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In deaf children, huge emphasis was given to language; however, emotional cues
decoding and production appear of pivotal importance for communication capabilities.
Concerning neurophysiological correlates of emotional processing, the gamma band
activity appears a useful tool adopted for emotion classification and related to the
conscious elaboration of emotions. Starting from these considerations, the following
items have been investigated: (i) whether emotional auditory stimuli processing differs
between normal-hearing (NH) children and children using a cochlear implant (CI), given
the non-physiological development of the auditory system in the latter group; (ii) whether
the age at CI surgery influences emotion recognition capabilities; and (iii) in light of the
right hemisphere hypothesis for emotional processing, whether the CI side influences the
processing of emotional cues in unilateral CI (UCI) children. To answer these matters,
9 UCI (9.47 ± 2.33 years old) and 10 NH (10.95 ± 2.11 years old) children were
asked to recognize nonverbal vocalizations belonging to three emotional states: positive
(achievement, amusement, contentment, relief), negative (anger, disgust, fear, sadness),
and neutral (neutral, surprise). Results showed better performances in NH than UCI
children in emotional states recognition. The UCI group showed increased gamma
activity lateralization index (LI) (relative higher right hemisphere activity) in comparison to
the NH group in response to emotional auditory cues. Moreover, LI gamma values were
negatively correlated with the percentage of correct responses in emotion recognition.
Such observations could be explained by a deficit in UCI children in engaging the left
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hemisphere for more demanding emotional task, or alternatively by a higher conscious
elaboration in UCI than NH children. Additionally, for the UCI group, there was no
difference between the CI side and the contralateral side in gamma activity, but a higher
gamma activity in the right in comparison to the left hemisphere was found. Therefore,
the CI side did not appear to influence the physiologic hemispheric lateralization of
emotional processing. Finally, a negative correlation was shown between the age at
the CI surgery and the percentage of correct responses in emotion recognition and
then suggesting the occurrence of a sensitive period for CI surgery for best emotion
recognition skills development.

Keywords: lateralization index, right hemisphere emotion hypothesis, deafness, hearing loss, brain activity, length
of cochlear implant use, sensitive period, auditory age

INTRODUCTION

Processing emotional expressions is fundamental for social
interactions and communication; in fact, from a very young
age, infants are able to detect visual and auditory information
in faces and voices of people around them (Grossmann, 2010).
Such capability would develop into the skill to recognize
and discriminate emotions, thanks to the contribution of the
experience and of the maturation of sensory and perceptual
systems. This recognition involves a multisensory effect,
evidenced by integration effects of facial and vocal information
on cerebral activity, which are apparent both at the level
of heteromodal cortical regions of convergence (e.g., bilateral
posterior superior temporal sulcus), and at unimodal levels
of sensory processing (Campanella and Belin, 2007; Davies-
Thompson et al., 2019; Young et al., 2020).

In relation to such cross-sensorial and unisensorial effects,
hearing impairment could compromise multisensory integration,
in relation to its onset, etiology, and severity, leading the
patient to rely only or predominantly on the visual modality in
communication, including emotional perception and expression
(Mildner and Koska, 2014). In fact, for 92% of children with
cochlear implant (CI), perception was dominated by vision
when visual and auditory speech information conflicted (Schorr
et al., 2005). This statement is supported by the results of
studies employing the McGurk effect on CI users, which
requires the integration of auditory and visual sensory stimuli.
For instance, children who received their CI prior to age
30 months accurately identified the incongruent auditory–
visual stimuli, whereas children who received their CI after
30 months of age did not (Schorr, 2005). This evidence
appears particularly worthy because differently from adults, who
mainly prefer visual modality, infants and young children show
auditory processing preference, but in children with congenital
hearing impairment, such auditory dominance appears absent.
Interestingly, in post-lingually deaf CI patients, such greater
relying on visual information, indexed by higher speech-reading
performances than normal-hearing (NH) individuals, led instead
to an increased capacity of integrating visual and distorted
speech signals, producing higher visuoauditory performances
(Rouger et al., 2007). Furthermore, such evidence in post-
lingual deaf patients was also supported by neurophysiological

assessments, evidencing a positive correlation between visual
activity and auditory speech recovery, suggesting a facilitating
role for the visual modality in auditory words’ perception during
communicative situations (Strelnikov et al., 2013). With respect
to general processing preferences, contrary to adults, who prefer
the visual modality (Scherer, 2003), infants and young children
exhibit auditory processing preference. Importantly, congenital
hearing-impaired children who underwent auditory–verbal
therapy (a therapy limiting visual cue in order to strengthen
the auditory pathway for language learning) reported a behavior
similar to NH children, which is an overall auditory preference
in response to audiovisual stimuli, although responses did not
significantly differ from chance (Zupan and Sussman, 2009).
Contrary to NH individuals, those with hearing impairments do
not benefit from the addition of the auditory cues to the visual
mode (e.g., Most and Aviner, 2009). Although the accuracy of
emotion perception among children with hearing loss (HL) was
lower than that of NH children in auditory, visual, and auditory–
visual conditions, in prelingually deaf very young children (about
4–6 years old), the combined auditory–visual mode significantly
surpassed the auditory or visual modes alone, as in the NH
group, supporting the use of auditory information for emotion
perception, probably thanks to intensive rehabilitation (Most
and Michaelis, 2012) and neuroplasticity. Such results strongly
support the hypothesis of a sensitive period (Kral et al., 2001;
Sharma et al., 2005; Gilley et al., 2010) for the establishment of
the integration of auditory and visual stimuli.

Thanks to their activity of direct stimulation of the acoustic
nerve, converting the auditory stimuli into electrical signals
directed to the brain, CIs can successfully restore hearing in
profoundly deaf individuals. After intensive rehabilitation, most
CI users can reach a good level of speech comprehension.
However, the acoustic signal provided by the device is severely
degraded, resulting in a poor frequency resolution and deficits
in pitch patterns (Gfeller et al., 2007; eHopyan et al., 2012) and
pitch changes or direction discrimination (Gfeller et al., 2002) in
comparison to NH controls.

Hearing-impaired children go through an early auditory
development that is different from that of NH toddlers. This
condition would affect their judgment of the emotional content
of a stimulus, insofar as the auditory modality resulted as
particularly important for the communication of emotions
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in young children (Baldwin and Moses, 1996; Akhtar and
Gernsbacher, 2008). The study of such mechanisms appears of
great impact since about 600,000 patients world-wide are CI users
(The Ear Foundation, 2017), and many of them are children
who were born deaf or lost their hearing within the first few
years of life. CI children are a paradigmatic model for the study
of emotion recognition skills, as due to the early acquisition of
deafness, they learned language through the degraded input of
the CI, which greatly affects harmonic pitch perception. This
ability is strongly necessary for emotion recognition in voices,
and its deficiency could have implications on how child CI
users learn to produce vocal emotions (Damm et al., 2019).
However, a very recent study provided evidence that also deaf
people can develop skills for emotional vocalizations despite
the presence of some differences in comparison to NH adults
(Sauter et al., 2019). Using unilateral CI (UCI) in children, due
to non-physiological development of their auditory system and
to their asymmetry in receiving auditory inputs, represents a
powerful model of investigation of the possible modulation of
the hemispheric specialization and of auditory-related emotional
skills development in relation to the restored hearing condition.
Additionally, such participants would provide evidence of the
possible modulation of the physiological processes of emotion
recognition following the restoration of the auditory capabilities,
of which the exact time of beginning is due to the CI surgery
time. Children, 7–13 years of age, using UCIs perform more
poorly than age- and gender-matched controls on the affective
speech prosody task but as well as controls in tasks of facial affect
perception (Hopyan-Misakyan et al., 2009), as measured by the
DANVA-2 (Nowicki and Duke, 1994).

One of the few studies that investigated both auditory
recognition and vocal production of emotions did not find
any consistent advantage for age-matched NH participants in
comparison to three prelingually, bilaterally, profoundly deaf
children aged 6–7 years who received CIs before age 2 years;
however, confusion matrices among three of the investigated
emotions (anger, happiness, and fear) showed that children with
and without hearing impairment may rely on different cues
(Mildner and Koska, 2014).

With respect to emotional skills attainment and in relation
to the hemispheric specialization for emotional processing
(Gainotti, 2019), it is interesting to consider that patients enrolled
in the present study were UCI users, that is, single-side deaf (SSD)
patients. In fact, in SSD population, it was evidenced that the
occurrence of a massive reorganization of aural preference in
favor of the hearing ear is greater than the precocity of unilateral
HL onset, therefore supporting the importance of a short time
between the first and second implantation in children (Kral et al.,
2013; Gordon et al., 2015; Gordon and Papsin, 2019).

Concerning neural correlates of emotion recognition, gamma
band electroencephalogram (EEG) was found to be particularly
sensitive for emotion classification (Li and Lu, 2009; Yang et al.,
2020). Gamma band cerebral activity has been previously linked
to facial emotion recognition processes; for instance, a right
hemisphere dominance in gamma activity was found during
emotional processing of faces in comparison to neutral ones (e.g.,
Balconi and Lucchiari, 2008). Such evidences are in accord to

the right hemisphere hypothesis for emotion processing, that
starting from observations on patients with single hemisphere
lesions states the dominance of the right hemisphere for every
kind of emotional response (Gainotti, 2019). With specific regard
to emotional prosody processing and brain activity lateralization,
Kotz and colleagues hypothesized that (i) differentially lateralized
subprocesses underlie emotional prosody processing and (ii)
the lateralization of emotional prosody can be modulated
by methodological factors (Kotz et al., 2006). Furthermore,
concerning verbal stimuli, in adult CI users, gamma band–
induced activity was found to be higher in NH than in CI
users, irrespectively of the valence of the emotions investigated
(Agrawal et al., 2013).

On the base of the previous issues, the following experimental
questions have been approached in a population of NH and
UCI children: (i) Given the non-physiological development of
the auditory system in deaf children who underwent hearing
restoration through CI use, are the emotional auditory stimuli
processed in a similar way than NH children? (ii) Is the auditory
age, meant as the age at CI surgery, crucial in the capacity of
recognizing emotions? (iii) In light of the evidence that the right
hemisphere has a unique contribution in emotional processing –
summarized in the right hemisphere emotion hypothesis – does
the side of the CI influence the processing of emotional cues
in UCI children, or is the “physiological right lateralization”
respected?

MATERIALS AND METHODS

Participants
For the present study, 10 NH (6 female, 4 male; 10.95± 2.11 years
old) and 9 UCI user (UCI; 5 female, 4 male; 9.47± 2.33 years old)
children were enrolled. Six children had their CI in their right ear
and three in their left ear; at the moment of the test, none of them
wore any hearing aid in their contralateral ear. All participants
were right-handed except for two children: one belonging to the
NH and one to the UCI group. Further clinical details of the UCI
group are reported in Table 1.

Protocol
The task consisted of the recognition of nonverbal vocalizations
belonging to a database previously validated and employed in
several studies (Sauter et al., 2006, 2010, 2013) and grouped
into three emotional states: positive (achievement, amusement,
contentment, relief), negative (anger, disgust, fear, sadness), and
neutral (neutral, surprise), which participants were asked to
match with the corresponding emotional picture (Figure 1).
For each emotion, six different audio stimuli were reproduced,
whereas there was a single corresponding emotional picture
for each emotion. The emotional audio stimuli had a mean
duration of 1,354.25 ± 223.39 ms and were delivered at 65 dB
HL (Cartocci et al., 2015, 2018; Marsella et al., 2017; Piccioni
et al., 2018) through two loudspeakers placed in front of and
behind the participant at the distance of 1 m each, to meet
CIs’ best requirements for their use. Participants underwent
training with the kind of emotional stimuli employed in the study
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TABLE 1 | Demographics concerning the UCI group, in particular etiology of deafness, its onset, and duration of deafness before CI surgery.

Participants Age (years) Etiology Onset of deafness Period of Deafness (years)

PI 11,39 Unknown Birth 1,38

P2 12,04 Unknown 3 years old 5,91

P3 11,66 Unknown 4 years old 2,25

P4 10,22 Homozygous mutation of the connexin-26 gene Birth 1,11

P5 7,08 Congenital CMV infection Birth 3,82

P6 9,99 Homozygous mutation of the connexin-26 gene Birth 2,93

P7 9,24 Homozygous mutation of the connexin-26 gene Birth 8,16

P8 12,57 Unknown 3,5 years old 6,41

P9 14,37 Unknown Birth 13,18

and a familiarization with the experimental protocol. Once the
researcher verified the comprehension of the emotional stimuli
and the task by the participant, he/she was asked to carefully
listen to the emotional audio and then to identify the emotion
reproduced by the stimulus pressing one out of five buttons on
a customized keyboard, corresponding to the target emotional
picture. For instance, the participant heard a laugh, and he/she
had to identify the corresponding picture, a smiling young
lady, out of five options. There was no time limit set for such
identification and matching with the target emotion. Each picture
representing the target emotion was placed at least once (and
maximum twice) in each of the five positions on the screen.
The number of five pictures among which the participant had
to identify the target stimulus was chosen in accordance with
Orsini et al. (1987), who found for the range of age of the enrolled
participants a digit span of more than 4.5 items for both males
and females. Stimuli were delivered through E-prime software, in
a pseudorandomized order so that it was not possible that two
stimuli belonging to the same emotion were consecutive.

The study was carefully explained to all participants and
to their parents, who signed an informed consent to the
participation. The study was approved by the Bambino Gesù
Pediatric Hospital Ethic Committee, protocol 705/FS, and was
conducted according to the principles outlined in the Declaration
of Helsinki of 1975, as revised in 2000.

EEG
A digital EEG system (BE plus EBNeuro, Italy) was used to record
16 EEG channels (Fp, Fz, F3, F4, F7, F8, T7, T8, P3, P4, P7, P8, O1,
O2) according to the international 10/20 system, with a sampling
frequency of 256 Hz. The impedances were maintained below 10
k�, and a 50-Hz notch filter was applied to remove the power
interference. A ground electrode was placed on the forehead and
reference electrodes on earlobes. The EEG signal was initially
bandpass filtered with a fifth-order Butterworth filter (high-pass
filter: cutoff frequency fc= 1 Hz; low-pass filter: cutoff frequency
fc= 40 Hz). Because we could not apply independent component
analysis because of the low number of EEG channels (i.e., 16),
we used a regression-based method to identify and correct eye-
blinks artifacts. In particular, the Fpz channel was used to identify
and remove eye-blink artifacts by the REBLINCA algorithm (Di
Flumeri et al., 2016). This method allows the EEG signal to be
corrected without losing data. For other sources of artifacts (e.g.,

environmental noise, user movements, etc.), specific procedures
of the EEGLAB toolbox were employed (Delorme and Makeig,
2004). In particular, the EEG dataset was first segmented into
epochs of 2 s through moving windows shifted by 0.125 s. This
windowing was chosen with the compromise of having a high
number of observations, in comparison with the number of
variables, and in order to respect the condition of stationarity of
the EEG signal. This is in fact a necessary assumption in order
to proceed with the spectral analysis of the signal. Successively,
three criteria were applied to those EEG epochs (Aricò et al.,
2017; Borghini et al., 2017): (i) threshold criterion (amplitudes
exceeding ± 100 µV); (ii) trend criterion (slope higher than
10 µV/s); and (iii) sample-to-sample criterion (sample-to-sample
amplitude difference >25 µV).

All EEG epochs marked as “artifact” were removed in order to
have a clean EEG signal. In order to accurately define EEG bands
of interest, for each participant the individual alpha frequency
(IAF) was computed on a closed-eyes segment recorded prior
to the experimental task. Thus, the EEG was filtered in the
following frequency bands: theta [IAF − 6 ÷ IAF − 2 Hz], alpha
[IAF − 2 ÷ IAF + 2 Hz], beta [IAF + 2 ÷ IAF + 16 Hz],
and gamma [IAF + 16 ÷ IAF + 25 Hz] (Klimesch, 1999).
EEG recordings were segmented into trials, corresponding to
audio stimulus listening and target picture matching. The power
spectrum density was calculated in correspondence of the
different conditions with a frequency resolution of 0.5 Hz. Trials
were normalized by subtracting the open-eyes activity recorded
before the beginning of the experimental task.

Lateralization Index
The lateralization index (LI) was calculated in order to assess
the relative asymmetry between the two cerebral hemispheres’
activity during the task execution (audio stimuli perception and
target visual stimuli matching), as the right hemisphere theory
for emotion predicts a relative higher right activation during
emotional stimuli processing.

The LI was calculated on the basis of the formula previously
adopted by Vanvooren et al. (2015):

LI =
R−S
RS

where R stands for right hemisphere, and L for left hemisphere.
The LI ranges from+1, for cortical activity entirely asymmetrical
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FIGURE 1 | Scheme of the experimental protocol.

to the right hemisphere, to zero for symmetrical cortical activity,
and −1 for cortical activity entirely asymmetrical to the left
hemisphere. For the right hemisphere activity calculation, the
estimation from the following electrodes was averaged: F4, F8,
T8, P4, P8, O2, whereas for the left hemisphere. It was averaged
from the following ones: F3, F7, T7, P3, P7, O1. The LI was
already employed on hearing-impaired children, in particular,
SSD children, finding an asymmetry in cortical activity during the
execution of a word in noise recognition task influenced by the
direction of the background noise in SSD but not in NH children
(Cartocci et al., 2019).

Statistical Analysis
Both the percentage of correct responses and LI data were
compared between the NH and UCI groups through analysis
of variance (ANOVA) with two factors: GROUP (2 levels: NH
and UCI) and EMOTIONAL STATE (3 levels: positive, negative,
and neutral). A simple regression analysis was performed for
investigating the relation between (i) the percentage of correct
responses and the LI values, (ii) between the percentage of
correct responses and the age at the test execution, and
(iii) between the percentage of correct responses and the
age at CI surgery.

RESULTS

Behavioral results evidenced a higher percentage of correct
responses provided by NH children in comparison to UCI
children (F = 18.898, p < 0.001, partial η2

= 0.270) (Table 2),
but an effect of the emotional state was not seen (F = 1.890,
p = 0.161, partial η2

= 0.069), although for both groups the
neutral cues were the most difficult to recognize. Neither the
interaction between the variable group and emotional state
(F = 0.032, p = 0.968, partial η2

= 0.001) was observed
(Figure 2).

ANOVA results showed higher LI values, indicating a higher
activity in gamma band in the right in comparison to the left

TABLE 2 | Mean percentages of correct responses ± standard deviation for each
group (UCI and NH) and for each emotional state.

Group Negative Neutral Positive

NH 86,58% ± 9,82 78,33% ± 18,92 88,33% ± 10,17

UCI 65,05% ± 19,37 58,24% ± 22,17 69,67% ± 21,02

FIGURE 2 | Percentage of correct responses reported by NH and UCI
children. Bars describe means, and error bars describe standard deviations.

FIGURE 3 | Gamma band activity LI in NH and UCI children. Bars describe
means, and error bars describe standard deviations.

hemisphere, in UCI in comparison to NH children (F = 58.656,
p < 0.001, partial η2

= 0.535) (Figure 3), irrespectively of the
emotional state (negative, neutral, and positive) (F = 1.686,
p = 0.195, partial η2

= 0.062). Additionally, any interaction
between the variable groups and emotional state was not found
(F = 1.121, p= 0.333, partial η2

= 0.042).
A negative correlation was observed between LI gamma values

and the percentage of correct responses (F = 11.801, p = 0.001,
r =−0.420, partial η2

= 0.177) (Figure 4).
Additionally, for the UCI group, any difference between the CI

side and the deaf contralateral side in the gamma activity was not

Frontiers in Neuroscience | www.frontiersin.org 5 March 2021 | Volume 15 | Article 608156

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-608156 March 4, 2021 Time: 20:1 # 6

Cartocci et al. Emotion Recognition and UCI

FIGURE 4 | Correlation between the lateralization (LI) gamma values and percentage of correct responses for both the UCI and NH groups. Dark dots represent NH
values, and green dots represent UCI values.

FIGURE 5 | Comparison between gamma activity in the UCI group with respect to the UCI side (A) and right or left side (B). Bars describe means, and error bars
describe standard deviations.

shown (F = 0.598, p = 0.212, partial η2
= 0.032) (Figure 5A),

but a higher gamma activity in the right in comparison to
the left hemisphere was found (F = 54.552, p < 0.001, partial
η2
= 0.532) (Figure 5B).
For the UCI group, no correlation was found between the

age of the UCI children at the moment of the experiment and
the percentage of correct responses (F = 0.052, p = 0.821,
r = 0.046, partial η2

= 0.002), similarly to the NH children
group (F = 1.130, p = 0.297, r = 0.197, partial η2

= 0.039).
Additionally, a negative correlation was shown between the age
at the CI surgery and the percentage of correct response reported
by UCI children (F = 7.030, p = 0.014, r = 0.468, partial
η2
= 0.219) (Figure 6). Finally, when calculating the mean of

the correct responses for each participant, irrespective of the
emotional states, despite the lack of significance (F = 3.056,
p = 0.124, r = −0.551, partial η2

= 0.304), a higher percentage
of correct responses was highlighted, higher than 70%, only
in early implanted children, that is, before 3.5 years of age
(Figure 6, black dots).

DISCUSSION

According to literature, the lower percentage of correct responses
provided by UCI children in comparison to NH children
highlights their impairment in vocal emotion recognition skills
(Agrawal et al., 2013; Wiefferink et al., 2013; Chatterjee et al.,
2015; Jiam et al., 2017; Ahmed et al., 2018; Paquette et al., 2018).
This would be strongly related to the preverbal and periverbal
deafness acquisition. In fact, in a study employing emotional
vocal stimuli in adult CI users, such performance difference
was not shown (Deroche et al., 2019). Furthermore, there are
evidences of different strategies implemented by CI and NH
listeners for emotional stimuli recognition, more based on pitch
range cues in the former and more relying on mean pitch in
the latter group (Gilbers et al., 2015). In addition, such deficit
in emotion recognition in UCI children in comparison to NH
children appears strictly related to the matter of social interaction
and social development (Jiam et al., 2017); in fact, a correlation
between impairments in perception and production of voice
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FIGURE 6 | Correlation between age at CI surgery and percentage of correct responses in UCI children. Orange dots stand for positive emotional states; blue dots
stand for negative emotional states, and gray dots stand for neutral emotional states. Black dots stand for the mean of correct responses for each participant,
irrespective of the emotional state. The vertical green lines represent the sensitive period threshold (3.5 and 7 years old) for the central auditory system development
(Sharma et al., 2005).

emotion was found, like in the case of infant-directed speech,
and in 5- to 13-year-old children who used CI (Nakata et al.,
2012). It is interesting to note that a previous study employing
vocal child-directed happy and sad speech stimuli reported
higher performance in NH in comparison to CI using children;
however, the percentage of recognition was higher than the one
reported in the present study, probably due to the child-directed
characteristic of the stimuli (Volkova et al., 2013).

Concerning the difference in gamma LI values observed in
UCI in comparison to the NH group, it confirmed a difference
in gamma band activity previously reported by Agrawal et al.
(2013) in comparison between the same groups, therefore
supporting the suitability of the study of gamma rhythms in
the investigation of emotional messages conveyed by means
of auditory stimuli. However, the previously mentioned study
and the present study are not perfectly comparable because
of the differences (i) in the sample – adults and children,
respectively, – and therefore plausibly in the etiology of deafness;
(ii) in the location of EEG activity acquisition, that is, Cz
and multiple electrodes over the two hemispheres, respectively;
and (iii) in the kind of emotional stimuli, that is, verbal
stimuli pronounced with neutral, happy, and angry prosody in
Agrawal and colleagues’ study, while vocal nonverbal stimuli
belonging to 10 emotions grouped into three emotional states
in the present study. Moreover, the higher LI values reported
for UCI in comparison to NH children would imply a more
sustained conscious processing of the stimuli for the NH group
in comparison to the UCI group and a higher processing of
the emotional face stimuli – employed for the matching of the
auditory stimuli for the identification of the target emotion – by
the UCI group (Balconi and Lucchiari, 2008). In fact, McGurk

studies showed a higher relying of UCI children on the visual
sensation than on the auditory one in case of uncertainty
(Schorr et al., 2005).

The correlation between higher right lateralization, as indexed
by higher LI values, and the percentage of correct responses could
be explained by the evidence of higher activation and asymmetry
levels in poorer performers in emotion-in-voice recognition
tasks than those of more proficient ones (Kislova and Rusalova,
2009). This possibly also reflects the poorer performance in
emotion recognition obtained by UCI children, as well as their
higher LI values in comparison to NH children. In fact, it was
shown by studies on single hemisphere damage that although
the right hemisphere is responsible for low-level discrimination
and recognition of affective prosody, in case of higher task
demands in terms of associational-cognitive requirements, the
left hemisphere is engaged (Tompkins and Flowers, 1985). Thus,
UCI children would present deficits in such engaging of the
left hemisphere for more complex emotional processing tasks.
This could be explained by the neuroimaging evidence that
indeed areas appearing to be primarily involved in emotional
prosodic processing, that is, posterior temporal (parietal) brain
regions (Kotz et al., 2006), are the same areas presumably more
involved by the neuroplastic changes that occurred after CI
surgery (Giraud et al., 2000; Kang et al., 2004) and the following
hearing sensation restoration.

The negative correlation between age of implantation and
percentage of correct responses in emotion recognition is in
accordance with previous studies (Mancini et al., 2016). On
the contrary, in the Deroche and colleagues’ study on adult CI
users cited above, any effect of the age at implantation on the
emotion recognition was not found, but this would be caused
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by the post-lingual acquisition of deafness in the majority of
the sample (19 over 22 CI users) and by the type of emotions
investigated, which is happy, sad, and neutral, whereas in the
present study, 10 emotions were employed (Deroche et al.,
2019). Furthermore, in Volkova et al.’ (2013) study, employing
child-directed emotional speech, performance of the children
CI users was positively associated with duration of implant
use. Such evidence could be compared to present results, given
the almost overlap between age at CI surgery and length of
CI use in the enrolled sample. In addition, the trend that
better performances were obtained by children implanted before
3.5 years old suggests the influence of a sensitive period, identified
through P1 cortical auditory-evoked potential trajectory post-CI
development (Sharma et al., 2002, 2005; Sharma and Dorman,
2006; Kral and Sharma, 2012; Kral et al., 2019) also on emotion
recognition skills development. Such phenomenon could be
explained by the better auditory–visual integration achieved
by children implanted before 3.5 years of age as shown by
Miller’s test of the race model inequality executed by early and
late implanted children (Gilley et al., 2010). Such auditory–
visual integration capability achievement is also witnessed by
McGurk effect tests on CI children, showing that 38% of early
implanted children – before the age of 2.5 years – but none
of the late implanted children exhibited the bimodal fusion
occurring in the McGurk effect, being instead biased toward
the visual modality in contrast to the NH children who were
biased toward the audio modality (Schorr et al., 2005). These
evidences, with respect to the topic of emotion recognition
skills development, are in accord to studies indicating that
auditory and visual integration is necessary for the achievement
of such capabilities (Campanella and Belin, 2007). In relation
to this matter, there is also the evidence of a delay on facial
emotion recognition in preschoolers using CI (and hearing
aids) in comparison to NH mates, and interestingly, there was
not any correlation between facial emotion recognition and
language abilities (Wang et al., 2011). Differently, another study
found a relation between better language skills and higher
social competence, both in NH and CI children, although in
the latter group, less adequate emotion-regulation strategies
and less social competence than NH children were highlighted
(Wiefferink et al., 2012). In addition, a study investigating
both linguistic (recognition of monosyllabic words and of
key words from sentences within background noise; repetition
of non-words) and indexical (discrimination of across-gender
and within-gender talkers; identification of emotional content
from spoken sentences) properties in perceptual analysis of
speech in CI children found an association between better
performances in such feature recognition and a younger age
at implantation (and use of more novel speech processor
technology) (Geers et al., 2013).

Moreover, concerning the emotional communication, a
suggestion of deficits also in the imitation of emotional (happy
and sad) speech stimuli was found (Wang et al., 2013).
Therefore, it sharply results in the vision and need of two
targets of rehabilitation for children with CI that should be
treated both conjointly and separately: language treatment and
emotional intervention.

CONCLUSION

In light of the present results, in relation to the experimental
questions previously declared, it is possible to conclude that (i)
the processing of the emotional stimuli by deaf children using
CI appears to be different from NH children, as suggested by the
higher relative right hemisphere gamma band activity, possibly
explained by the non-physiological development of the auditory
system; (ii) on account of the inverse correlation between the
age at the CI surgery and the percentage of correct responses,
the precocity of performing the CI surgery for the attainment
of best emotion recognition skills appears crucial, probably
because of neuroplastic changes allowing a better processing and
categorization of emotional stimuli; and (iii) the CI side does
not appear to influence the processing of emotional stimuli,
although interestingly the relative higher gamma band activity
appears to be counterproductive in terms of emotion recognition
performances; such aspect needs further investigation at the light
of the possible particular implications of the right hemisphere
hypothesis (Kotz et al., 2006).
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