in different
parameters affect the data output, it was decided to focus
on and modify three parameters: Velocity threshold, Merging
adjacent fixations, and Discarding short fixations. The following
paragraphs explain the argumentation behind these choices.

Velocity Threshold
Velocity threshold is the parameter value based on which each
data point is classified as being a part of a fixation or a
saccade, whereas a fixation comprises an unbroken chain of raw
data samples that have the angular velocity below the velocity
threshold (Tobii Technology, 2019). It is known that larger
stimulus areas induce longer saccades, which have shown to
generate higher velocities than short saccades (Collewijn et al.,
1988). This implies that when viewing a smartphone screen,
the saccades have lower angular velocity, and the threshold for
velocity needs to be set lower, to achieve more sensitive measures

of eye movements and more granularity in the data. A velocity
threshold set too high is likely to miss short saccades, and shorter
fixations that should be considered as separate are merged into
long inaccurate fixations. Combined with the qualitative insights
of how changing the velocity threshold affects data output, we
decided to test all thresholds between 5 and 15◦/sec, and also
include the thresholds 20, 25, and 30◦/s for estimating the effect
of increasing the velocity threshold on the validity of the data.
Angular velocity values above 30◦/s were not chosen as the
original Tobii Fixation Filter is based on 30◦/s and it has been
shown in earlier research that this setting was too inclusive for
larger AOIs and too exclusive for smaller AOIs.

Merging Adjacent Fixations
The function of merging adjacent fixations is aimed to correct
for errors caused by noise and disturbances where a single
fixation is split into multiple short fixations located close together
(Tobii Technology, 2019). When enabled, this setting by default
merges the fixations together if they are maximum 0.5 degrees
apart and occur in a maximum 75 ms time frame. When
stimuli are presented on a smartphone screen, small AOIs
can be located in close proximity. In such cases the function
of merging adjacent fixations may lead to reduced accuracy.
Furthermore, not merging adjacent fixations will lead to a data
output that is closer to raw gaze points, and thereby also closer
to actual eye movements. For this reason, we decided to test the
algorithms with the function of merging adjacent fixations both
enabled and disabled.

Discarding Short Fixations
The function of disregarding short fixations is aimed to remove
incorrectly classified fixations that are too short for actual
information acquisition and processing (Tobii Technology,
2019). When enabled, this setting, by default, removes all
fixations that have a duration below 60 ms. However, natural
viewing of digital media stimuli on a smartphone screen often
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involves scrolling, which in turn leads to smooth pursuit. This
means that the participant is keeping the eyes fixated on an AOI
while the stimulus is moving, but because of the movement of the
eyes, fixation detection algorithms may disregard a substantial
proportion of these gaze points, as illustrated in Figure 1B. To
avoid this loss of data, it may be useful to keep the short fixations
in the dataset. Disabling this setting adds more granularity to
the data and will make the data output better reflective of the
actual eye movements. For this reason, we decided to test the
algorithms with the function of discarding short fixations both
enabled and disabled.

The decision to focus only on the three above-mentioned
parameters is that we considered these functions to have the most
significant impact on the validity of the fixation data output, as
compared to our target measure of dwells of 60 ms – which we
refer to as Raw60 in this paper. All other parameters were kept
at their default value, and their potential impact is out of the
scope of this study. We acknowledge that adjustments to other
parameters are also likely to affect the data output, but as we
discuss next, we did not see the utility in testing their impact.

Parameters That Were Kept Constant
Tobii has developed three different pre-processing approaches,
where two of them apply the I-VT fixation classifier algorithm
to detect fixations. (Additional details about the Tobii preset data
processing functions are included in Supplementary Material).
The first option, Raw Gaze Filter, allows extracting raw gaze
samples rather than fixations, but nevertheless, it applies
three pre-processing functions to the data: gap fill-in or
interpolation, eye selection, and noise reduction based on moving
median approach. The same three functions are also applied
to the two preset data processing functions that apply the
I-VT fixation classifier, Fixation Filter, and Attention Filter.
Considering that these three pre-processing functions are by
default applied even to raw gaze data, it was decided to keep these
parameters unchanged.

Another parameter that was decided to keep unchanged is the
window length of the I-VT fixation classifier. By default, it is set to
20 ms, which corresponds to the sampling frequency of the eye-
tracker used. Thus, it is not possible to set this value any lower,
and considering that, given the stimulus presentation method
and characteristics of the stimuli, the objective is to determine
the settings that capture the eye movements with more sensitivity
and higher granularity, we do not see the value in increasing the
window length and thereby make the measures more robust.

Data Analysis
After collecting all the data, the marking process was executed
by a team of human coders from Neurons Inc using the Tobii
Pro Lab Software (V 1.79.10518), where each raw gaze point was
mapped between the glasses coordinates and the reference frame
image in the field of view, otherwise called the Scene Camera. We
refer to this process as Gaze Mapping.

To specify the important parts of the recording we defined
and logged stimuli events in each of the recordings. A stimulus
event was logged as “on screen” from when 50% of the stimulus

(Feed post) entered the screen until 50% of it left the screen
(see Figure 3A).

Tobii Pro Glasses 2 produces eye gaze data mapped to a
coordinate system relative to the wearable eye tracker and the
recorded video, not to static objects of interest in the environment
around the participant wearing the eye tracker. The collected
eye-tracking data needs to be mapped on to objects of interest
and into a new coordinate system with its origin fixed in the
environment around the participant (Tobii Technology, 2019).
Using the manual mapping function of the Tobii Pro Lab, our
coders mapped the exact location of each gaze point on the static
snapshot of the stimulus.

The branding AOI was drawn around the profile picture
and profile name area on each of the 10 stimuli (Figure 3B).
Gaze Mapping was done on raw gaze data and the fixation
data output was exported based on 56 different combinations of
algorithm settings.

Due to the importance of precision in the study, we
excluded 16 participants having less than three (out of five)
hits on the calibration verification task. The final sample thus
included 156 participants (age range: 19–72, mean age: 36.9, Std
Dev:12.54, 75 females).

Selecting Metrics of Interest
This analysis focuses on the three main eye-tracking metrics Total
Fixation Duration (TFD) which is defined as the accumulated
duration of fixations on an AOI, Time to First Fixation (TTFF) or
the time it takes before an AOI is seen from the moment that 50%
of the feed post enters the screen (Beginning of the event), and the
percentage of participants that have at least 1 fixation (= “seen”)
on a stimulus or an AOI (Percent Seen).

Tobii Pro Lab software allows users to use preset settings
for fixation detection algorithms, but also to create new ones
(Tobii Technology, 2019). In all cases, the data extracted based
on different algorithm settings is compared to manually mapped
gaze data output, which we refer to as Raw60. To make the Raw60
metrics, the raw data has been preprocessed so that the gaze has
to remain on an area of interest (AOI) for a minimum of 60 ms
(3 gaze points) in order for it to be classified as “fixation” on that
AOI.

Based on these parameters, the total number of setting
combinations was 14 × 2 × 2 = 56, based on the functions of
14 different velocity thresholds, merging/not merging adjacent
fixations, discarding/not discarding short fixations.

Measuring the Error of Different Metrics Under 56
Proposed Test Filters
Because our goal was to select an improved fixation detection
algorithm for vertically moving content presented on a
smartphone screen, it was important to consider the impact our
56 proposed fixation detection algorithms (Test filters) had on
the error of our metrics of interest. We first summarized the
metrics of interest in relation to each of the stimuli and all AOI.
The data covered all the three metrics of interest [Total Fixation
Duration (TFD), Time to First Fixation (TTFF)] and viewer ratio
(Percent Seen) and allowed to compute the differences between
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FIGURE 3 | (A) A visualization of annotating the onset and endpoint of a stimulus as an example of placing the beginning and end of events. (B) An example of
Branding AOI.

the outputs of each of the 56 Test filters and the benchmark of
Raw60 (i.e., dwells with the cutoff point of 60 ms).

Using Raw60 as the benchmark, we distinguished between
overestimation and underestimation of the TFD. Overestimation
of TFD (false positives) occurs when the fixation detection
algorithm merges together a number of gaze points that landed
outside the area of interest with gaze points inside the area of
interest, bringing the TFD higher than possible. This represents
an indicator of insensitivity and inaccuracy of the algorithm
and sought to be kept as low as possible. The underestimation
(false negatives), in contrast, reflects a situation where the TFD
based on Raw60 is lower for the Test filter, showing a “loss”
in data. The underestimation is seen as less impactful, when
considering that Raw60 is likely to include a small share of
gaze points that represent saccades or other types of noise. The
improved settings of the fixation detection algorithm are expected
to result in overestimation close to zero, with underestimation as
low as possible.

For the metric TTFF, our objective was to minimize the
difference between the TTFF (Raw60 ms) and the TTFF(Test

filter). The error magnitude was computed as the absolute
difference between the two variables. For the ratio of viewers
who have seen an AOI (Percent Seen), on the participant level
the data obtains a binary value depending on whether there
are eye movements recorded on the AOI (“1”) or not (“0”). It
is desirable that the fixation filter with the optimized settings
leads to the Percent Seen values that correspond as closely to
the Percent Seen based on Raw60 as possible, and accordingly,
the errors were defined as mismatches between the Seen(Raw60)
and Seen(Test filter). The description of all error components is
shown in Table 2.

Understanding the Error on a Branding Area of
Interest
As the next step, we computed the mean values of the error
components on the Stimulus and AOI level by averaging the data
across all participants. To assess how the algorithm parameters
influenced the error components for the AOI ’Branding,’ we ran
a linear least squares regression based on REML with the error
component as the dependent variable and Discarding/Merging,
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Velocity threshold, the interaction between the two as model
predictors. Figure 4 presents how the different parameters of the
Test filters influenced each of the error components.

Determining the Precision of Each Test Filter
To assess the degree to which the output of different Test filters
correlated with the output of the benchmark Raw60 output, we
ran a linear regression between the mean values of each of the
metrics (TFD; TTFF and Percent Seen) on the Stimulus and
AOI level (i.e., averaged across all participants). Focusing on the
AOI ‘Branding’, we used the coefficient of determination (R2) as
the indicator of how well each of the Test filters performs, as
compared to the benchmark output. The results are presented
in Figure 5.

Reliability of the Metrics
In addition to validity, we assessed the effect of the fixation
detection algorithm settings on the reliability of the data (i.e.,
the consistency of the fixations across participants exposed to the
same stimuli). Inter-subject reliability is relevant, as we know that
stimuli should drive eye-tracking response, and inconsistency
between participants can thus be a sign of measurement
error or noise. To measure the inter-subject reliability of each
stimulus, participant data was randomly split into two halves
(78 participants in each half). For each half, we calculated the
eye-tracking metric, and subsequently the Spearman correlation
across ads for Branding AOI, using Spearman’s Rank Correlation
(Spearman R). This was run as a bootstrapping procedure with
1000 repetitions, each time taking a new random split from the
total pool of participant data. Across all iterations and for each of
the metrics, we calculated the mean Spearman R score for each of
the Test filters (Figure 6).

RESULTS

Descriptive Statistics
Ten advertising stimuli were inserted in participants’ own social
media feeds. Participants were exposed to 8 of the 10 ads on
average (mean: 8.25, Std Dev: 2.5, min:2, median: 10, max: 10).
Duration of ad exposures varied due to the natural exposure
setting, with an average of 2–3 s of view time per ad (mean:
2.67 s, Std Dev: 2.52 s). The total browsing time for the session

TABLE 2 | Parameters for assessing the differences in the outputs of the
benchmark (Raw60) and the adjusted fixation detection algorithms (Test filters).

Error component Description

Overestimation of Total Fixation
Duration (TFD)

The value by which the TFD(Test filter)
exceeds the TFD(Raw60)

Underestimation of Total Fixation
Duration (TFD)

The value by which the TFD(Raw60)
exceeds the TFD(Test filter)

Error in Time to First Fixation (TTFF
Error)

The absolute value of the difference
between the TTFF(Raw60) and
TTFF(Test filter)

Error in the ratio of participants viewing
the Area of Interest (Percent Seen Error)

Mismatch between the Seen(Raw60)
and Seen(Test filter)

varied due to the natural exposure, with an average session time
of approximately 5 min (mean: 327.10 s, Std Dev: 115.86 s).

The Impact of the Fixation Detection
Algorithm Parameters on the Error
Components of Different Metrics
As visible in Figure 4, there was a significant positive relationship
between the velocity threshold and the overestimation of TFD,
and a significant negative relationship between the velocity
threshold and the underestimation of TFD. This means that as
the velocity threshold is increased, the test filter picks up more
gaze points, but there is also a higher risk of obtaining inflated
values of TFD. Thus, when optimizing the parameters for small
AOIs such as the branding element of a sponsored content,
there appears to be a tradeoff between the sensitivity of the
algorithm (as indicated by the overestimation of TFD) and the
underestimation of the total viewing time.

The Test filters with the function of ’discarding short fixations’
disabled (marked with green and yellow lines in Figure 4) lead
to decreased underestimation of TFD and lower error values for
TTFF and Percent Seen. The differences are most drastic for the
error in TTFF and Percent Seen.

While the impact of the algorithm parameters on error
components allows assessing the directionality and magnitude of
the effects, the choice of the optimized parameters often involves
a tradeoff, and should, therefore, reflect the objective of the study
and the characteristics of the stimuli. To directly assess how
well each of the Test filters performed relative to the benchmark
Raw60, we ran correlations on the outputs of different metrics, as
described in the following section.

Correlations Between the Output of the
Test Filters and the Benchmark to
Determine Filter Accuracy
The top graph in Figure 5 presents the correlation of
determination or R2 values for different Test filters and the
benchmark Raw60 for the metric TFD. Overall, the coefficient
of determination values is the highest for the setting of
NoMerge_NoDiscard with velocity threshold 6◦/s (R2 = 0.975)
and thresholds 7 and 10◦/s (R2 = 0.972). Across all combinations
of settings of merging adjacent fixations and discarding short
fixations, it is evident that there was a decline in R2 values as the
threshold was increased above 10◦/s.

A one-way ANOVA comparing the R2 values across all
thresholds revealed a significant difference between the four
different types of settings of merging adjacent fixations and
discarding short fixations, F(3,164) = 11.682, p < 0.0001.
Table 3 presents the mean TFD values and confidence intervals
for different settings, as well as pairwise comparisons with
significant differences.

A one-way ANOVA comparing the R2 values across all
thresholds revealed a significant difference between the four
different types of settings of merging adjacent fixations and
discarding short fixations, F(3,164) = 11.715, p < 0.0001.
Table 3 presents the mean TTFF values and confidence intervals
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FIGURE 4 | Error components of different eye-tracking metrics as a function of different fixation detection algorithm parameters for AOI “Branding”.

for different settings, as well as pairwise comparisons with
significant differences.

Finally, the bottom graph in Figure 5 visualizes the correlation
of determination values for the ratio of participants who
viewed the AOI – Percent Seen. Overall, R2 values were the
highest for the setting of NoMerge_NoDiscard with velocity
threshold 5◦/s (R2 = 0.929), threshold 6◦/s (R2 = 0.921), and
the setting Merge_NoDiscard threshold 6◦/s (R2 = 0.911). Across
all combinations of settings of merging adjacent fixations and
discarding short fixations, R2 values tended to be higher for
velocity thresholds up to 10◦/s, as compared to thresholds
11◦/s and above.

A one-way ANOVA comparing the R2 values across all
thresholds revealed a significant difference between the four
different types of settings of merging adjacent fixations and
discarding short fixations, F(3,164) = 8.833, P < 0.0001. Table 3
presents the mean Percent Seen values and confidence intervals
for different settings, as well as pairwise comparisons with
significant differences.

Comparing the data output to the scene recordings, it was
found that velocity thresholds in the proximity of 10◦/s provided
the closest reflection of the actual eye movements. It was found
that while 5◦/s threshold sliced fixation data to overly small
clusters of gaze points, the threshold of 15◦/s merged gaze
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FIGURE 5 | Coefficient of determination for each of the Test filters and the benchmark of Raw60.

movements over several AOIs into long ambiguous fixations.
Accordingly, these two values were decided to be taken as the
two border conditions, implying that all discrete velocity values
ranging from 5 to 15◦/s would be tested as algorithm parameters.

Figure 7 visualizes the fixation data output when the velocity
threshold was set to 30◦/s (purple), 15◦/s (green), 10◦/s (blue),
and 5◦/s (yellow). Each horizontal bar signifies a chain of gaze
points that are classified as a fixation.

Reliability of the Metrics
Figure 6 presents the correlation of determination or R2 values
for different Test filters and the benchmark Raw60 for the
metric TFD. Overall, the coefficient of determination values
was the highest for the setting of NoMerge_NoDiscard with
velocity threshold 6◦/s (R2 = 0.975) and thresholds 7 and 10◦/s
(R2 = 0.972). Across all combinations of settings of merging
adjacent fixations and discarding short fixations, it is evident that
there was a decline in R2 values as the threshold was increased
above 10◦/s.

Figure 6 presents the mean scores of Spearman R across
1000 iterations of randomly split-half samples for different Test
filters. For TFD metric, the Spearman R score was highest for

the setting NoMerge_NoDiscard and thresholds 12 and 14◦/s
and also Merge_NoDiscard with thresholds 9, 12 and 14◦/s
(Spearman R = 0.45).

A one-way ANOVA comparing the Spearman R values across
all thresholds, revealed a significant difference between the
four different types of settings of merging adjacent fixations
and discarding short fixations, F(3,56) = 6.184, p = 0.0011.
Table 4 presents the mean values and confidence intervals
for different settings, as well as pairwise comparisons with
significant differences.

DISCUSSION

Study Aim
The goal of this study was to understand the performance
of existing, commonly used fixation filters for applications of
measuring eye gaze on vertically scrolling smartphone screens,
and to identify combinations of parameters that most closely
align with human classified fixations, called Raw60 above. In
addition to developing filters that are valid and reliable for
smartphone applications, this study offers a framework that can
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FIGURE 6 | The mean Spearman R scores across 1000 iterations of randomly split-half samples for different Test filters.

TABLE 3 | R2 of TFD, TTFF, and Percent Seen – Mean values and standard errors of settings of merging adjacent fixations and discarding short fixations, and
significantly different pairwise comparisons based on Tukey–Kramer HSD test.

Metric Setting Mean Standard error mean Mean Standard error mean HSD threshold p-value

TFD Merge_NoDisc 0.973 0.017 NoMerge_Disc 0.951 0.023 0.0103 <0.0001

NoMerge_NoDisc 0.973 0.017 NoMerge_Disc 0.951 0.023 0.0103 <0.0001

Merge_NoDisc 0.973 0.017 Merge_Disc 0.960 0.003 0.0017 0.0174

NoMerge_NoDisc 0.973 0.017 Merge_Disc 0.960 0.003 0.0017 0.0174

TTFF NoMerge_NoDisc 0.771 0.024 NoMerge_Disc 0.596 0.030 0.0852 <0.0001

Merge_NoDisc 0.770 0.024 NoMerge_Disc 0.596 0.030 0.0844 <0.0001

NoMerge_NoDisc 0.771 0.024 Merge_Disc 0.681 0.019 0.0003 0.0490

Merge_NoDisc 0.770 0.024 Merge_Disc 0.681 0.019 –0.0005 0.0519

Percent seen Merge_NoDisc 0.797 0.018 NoMerge_Disc 0.657 0.028 0.0103 0.0003

NoMerge_NoDisc 0.795 0.020 NoMerge_Disc 0.657 0.028 0.0103 0.0004

Merge_NoDisc 0.797 0.018 Merge_Disc 0.696 0.028 0.0017 0.0162

NoMerge_NoDisc 0.795 0.020 Merge_Disc 0.695 0.028 0.0017 0.0184

be leveraged for future filter development as can be applied to
many use-cases.

The focus of this study has been on measuring branding
elements of advertising presented in vertically moving feed
environments. These elements are not only necessary for
establishing awareness of a brand, but also increasing brand
salience, and are frequently desired to be understood by
advertisers who undertake eye-tracking research for quantifying
brand attention.

Main Findings
Since there is no standard approach for detecting meaningful
eye movements, and as it has been shown that event-
detection algorithms perform poor for dynamic stimuli

(Andersson et al., 2017), a number of studies using mobile
eye-tracking glasses have used dwells with a specific cutoff point
to analyze eye movements. Using dwells with the cutoff point
of 60 ms as the benchmark, our objective was to determine the
fixation detection algorithm parameters that would lead to the
data output equivalent or as similar as possible to the benchmark
in a setting where small areas of interest are presented on the
screen of a smartphone. We modified three parameters of the
Tobii I-VT fixation filter (velocity threshold, merging adjacent
fixations, discarding short fixations) and investigated how
different combinations of parameter settings measure against the
data output based on Raw60.

To understand how different fixation detection algorithm
parameters affected the data output, and more specifically, the
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FIGURE 7 | Fixation data output as the velocity threshold is modified. The angular velocities of the eye movements (vertical axis) are captured over several seconds
of natural viewing behavior (horizontal axis) and the horizontal bars above the graphs signify the chains of gaze points that are classified as fixations.

TABLE 4 | Spearman R of TFD – mean values and confidence intervals of settings of merging adjacent fixations and discarding short fixations, and significantly different
pairwise comparisons based on Tukey HSD test.

Setting Mean Lower 95% CI Upper 95% CI Setting Mean Lower 95% CI Upper 95% CI p-value

Merge_NoDisc 0.418 0.396 0.439 NoMerge_Disc 0.356 0.334 0.377 0.0009

NoMerge_NoDisc 0.404 0.383 0.426 NoMerge_Disc 0.356 0.334 0.377 0.0119

Merge_Disc 0.397 0.375 0.418 NoMerge_Disc 0.356 0.334 0.377 0.0446

differences between the data output based on the benchmark
of Raw60 and different Test filters, we first looked at the error
components of different eye-tracking metrics by running several
linear regressions with algorithm parameters as model predictors
and the error component as the response variable. The data
revealed that for the TFD metric, increases in velocity threshold
led to an increase in overestimation of viewing time. For the
error component of underestimation of the viewing time, the
relationship between the two variables was the opposite. This
implies that there is a tradeoff – if a lower velocity threshold
is chosen, the algorithm is more sensitive and thereby less
likely to overestimate the viewing time, but, concurrently, picks
up fewer gaze points and is more likely to underestimate the
viewing time. The data also revealed that test filters with the
function of discarding short fixations disabled lead to decreased
underestimation of the viewing time but performed worse
for the overestimation error component. The choice of the
optimized settings, therefore, depends on whether it is more
important to prioritize minimizing the error in overestimation
or underestimation of the viewing time given the study objective
and the characteristics of the stimuli.

The error components in TTFF and the ratio of viewers
(Percent Seen) were mainly driven by the combination of
parameters of merging adjacent fixations and discarding short
fixations. For both metrics, the errors are minimized when short
fixations are not discarded. The explanation for this finding
may be related to the smooth pursuit. When viewers scroll
the smartphone screen and attend a dynamic stimulus, their
eyes move along with the information presented on the screen.
As the event detection algorithm discards the gaze samples

with the angular velocity above the threshold value, it is likely
that a substantial proportion of short fixations have a duration
below 60 ms. Discarding these short fixations, therefore, makes
the fixation detection algorithm much more restrictive and
conservative, as visualized in Figure 8. As the data reveals, for
the metrics TTFF and Percent Seen, keeping the short fixations
in the fixation dataset leads to an output that is more similar
to the benchmark used in this study, i.e., dwells with the
cutoff point of 60 ms.

These results suggest that the algorithm parameters affect
the magnitude and directionality of different error components,
and that there is a tradeoff between the overestimation and the
underestimation of total viewing time. Therefore, the decision
related to the improved settings of the fixation detection
algorithm must be driven by the study objective and the
characteristics of the stimuli. In a setup based on natural
viewing behavior of dynamic stimuli on a smartphone screen
and focusing on a small AOI such as the branding element,
these findings suggest that improved settings are the velocity
threshold in the proximity of 10◦/s and the function of discarding
short fixations disabled. These adjustments to the fixation
detection algorithm improve the accuracy of Percent Seen by
19% compared to the output of the Tobii I-VT Fixation Filter,
when using the benchmark of Raw60 described above. With this
in mind, however, a more practical insight into how well the
different Test filters perform can be obtained by investigating the
correlations between the output of different Test filters and the
benchmark results.

We also find that deciding upon the improved parameter
settings depends on which metrics need to be prioritized. For
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FIGURE 8 | An illustration of the impact of the velocity threshold parameter on the detection and location of fixations on a mock advertisement. On the left side, gaze
samples, marked with red dots, are combined into a fixation based on the default threshold value of 30◦/s, and the fixation is located outside the AOI Branding. On
the right side, the velocity threshold is lowered to <20◦/s, resulting in two short fixations with more accurate mean location coordinates.

all metrics, it is clear that combinations where the discarding
short fixations is disabled perform significantly better than the
combinations with the function enabled. The function of merging
adjacent fixations has a minor impact on the accuracy of the
data output. Disabling the function leads to a slightly more
accurate TTFF measures, and enabling it has a slight benefit when
focusing on the ratio of viewers, i.e., Percent Seen. When the
study objective is related to Percent Seen, velocity thresholds of
5 and 6◦/s perform the best, whereas when prioritizing the TTFF
metric, thresholds 10 and 11◦/s lead to the most accurate results.
For TFD, threshold 6◦/s yields the results that are most similar
to the benchmark of Raw60, but the data output remains fairly
accurate also when the velocity threshold is increased up to 10◦/s.

While the coefficient of determination values can be
considered as indicators of validity of the output of different
Test filters, we also found it necessary to assess their reliability.
To achieve this, we ran bootstrapped split-half correlations
using Spearman correlation values. As Spearman R ≥ 0.4 is
generally considered acceptable (Fayers and Machin, 2013), we
only considered the Test filters with Spearman R equal to or above
0.4 as sufficiently reliable.

In relation to the metrics TFD and Percent Seen, the algorithm
parameter settings that displayed the best performance in terms
of reliability overlapped to a considerable degree with the findings
from the correlation analysis. Considering the reliability of
Spearman R ≥ 0.4 as the criterion for reliability and combining
the results of the correlation and reliability analyses, it could be
concluded that for the metric TFD, the algorithm settings with the
velocity threshold of 10◦/s and the function of discarding short
fixations disabled yielded the best results. Also, for the Percent

Seen metric, the setting of NoDiscard was preferable, but it is
feasible to lower the velocity threshold to 5 or 6◦/s. For the metric
TTFF the reliability was higher for higher velocity thresholds, but
it did not meet the reliability criterion of Spearman R ≥ 0.4 for
any of the Test filters.

Considering the small size of the AOI and the finding that
higher velocity thresholds lead to overly conservative data output
and decreased viewer ratio values, it can be inferred that in
the case of TTFF reliability, higher thresholds lead to fewer
data points and thereby higher reliability values. However, the
finding that the TTFF reliability failed to meet the criterion of
Spearman R ≥ 0.4 regardless of the parameter settings indicates
that the metric of TTFF cannot be considered a reliable metric
when studying visual attention in the present conditions. For that
reason, rather than focusing on TTFF as a millisecond value, it
may be worthwhile to focus on the sequential order of fixating on
AOIs, i.e., on scan paths instead.

Having demonstrated how different parameter settings
of fixation detection algorithms influence different error
components, their validity (in the form of coefficient of
determination when benchmarked against dwells of 60 ms) and
reliability (in the form of Spearman R based on bootstrapped split
half tests), we recognize that the choice of the optimized settings
of the fixation detection depends greatly on the study objectives
and the characteristics of the stimuli. It is recommended by
Tobii that the users modify and optimize the settings of the
fixation detection algorithm. Here, we provide a framework for
how the selection of the improved parameters can be done. As
evident from different analyses, the differences in results when
comparing the Tobii default Fixation Filter with the Test filters
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TABLE 6 | The definition and calculation of the metrics of interest.

Metric Definition Calculated as

Total
Fixation
Duration
(TFD)

The accumulated duration of
fixations on a stimulus or an
AOI

The sum of the durations of all fixations
located on an object or an AOI

Time to
First
Fixation
(TTFF)

The time it takes before a
stimulus or AOI is seen

The time that it takes measured from
the moment that 50% of the feed post
enters the screen until the first fixation
lands on that AOI

Percent
Seen

The percentage of participants
that have at least 1 fixation
(= “seen”) on a stimulus or an
Area of Interest (AOI)

On a participant level for each AOI, a
binary score (SEEN) is assigned (1 or 0,
indicating “seen” and “not seen”
respectively). This is then aggregated
as the percentage of participants that
had a minimum of a single fixation on
the AOI. This is done by compiling all
subjects and taking the percentage of
participants who had at least one
fixation. For example, if 10 participants
were exposed to an AOI and 8
participants saw it for at least one
fixation, then %seen would equal 80%,
regardless of how long participants
viewed the ad for.

with modified settings are quite substantial. This is exemplified
in Table 5. We see from Table 5 that compared to the benchmark
Raw60, the default Tobii I-VT Fixation Filter underestimates the
viewer ratio (Percent Seen) value by 25%, implying that it fails to
capture a quarter of the study participants who viewed the AOI.
When using Test filters 2 or 3, the difference in Percent Seen
is decreased to 12 and 11%, respectively. From Figure 4 it was
clear that threshold values above 10◦/s lead to overestimation of
the accumulated viewing time. This is likely the reason why the
default Tobii I-VT Fixation filter, while missing out on the data
of 25% of the viewers, still yields a TFD value that differs from
the benchmark Raw60 only by 17%, as compared to the 30 or
23% difference of Test filters 2 and 3, respectively. The TTFF is
60% longer compared to the Raw60 when using the Tobii I-VT
Fixation Filter. The difference becomes smaller by using the Test
filters 2 or 3 yet is still 44% difference in the best case. Details of
these calculations can be found in Table 6.

LIMITATIONS

This paper is limited to covering a specific AOI size on a
mobile phone screen in a natural browsing behavior. While we
focused solely on an AOI encompassing the branding area of a
mobile feed environment due to the importance of branding in
advertising, the findings may not apply to other AOI sizes or
other stimulus presentation devices of different sizes and viewing
distances. Here, further research must be conducted to answer
questions about optimized filters for additional circumstances.
Additionally, because we utilized a natural browsing condition in
order to observe natural velocities and patterns of eye movements
in a vertically scrolling feed environment, conclusions cannot
be drawn about the spatial accuracy of eye-tracking on mobile
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phone screens, since we can only be aware of the observed gaze
location rather than the intended gaze location. A follow-up study
should be conducted with controlled spatial targets to understand
the reliability and validity of spatial accuracy measurements for
eye-tracking on smartphone devices, utilizing ROC.

Our work focuses on both the validity and reliability of a
given measure, although not a comprehensive test that focuses
on the desired sample size for each score. Future studies should
conduct test–retest and split-half analyses on these and similar
data to assess both the general reliability of the selected fixation
filter settings, as well as to determine how sample size affects the
reliability for small, medium, and large AOIs.

This paper focuses on results using Tobii Pro Glasses 2
50 Hz hardware and Tobii Pro Lab software, and the findings
may not apply to other types of eye-tracking hardware and
software. Tobii recently released a newer version of eye-tracking
glasses hardware, called Tobii Pro Glasses 3, however due to
similar hardware specifications and software, we do not expect
this hardware difference will have a meaningful impact on the
findings presented herein.

Finally, one pertinent limitation of this study is that it
does not compare the fixation filter performances to a gold
standard measure of gaze movements and fixations. In fact,
the study can be seen as a challenge of the long-held industry
standard, especially for particular use cases such as eye-tracking
on small screens. While this study and its results do not define
optimal fixation filters with finality, they imply that further work
can be done to improve the accuracy and reliability of eye-
tracking measures under different conditions. Here, additional
research is needed, and this paper provides one viable path to
pursue such research.

CONCLUSION

As technology changes and advances, humans shift their behavior
to interface with new devices as their primary mode of
consumption. With this change in the consumption landscape,
researchers often continue to utilize previously used data
collection and analysis techniques. While fixations can be a
helpful tool in analyzing visual attention in visually cluttered
environments, such as advertisements in a social media feeds, the
lack of mobile-specific fixations filters renders existing, widely
utilized fixation filters ineffective in evaluating advertisements
in a vertically scrolling social media feed presented on a
smartphone. For improved evaluation of gaze metrics on
Branding AOIs for advertisements placed in mobile social media

feeds, researchers using Tobii Pro Glasses 2 with Tobii Pro Lab
software should use a velocity threshold of 10◦/s and disable
the function of discarding short fixations, which improves the
accuracy of Percent Seen by 19%. Future research should be
conducted to validate the spatial accuracy of fixation filters for
vertically scrolling content on smartphones. We hope that readers
take away from this paper not only an increased knowledge in
filter settings for eye-tracking research on smartphones, but also a
framework for testing reliability, and we hope further frameworks
will be developed and applied for validation testing of datasets in
related fields.
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