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Cerebellar malfunctions significantly impact the regulation of the sleep–wakefulness
transition. The possible mechanism for this effect is still unknown. Evidence on the
role of cerebellar processing in the sleep–wake cycle is derived mainly from animal
studies, and clinical management of the sleep–wake cycle is also challenging. The
purpose of this review is to investigate the role of cerebellar activity during normal
sleep and the association between cerebellar dysfunction and sleep disorders. Large-
scale, multicenter trials are still needed to confirm these findings and provide early
identification and intervention strategies to improve cerebellar function and the sleep
quality of patients.
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INTRODUCTION

The cerebellum is often regarded as the “little brain” or “neuronal machine.” It is a critical
component of the central nervous system that coordinates many brain functions according to
the Marr–Albus model (Albus, 1971), such as motor planning (Gao et al., 2018), motor execution
(Becker and Person, 2019), and motor learning (Lee et al., 2015). Moreover, cerebellar projections
are also thought to influence respiration (Xu and Frazier, 2000) and cognition (Schmahmann and
Sherman, 1997), as well as mediate the detection of sensory discrepancies (Blakemore et al., 2001)
and prediction of sensory events (Nixon and Passingham, 2001). The spontaneous sleep–wake
cycle is a recursive organization involving two distinctive states, namely, non-rapid eye movement
(NREM) and rapid eye movement (REM) sleep. NREM sleep is further divisible into N1, N2, and
N3 stages (Berry, 2015). A previous study on cerebelloctomized cats reported a small decrease in
wakefulness and NREM sleep, and an increase in REM sleep, which revealed that the cerebellum
may participate in fine-tuning and regulation of the sleep–wake cycle (Cunchillos and De Andrés,
1982). At present, the available evidence on the role of the sleep–wake cycle in cerebellar processing
is mainly from animal studies (Barik and de Beaurepaire, 2005; Zhang et al., 2020), and to date the
clinical management of the sleep–wake cycle is also challenging. This highlights an important area
clinically, which can be further explored through future studies. Here, we summarize the current
knowledge on cerebellar activity during the sleep–wake cycle and the relationship between the
malfunctioning of the cerebellum and sleep disturbances. We also discuss the mechanisms of sleep
disturbances and their adverse effects.
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THE RELATIONSHIP BETWEEN
CEREBELLAR ACTIVITY AND SLEEP

Cerebellar Activity During the
Sleep–Wake Cycle
Sleep is an important brain function in humans, because
it supports not only cognitive processes such as memory
retrieval, learning, and attention but also language processing,
decision making, and even creativity (Diekelmann and Born,
2010; Diekelmann, 2014). The normal sleep pattern can be
subdivided into two stages, REM and NREM sleep that
cyclically alternate during the night. Studies have found that
the medial parabrachial nucleus (MPB), an important part of
the parabrachial nucleus located in the surrounding region
of the superior cerebellar peduncle (SCP), is involved in the
transitioning of the sleep stage (Fuller et al., 2011; Anaclet
et al., 2012), particularly switching of REM sleep to NREM
sleep and vice versa (Hayashi et al., 2015). Marchesi and
Strata (1970) also demonstrated that the sleep–wake cycle in
humans reflected the intrinsic activity of cerebellar neurons
and their afferents. “The activity of the afferents is related
to/correlates with that of climbing fibers and mossy fibers,
which separately originate from the inferior olive and a variety
of other sources in the brain stem” (De Zeeuw et al., 2011).
The potential mechanism of cerebellar activity during sleep
may be due to the activity of climbing fibers eliciting complex
spikes in the Purkinje cells, and mossy fibers regulating the
Purkinje cells’ simple spike activity. Both climbing and mossy
fibers show relatively low and high levels of activity during
NREM and REM sleep, respectively (Marchesi and Strata, 1971),
which reveal the possible existence of sleep-stage-dependent
cerebellar activity.

Cerebellar Activity During NREM Sleep
In the cerebral cortex, NREM sleep is divided into NREM
1–2 (lighter sleep stages) and deep slow-wave sleep (SWS).
K-complexes are single slow waves typically occurring during
NREM stage 2, while more continuous slow waves occur in
what is considered deep sleep or NREM stage 3 (Riedner et al.,
2011). In the cerebellum, local field potentials have been recorded
during NREM sleep. Cerebellar signals during NREM stage 1
are lower compared with those during wakefulness (Diedrichsen
et al., 2010); cerebellar functional magnetic resonance imaging
(fMRI) signals during NREM stage 2 co-occur with K-complexes
(Jahnke et al., 2012) and sleep spindles (Schabus et al., 2007),
while cerebellar fMRI signals during NREM stage 3 co-occur
with slow waves at the neocortex (Kaufmann et al., 2006).
Moreover, since cerebellar fMRI signals largely reflect mossy
and parallel fiber activity (Kaufmann et al., 2006), it was
reported that mossy fibers derived from the pons contribute
to cerebellar NREM sleep stages by decreasing their excitatory
drive. Meanwhile, the results of positron emission tomography
(PET) studies combined with electroencephalography recordings
also indicated decreased cerebellar activity during the transition
from pre-sleep wakefulness to SWS (Kjaer et al., 2002;
Hiroki et al., 2005).

Cerebellar Activity During REM Sleep
In humans, REM sleep accounts for 20–25% of total sleep, which
is characterized by θ activity, although this is not continuous
(Wichniak et al., 2017). The cerebellum participates in the
production of REM atonia and phasic activity of the lateral
rectus muscles of the eyes (Gadea-Ciria and Fuentes, 1976).
In contrast to NREM sleep, both the hemispheres and vermis
of the cerebellum show increased activity during REM sleep,
which may indicate increased activity in their mossy fiber-parallel
fiber pathways during this sleep stage (Braun et al., 1997; Hong
et al., 2009; Miyauchi et al., 2009). Previous animal studies also
reported that the activity of the Purkinje cells and that of neurons
of the cerebellar nuclei both increase during REM sleep, with
the neurons in the fastigial nucleus showing the strongest trends
(Hobson and McCarley, 1972; Palmer, 1979). In addition, it
has been shown that the cerebellum regulates autonomic inputs
from the amygdala, periaqueductal gray (PAG), and thalamus
and expresses parasympathetic and sympathetic outputs to the
brainstem ventilatory and oculomotor neurons during REM sleep
(Dharani, 2005).

Role of Cerebellar Malfunctions in Sleep
Disturbances
In humans, malfunction of the cerebellum not only impairs
motor control and motor memory formation (Krakauer and
Shadmehr, 2006; De Andrés et al., 2011; De Zeeuw et al.,
2011; Gao et al., 2012) but also may lead to changes in the
sleep–wake cycle (Pedroso et al., 2011) and even cause sleep
disorders (insomnia, excessive daytime sleepiness, REM behavior
disorder, and sleep apnea) (Pedroso et al., 2011; DelRosso and
Hoque, 2014; Canto et al., 2017). Studies have found that
patients with spinocerebellar ataxias showed increased daytime
somnolence as well as NREM- and REM-related parasomnias
(Silva et al., 2016; Martinez et al., 2017). In addition, the
inhibitory activity of REM-OFF neurons in the locus coeruleus
(LC) is a prerequisite for REM sleep. Thus, it is believed
that increased CO2 levels during stable NREM sleep may
hyperpolarize LC neurons, including REM-OFF, which may
help initiate REM sleep (Madan and Jha, 2012). However, Liu
et al.’s (2020) study indicated that in the cerebellar ataxia
mouse model, variability in internal respiratory rhythms was
reduced compared with that of healthy mice. This may lead
to abnormal levels of physiological CO2, which consequently
leads to sleep disturbances (Liu et al., 2020). Moreover, cats
with lesions in the cerebellar vermis and hemispheres (De
Andrés et al., 2011) and cerebellectomized cats (Cunchillos
and De Andrés, 1982) showed abnormal sleep–wake cycles,
which were characterized by an increased mean duration of
NREM and total duration of REM periods and decreased
mean number of sleep periods during the sleep–wake cycle
(De Andrés and Reinoso-Suàrez, 1979). Further, lesions of
the superior peduncle in cats resulted in a decreased mean
duration (De Zeeuw et al., 2011) and total time of NREM and
REM sleep (Cunchillos and De Andrés, 1982). The possible
mechanism by which the cerebellum regulates sleep–wake cycles
may be as follows: electrical stimulation on the cerebellar
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fastigial nucleus may relieve sleep disturbances by promoting
the synthesis of 5-hydroxytryptamine in the cerebral cortex,
hippocampus, and hypothalamus, and regulating norepinephrine
levels in the frontal lobe and the hypocretin energy system
in the lateral and dorsal regions of the hypothalamus (Wang
et al., 2014). Moreover, using an adeno-associated viral vector
(serotype rh10), Hashimoto et al. (2018) found that lobules
VIII and IX of the rat cerebellar vermis directly projected their
axons to the MPB. In addition, retrograde labeling of the MPB
confirmed that the Purkinje cells of lobules VIII–X directly
projected their axons to the ipsilateral MPB. These findings
suggested that lobules VIII–X may regulate the neural activity
of the MPB to modulate sleep–wake cycles (Hashimoto et al.,
2018). Furthermore, the LC, ventrolateral region of PAG, and
paraventricular hypothalamic nucleus (PVN) project their axons
to lobule IX of the cerebellar vermis as precerebellar nuclei. The
LC and PVN are involved in modulating the sleep–wake cycle
(Tsujino and Sakurai, 2013). Further, the ventrolateral part of
the PAG contributes to the negative regulation of REM sleep
(Sapin et al., 2009). Considering this, lobule IX of the cerebellar
vermis appears to play an important role in the neural circuit
for modulating the sleep–wake cycle through the MPB. However,
whether lobules VIII and X have the same neural circuit as
lobule IX still needs to be confirmed by further studies. Other
possible mechanisms by which cerebellar malfunction causes
sleep disturbances may include the following. It has been reported
that the medial preoptic anterior hypothalamus has heat-
sensitive neurons, which are necessary for sleep initiation and
maintenance (Saper et al., 2001). It has also been reported that
the neurons promoting awakening and sleep could inhibit each
other, resulting in stable awakening and sleep. The cerebellum
and hypothalamus are interconnected and control autonomic
regulation and emotion through histaminergic (Dietrichs and
Haines, 1989) and cold sensitive neurons and ultimately maintain
the sleep cycle within the physiological range (Mallick and Alam,
1992; Jha and Mallick, 2009). Some research also indicates that
the link between the hypothalamus and cerebellum is through
the SCP and middle cerebellar peduncle (MCP), not the inferior
cerebellar peduncle. Compared to the MCP, the SCP has more
extensive connections. The hypothalamic connection through
the SCP and MCP is denser than the cerebellar–hypothalamic
connection. Therefore, the effect of the hypothalamus on the
cerebellum is more prominent than that of the cerebellum on the
hypothalamus. In addition, bidirectional connections between
the lateral hypothalamic nucleus and the cerebellum via the SCP
and ventromedial hypothalamic nucleus, as well as bidirectional
connections to the cerebellum via the MCP, may represent
circuits in which the cerebellum may be subject to and affect
higher emotions and autonomic centers (Çavdar et al., 2018).
This interaction may also explain how sleep disorders affect
cerebellar function.

Role of Sleep Disturbances in Cerebellar
Malfunction
Patients with cerebellar malfunction experience sleep
disturbance, and patients with primary sleep disturbances

such as chronic insomnia, fatal familial insomnia, or obstructive
sleep apnea (OSA) accompanied by daytime sleepiness (Macey
et al., 2008) also show decreased cerebellar volume and cerebellar
malfunction (Desseilles et al., 2008). For example, patients
with REM sleep behavior disturbances reported a volumetric
decrease in the anterior lobes of the cerebellar cortex and
cerebellar nuclei (Boucetta et al., 2016). In addition, under
normal physiological conditions and the regulation of relevant
neurotransmitters secreted by the central nervous system, the
sleep and awakening states are relatively balanced. Gamma
aminobutyric acid (GABA) is one of the most abundant
neurotransmitters in the brain, which has an inhibitory effect
on brain activity (Pérez-Rico et al., 2014; Ben Saad et al., 2015).
Glutamate is also an important neurotransmitter, which acts as
a stimulant for brain activity. Thus, the abnormal ratio of GABA
to glutamate may adversely affect the regulation of the sleep–
wake cycle (Kuczyński et al., 2016). OSA has been associated
with sympathetic activation, excessive daytime sleepiness, and
cognitive function changes. Xu et al.’s (2018) study concluded
that OSA is closely related to metabolic disorders. In a chronic
intermittent hypoxia animal model, the weight of the body,
cerebellum, and hippocampus as well as glutamate levels in
the cerebellum and hippocampus decreased (Xu et al., 2018).
Moreover, Yadav et al. (2013) found that patients with OSA
had decreased blood flow in the SCPs, corticospinal tracts,
pontocerebellar fibers, and midbrain red nucleus. These areas
were potentially damaged due to cytotoxicity secondary to
intermittent hypoxia (Macey et al., 2008; Yadav et al., 2013).
Patients with chronic insomnia usually show an increase in
brain metabolism both during sleep and during wakefulness.
Similarly, patients with fatal familial insomnia, an extremely
rare autosomal-dominant prion disease characterized by
insomnia, dysautonomia, and somatomotor abnormalities (for
example, cerebellar ataxia and dysarthria), also demonstrate
serious thalamic hypometabolism and apoptotic neurons in the
thalamus and medullary olives by PET and neuropathologic
data (Pedroso et al., 2013). With time, patients with fatal familial
insomnia develop moderate atrophy of the cerebellum, with
spongiform changes in the cerebellar cortex (Cortelli et al., 2014).
The mechanism, although still unclear, may be secondary to
intrinsic cerebellar dysfunction.

THE ADVERSE EFFECTS OF SLEEP
DISTURBANCES

The Relationship of Sleep Disturbances
With Alzheimer’s Disease and Dementia
In recent years, there has been increasing evidence of a
relationship between sleep disorders and common neurological
diseases, such as neurodegenerative diseases, dementia,
Alzheimer’s disease, Parkinson’s disease, and depressive
disorders. Studies have mainly focused on the association
between OSA and cognitive function, dementia, and Alzheimer’s
disease. OSA may increase the risk of mild cognitive impairment
or dementia up to two to six times (Yaffe et al., 2011;
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Chang et al., 2013). In patients with sleep disorders, OSA
may be the core mechanism leading to Alzheimer’s disease
(Emamian et al., 2016). Specifically, chronic hypoxia increases
Aβ plaque formation in cellular and mouse models (Li et al.,
2009), whereas acute hypoxia promotes Tau phosphorylation
(Fang et al., 2010). In adults with normal cognitive function, OSA
is found to coincide with lower cerebrospinal fluid Aβ and Tau
levels, thus pathologically associating hypoxia with Alzheimer’s
disease. Sleep apnea may involve multiple damaging alterations
in the brain, thereby leading to OSA and neurodegenerative
diseases. MRI and diffusion tensor imaging measurements in
patients with sleep apnea have shown a loss of regional volume
and white matter integrity in the hippocampus, cingulate cortex,
and cerebellar regions (Zimmerman and Aloia, 2006; Kumar
et al., 2008; Macey et al., 2008; Joo et al., 2013; Kim et al., 2013).
Disordered breathing during sleep potentially increases the
risk of cerebrovascular disease. OSA is also a risk factor for
stroke, bradycardia, supraventricular tachycardia, ventricular
tachycardia, and atrial fibrillation (Arzt et al., 2005; Marin
et al., 2005; Hermann and Bassetti, 2009), all of which are risk
factors of dementia.

The Relationship of Sleep Disturbances
With Parkinson’s Disease
Besides new evidence that has identified sleep quality as
a potential important risk factor for the development and
progression of Alzheimer’s disease (Irwin and Vitiello, 2019; Leng
et al., 2019), research also indicates that sleep disorders increase
the risk of the development of Parkinson’s disease. A large,
retrospective cohort study of more than 91,000 participants
in Taiwan with non-apnea sleep disorders and no evidence
of Parkinson’s disease found that sleep disturbance was an
independent risk factor for Parkinson’s disease in comparison
to matched controls who did not report sleep disturbances
(Hsiao et al., 2017). It is worth mentioning that patients
with chronic insomnia (lasting for more than 3 months)
were mostly at risk. A longitudinal study of shift nurses also
revealed an increased risk of Parkinson’s disease compared
to nurses who did not work night shifts, illustrating that
sleep abnormalities have a significant disease-modifying effect
(Postuma et al., 2012; Barber et al., 2018). Therefore, abnormal
sleep is considered to be intricately related with the risk,
prodrome, and symptomatic progression of Parkinson’s disease
(Bohnena and Hu, 2019).

Other studies have shown that daytime sleepiness and
nighttime sleep problems appear to relate with fatigue,
depression, urinary tract infections, cardiovascular disease,
and dopamine agonist therapy. These findings support the
association of sleep disturbance with Parkinson’s disease and
the exacerbation of Parkinson’s disease symptoms, which is
also strongly related to the patients’ quality of life and potential
prognosis (Kurtis et al., 2013). In addition, sleep disturbances
have been linked to cortical thinning, a hallmark of cortical
atrophy found in many dementia subtypes (Möller et al., 2016).
In elderly adults without cognitive impairment, sleep duration of
≤6 h or ≥8 h (that is, short or long sleep duration) was associated

with faster thinning of the frontotemporal cortex (Lo et al., 2014).
Further reduction of the sleep duration may lead to degeneration
of the hippocampus through a variety of pathways, including
altered neuronal excitability, decreased synaptic plasticity, and
decreased neurogenesis.

The Relationship of Sleep Disturbances
With Depressive Disorder
Many longitudinal studies have identified insomnia as an
independent risk factor for developing or recurrent depression
in young, middle-aged, and elderly adults (Ariel, 2010). Sleep
deprivation is associated with the incidence of depressive
disorder and mortality in the elderly compared with patients
without sleep difficulties. Patients with sleep difficulties have
reported a decline in the quality of life and increased symptoms
of depression and anxiety (Crenshaw and Edinger, 1999).
These elderly patients have also shown slower reaction speeds
and greater cognitive dysfunction, such as impaired memory.
Moreover, these patients have demonstrated balance, vision, and
walking difficulties, despite receiving medications (Brassington
et al., 2000). All these difficulties can increase the risk of falls.
Studies have confirmed that low sleep efficiency, increased sleep
latency, and reduced total sleep time are associated with a
higher risk of death (Neikrug and Ancoli-Israel, 2010). Therefore,
additional attention is required for patients with sleep disorders,
to improve their sleep quality and quality of life.

CONCLUSION

In this review, we discussed how the cerebellum is actively
involved in regulating the sleep–wakefulness transition and
the interactive relationship between cerebellar malfunction
and sleep disturbances. Sleep disorders are also related to
common neurological disorders, such as neurodegenerative
diseases, dementia, Alzheimer’s disease, Parkinson’s disease, and
depressive disorder. It is important to identify patients with
preexisting cerebellar malfunctions, as they are at a higher risk
of experiencing sleep disturbances. Large-scale, multicenter trials
are still needed to confirm these findings and provide early
identification and intervention strategies to improve cerebellar
function and the sleep quality of patients.
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