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Gaze-based input is an efficient way of hand-free human-computer interaction.
However, it suffers from the inability of gaze-based interfaces to discriminate voluntary
and spontaneous gaze behaviors, which are overtly similar. Here, we demonstrate
that voluntary eye fixations can be discriminated from spontaneous ones using short
segments of magnetoencephalography (MEG) data measured immediately after the
fixation onset. Recently proposed convolutional neural networks (CNNs), linear finite
impulse response filters CNN (LF-CNN) and vector autoregressive CNN (VAR-CNN),
were applied for binary classification of the MEG signals related to spontaneous and
voluntary eye fixations collected in healthy participants (n = 25) who performed a game-
like task by fixating on targets voluntarily for 500 ms or longer. Voluntary fixations were
identified as those followed by a fixation in a special confirmatory area. Spontaneous
vs. voluntary fixation-related single-trial 700 ms MEG segments were non-randomly
classified in the majority of participants, with the group average cross-validated ROC
AUC of 0.66 ± 0.07 for LF-CNN and 0.67 ± 0.07 for VAR-CNN (M ± SD). When the
time interval, from which the MEG data were taken, was extended beyond the onset of
the visual feedback, the group average classification performance increased up to 0.91.
Analysis of spatial patterns contributing to classification did not reveal signs of significant
eye movement impact on the classification results. We conclude that the classification
of MEG signals has a certain potential to support gaze-based interfaces by avoiding
false responses to spontaneous eye fixations on a single-trial basis. Current results for
intention detection prior to gaze-based interface’s feedback, however, are not sufficient
for online single-trial eye fixation classification using MEG data alone, and further work
is needed to find out if it could be used in practical applications.

Keywords: MEG, brain-computer interface, hybrid brain-computer interface, gaze-based interaction,
convolutional neural network, classification, intention
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INTRODUCTION

Brain-computer interfaces (BCIs) are a promising tool that could
augment human-computer interaction for patients with motor
disabilities and even for healthy users (Allison et al., 2007;
Nijholt et al., 2008; Blankertz et al., 2016; Cinel et al., 2019).
Moreover, fluent, direct translation of human intentions into
actions are often expected from the BCI technology in the
future (Martins et al., 2019). However, the performance of the
existing noninvasive BCIs is too low, while the invasive BCIs are
associated with high risk and cost.

Gaze-based systems using eye-tracking technology provide
an intuitive way to control the cursor position and interact
with elements of graphical user interface using intentional
eye dwells. Whenever dwell duration exceeds a pre-defined
threshold, the system interprets the dwell as a command similar
to a mouse click. However, there is a trade-off between fluent
interaction and error rate: while long dwell time thresholds
make the interaction tiresome, short thresholds provide a notably
effortless interaction but also lead to frequent misclassification
of spontaneous dwells as intended ones (Jacob, 1990). Such
false positives are remarkably difficult to avoid because eye
movements serve primarily for vision and easily escape conscious
control (Jacob, 1990). To solve this problem, Ihme and Zander
(2011) and Protzak et al. (2013) proposed to use a passive BCI
(Zander and Kothe, 2011), which could detect the expectation-
related brain activity measured by the EEG in eye fixations.
They argued that this activity could be indicative of the
intentional use of the fixation, because in this case the user
is aware of the imminent interface feedback. Spontaneous
fixations, in contrast, are being made without expectation of
the interface triggering, and therefore are not accompanied by
such expectation-related EEG activity. Thus, a passive BCI may
increase the performance of gaze-based interfaces by preventing
responses to unintentional eye dwells (Ihme and Zander, 2011;
Protzak et al., 2013). In our previous work, using EEG, we
applied this approach to a realistic gaze interaction model
implemented as a gaze-controlled game (Shishkin et al., 2016;
Nuzhdin et al., 2017).

To make feasible such interaction, the eye-brain-computer
interface (EBCI) should provide high on-the-fly classification
performance using short segments of single-trial data. In our
experiments with an online EBCI that classified gaze fixations
using 300 ms long EEG segments non-random classification
was demonstrated; however, online classification performance
was low due to a high false-positive rate of the BCI classifier
(Nuzhdin et al., 2017). One explanation of the low performance
could be insufficient spatial resolution of the EEG or its sub-
optimal sensitivity to underlying neural sources of interest. To
address this possibility, in this study we focused on measuring the
magnetic component of the brain activity in a similar task using
MEG, which provides higher spatial resolution and sensitivity to
sources with orientation not seen in the EEG.

We hypothesized that brain signals accompanying a voluntary
attempt to select a screen object with gaze and spontaneous
gaze behaviors, such as used for visual exploration, should be
different not only due to the presence of components related

to the feedback expectation in the case of voluntary control
but also because this control should involve distinct brain
activity. Voluntary gaze behavior has long been studied (Hallett,
1978; Ettinger et al., 2008), however, the experimental tasks
used in such studies (e.g., anti-saccades, delayed response task,
etc.) were very demanding compared to the easily executed,
relatively short gaze fixations that can be used for gaze-
based control. To our knowledge, no published works on
classification of MEG activity related to gaze-based control
have been undertaken so far. MEG use for practical BCI
application has begun to be considered only recently, with
the advances in Optically-Pumped Magnetometers (OPMs)
development (Paek et al., 2020).

Until recently, the MEG has not been considered a practical
measurement technique for BCI applications due to its low
portability and high cost. Recent developments in MEG sensor
technology, however, hold great promise to change that in the
near future. Particularly, OPMs do not require expensive liquid
helium to operate, making the system portable and less expensive
while providing superior spatial resolution (Boto et al., 2016,
2017, 2018, 2019, 2020; Borna et al., 2017, 2020; Iivanainen et al.,
2017, 2019; Hill et al., 2019, 2020; Limes et al., 2020; Zhang R.
et al., 2020; Zhang X. et al., 2020). Compared to conventional
MEG, OPM-based systems are also more motion-robust (Boto
et al., 2018; Hill et al., 2019). Note that all types of MEG
technology have an important practical advantage over the EEG:
It does not require the application of electrically conductive gel
on the skin or pressing the skin with dry electrodes, which are
needed for EEG recording. Taking all these features together,
it seems likely that further development of OPM-based MEG
systems will make MEG-based BCIs widely applicable. First
attempts to build a MEG-BCI system based on the OPM
technology are already being made (Paek et al., 2020). Further
decrease in price of OPM sensors seems highly likely, thus
enhancement of the gaze-based interaction with OPM-MEG may
also become affordable.

Due to the similarity of MEG and EEG signals, it seems
plausible to assume that the MEG classification task is associated
with the same difficulties as for the EEG: Low signal-to-noise ratio
(SNR); complex, high-dimensional spatiotemporal structure; and
insufficient a priori knowledge of the informative components.
Deep learning approaches were recently adopted in the field
of developing EEG-based BCIs to deal with these complex
issues. CNNs employing these approaches in form of shallow
network architectures enabled better classification performance
compared to the classifiers traditionally used in EEG-based BCIs
(Lawhern et al., 2016, 2018; Schirrmeister et al., 2017; Lotte
et al., 2018). When applied to the eye fixation-related data
from our earlier experiments (Shishkin et al., 2016) a compact
CNN, the EEGNet (Lawhern et al., 2016, 2018) with optimized
hyperparameters provided a 16% improvement over the EEG
classification results obtained with the previously used linear
classifier (Kozyrskiy et al., 2018). For the MEG signal, CNNs
with a different architecture have been proposed, providing an
improvement over the EEGNet results (Zubarev et al., 2019).
These new networks utilize spatiotemporal structure in the
MEG data to extract informative components of the MEG
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signal. They assume that the MEG measurements are generated
by a linear (spatial) mixture of a limited number of latent
sources, which evolve non-linearly over time. However, these
new CNNs were tested on several typical BCI tasks (Zubarev
et al., 2019), based on motor imagery or perception of stimuli,
where relatively fast components of the signal were expected
to be useful for classification. In our previous work with
the EEG-based classification of the voluntary and spontaneous
fixations during gaze-based interaction (Shishkin et al., 2016) the
informative signal component was a slow deflection. Preliminary
analysis of the MEG data indicated that in this case the signal
components that discriminated the classes of the voluntary
and spontaneous fixations were very slow, such as having
the form of a trend developing along most of the epoch of
interest, or resembling just a quarter of a full period of a
sine wave. Other characteristics of the MEG data in our task
and in the BCI tasks tested by Zubarev et al. (2019) also
could be different. Thus, it was not possible to predict if these
CNNs will be effective for the classification of spontaneous and
voluntary gaze fixations.

Thus, in the current study we could not make clear prior
predictions, based on the existing literature, of what type
of MEG components could differentiate the voluntary eye
fixations used to trigger commands from the spontaneous
eye fixations. Deep learning-based approaches developed
recently for EEG (Lawhern et al., 2016, 2018; Schirrmeister
et al., 2017) and MEG (Zubarev et al., 2019) classification,
however, do not require prior knowledge about informative
features: they combine feature extraction and classification in a
single computational framework, allowing to explore features
informing the classification.

The objective of this study was to determine if short
single-trial segments of MEG data related to voluntary and
spontaneous eye fixations in a gaze-based control task can be
distinguished. For this purpose, we applied CNNs described in
Zubarev et al. (2019) to the MEG data gathered along with
spontaneous eye fixations and fixations voluntarily used to
trigger a command in an experiment similar to those we used
previously to collect similar EEG data (Shishkin et al., 2016;
Kozyrskiy et al., 2018).

MATERIALS AND METHODS

Experiment Paradigm and Gaze Data
Processing
We used MEG data from a study by our group (will be
published elsewhere) recorded at MEG Center (a division of
the Moscow State University for Psychology and Education,
Moscow, Russia) in 32 healthy volunteers. The study was
performed according to Helsinki Declaration and with the
approval of the local ethical committee (protocol 12.03.2015/1).
The participants played EyeLines game, the gaze-controlled
version of Lines, a turn-based computer board game (also
known as Color Lines – Color Lines, 2003). This study
was designed to identify early MEG markers of intention
preceding the eye fixation or appearing early in its course.

The previous EEG study (Shishkin et al., 2016) was focused
on the expectancy-related EEG component that should be
prominent later during the fixation, i.e., closer to the fixation-
related feedback, thus the participants’ task included voluntary
fixations preceded by a relatively large saccade. Such a saccade
could significantly affect the time interval around the voluntary
fixation onset, by altering the MEG itself and by producing
a strong oculographic artifact. To avoid such feature in
the voluntary fixations, the order of eye fixations (dwells)
required to make a move in EyeLines was made different
in the MEG study from one used in the original game
version in Shishkin et al. (2016).

In EyeLines, like in Lines, players make straight lines of colored
“balls” by re-locating the balls which are presented at a game
board on a screen (Figure 1). To make a move, the player of
EyeLines first needed to select a ball (“1” in Figure 1) with
500 ms or longer eye fixation on it. After 500 ms of fixating
the ball, a preliminary selection was indicated by a square frame
around the ball (shown in Figure 1). This could happen not
only when the fixation was intentional but also when it was
accidental (spontaneous). To make a move, the participant had
to confirm the selection by a confirmatory eye fixation on a
remote position (“2” in Figure 1), and then on the position to
which they wanted to relocate the ball (“3” in Figure 1), each
time 500 ms or longer. With this order, a large saccade from
the confirmation button preceded not the fixation on the ball
but the fixation on the free cell, to which the ball should be
moved. The saccades preceding the fixations on the ball were
made from the locations inside the game board in the case of
both spontaneous and voluntary fixations. Thus, these saccades
had, on average, much smaller amplitude than the saccades from
the game board, and did not differ between the spontaneous
and voluntary classes. To support the detection of the user’s
intention in the context of gaze-based interaction, the BCI must

FIGURE 1 | An example of EyeLine game board display and an example of a
sequence of eye fixations needed to make a move. 1, a target ball; 2, the
confirmatory position; 3, a free cell to which the ball will be re-located.
A square frame appeared around a ball when it was fixated for more than
500 ms.
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make the decision based on the MEG data collected before the
time where the feedback is normally given in the case that the
BCI is not used. The large saccade to the confirmation position
appeared only after the feedback to the eye dwell was given (in
our case, at about 500 ms from the fixation onset), plus some
reaction time (typically around 300 ms), so the data collected
before 500 ms from the fixation onset could be safely used
for classification.

Experiment protocol mainly followed the EEG study by
Shishkin et al. (2016) (except for 1000-ms dwell time threshold,
which was not used in the current study). After a practice,
a participant played eight 5-min games in total. The game
board (Figure 1) was centered on the screen. The remote
position for selection confirmation was located outside the board,
on its left (in half of the games) or right side (in another
half of the games). This left/right alignment alternated in the
subsequent games. The left-right-left- right-... vs. right-left-
right-left-... order of games with different confirmation position
alignment was assigned to the participants randomly. MEG-
compatible EyeLink 1000 Plus eye tracker (SR Research, Canada)
provided gaze coordinates in real time at 500 Hz for the first
half of recordings and at 1000 Hz for the second half (sampling
rate was different for technical reasons). In the offline analysis,
gaze coordinates were upsampled to 1000 Hz for the first
half of the recordings. Fixations were detected by an online
spatial dispersion-based algorithm that triggered game events
(Shishkin et al., 2016).

In the current study, we considered voluntary fixations to be
only 500 ms or longer eye dwells on a ball (further referred as
“ball fixations” for brevity) that were terminated by a saccade
within 500 ms after ball-selection feedback onset which was
followed by a fixation on the confirmation button no later
than 200 ms after the feedback. Additionally, both voluntary
and spontaneous dwells had to display a clear initial fixation
onset (as defined by the default EyeLink algorithm) within
50 ms of the dwell onset (Note that the detection criterion
allowed for small saccades during the dwell time period, so
that, strictly speaking, this period often comprised two or
more fixations. However, in this paper we mainly use the term
“fixation” for the whole dwell duration, as it is typically used
in the gaze interaction literature). Ball selection followed by
a delayed confirmation were not included into the analysis,
because at least some of them could correspond to cases when
a participant made a decision only after seeing the feedback,
while the fixation was actually spontaneous. In contrast, fast
saccade to the confirmatory position could be made only if
such confirmation was already planned during the fixation,
so we could be sure that the fixations quickly followed by a
confirmation were intentional.

Ball fixations not followed by a confirmatory fixation (i.e.,
followed by other ball fixations or fixations on other balls that
did not exceed the dwell time threshold) were considered as
spontaneous fixations.

Additional criteria were applied to exclude fixations with
minor issues related to specific strategies of the participants,
eye tracking errors, etc. After applying these criteria, seven
participants were excluded due to the low number of voluntary

trials (less than 70), thus we further used only the MEG
recordings from 25 participants. More specific details about the
experiment and the data will be published elsewhere.

MEG Data Processing and Features
Extraction
Magnetoencephalography was recorded at 1000 Hz sampling
rate using an Elekta Neuromag Vectorview (MEGIN/Elekta Oy,
Helsinki, Finland) MEG system, with 306 sensors at 102 positions
around the head (two orthogonal planar gradiometers and a
magnetometer per position). Sensors with contaminated signals
were manually rejected, then MaxFilter routine (MEGIN/Elekta
Oy, Helsinki, Finland) was applied with the following settings:
Temporal Signal Space Separation (tSSS) (Taulu and Simola,
2006) with t = 10 s and corr = 0.9, movement correction
(MaxMove) and normalizing head origin to the standard position
(more details can be found in MaxFilter User’s Guide, The Ohba
Analysis Group, 2010).

The total trial count, per participant, was (M ± SD) 128 ± 38
for voluntary and 294± 77 for spontaneous fixations. To balance
the number of trials between the classes, randomly selected trials
were removed from the set of spontaneous trials (which was
initially larger than the set of voluntary trials in all participants)
until its size became equal to the size of the voluntary trial set.
After class balancing, it became 128± 38 trials per class.

Signals from the planar gradiometers (204 channels) were
lowpass filtered below 45 Hz and normalized by subtracting the
trial mean calculated in each channel separately and dividing
by trial standard deviation calculated for data collapsed over
channels. Data from magnetometers were not used because of
lower spatial resolution and SNR (signal-to-noise ratio) due to
omnidirectional signal pickup pattern, compared to gradiometers
(in particular, the data from magnetometers are more sensitive to
ocular artifacts). Signals were downsampled to 125 Hz to reduce
their dimensionality and expand the CNN receptive field in the
time domain (Luo et al., 2017). The above procedure resulted in
204× 87 data dimension (channels× down-sampled timepoints)
in the case of−0.2 . . . 0.5 s features per trial.

Preprocessed MEG epochs of−0.2 . . . 0.5 s related to the onset
of the fixation were used as input to CNN in the main analysis,
where we tried to model real-time use of the MEG-based BCI,
which has to classify the fixation-related data immediately after
the dwell time threshold (0.5 s) is exceeded. The left border was
placed at −0.2 s, because, as our preliminary analysis showed,
starting the time interval from−0.4 s provided no improvement,
and further extension of the interval to the left could lead
to incorporating remnants of previous gaze behavior and the
reaction to the feedback to an earlier eye dwell on a ball. An
additional analysis using longer MEG epochs from −0.2 . . .
1.0 s interval was performed to check that the classifier was
operating correctly. Unlike in the main analysis, this longer
time interval also included a response to the presentation of
the visual feedback (a square frame appearing around the gazed
ball approximately at 0.5 s). Although the feedback did not
differ between voluntary and spontaneous fixations, it likely
could lead to significantly different MEG response, in particular
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in the time range of the P300 wave. Moreover, gaze behavior
following the feedback clearly differed between voluntary and
spontaneous fixations, so MEG signal could include strongly
different patterns of eye movement artifacts. Thus, we expected
that the data from the −0.2 . . . 1.0 s interval could be easily
classified, and the classification result would provide an estimate
of the CNN architectures’ capability to discriminate single-trial
fixation-related MEG data in an “easy classification” scenario.

Convolutional Neural Networks
Binary classification of the MEG signals corresponding to
spontaneous and voluntary gaze fixations was performed using
two CNNs, VAR-CNN and LF-CNN (for architectures details
see Figure 2 and Zubarev et al., 2019). These models consist
of two convolutional layers: the first one is fully connected
spatial convolution, identical for both models; the second layer
corresponds to temporal (in case of LF-CNN) or spatiotemporal
convolution (in case VAR-CNN). The LF-CNN model is based
on assumption that time courses from different channels do
not interact and have unique spectral fingerprints. It can be
considered as applying linear finite-impulse-response filters
(hence LF) that specifically capture the fingerprint of each
spatial component. VAR-CNN allows estimating the interactions
between the spatial components and can be considered as a
vector autoregressive model (VAR-CNN) of the component time
courses. CNNs were implemented by AO using Keras library
following the network description in Zubarev et al. (2019).

The CNNs architecture comprised a spatial linear convolution
layer followed by a temporal convolution layer with rectified
linear units (ReLU) non-linearity and max-pooling over 4 time
adjacent samples. Two variants were proposed for the temporal
layer: separable temporal convolution, applied to the time
courses of the latent sources (LSs), was utilized by LF-CNN
modification, whereas a spatiotemporal convolution, assuming

the interactions between the spatial components, was used in
VAR-CNN modification. The classification step comprised a
single fully-connected layer followed by a softmax normalization.

Hyperparameter Setting
First, we attempted to tune several architecture parameters,
namely the number of LSs, the length of the temporal filter and
max-pooling parameters by means of hyperopt Python package1

and a grid search. Unfortunately, neither approach resulted in a
significant increase of the classifier performance estimated as the
ROC AUC values (area under the curve of the receiver operating
characteristic). Therefore, we set the number of LSs and the
length of the temporal filter to arbitrary values chosen low enough
to avoid overfitting, to save the flexibility of convolutions and to
decrease the training time. Specifically, for both types of CNN the
number of LSs was set to 16, whereas the length of time filters was
chosen to be 14, which was equal to 100 ms.

A combination of drop-out (Srivastava et al., 2014) applied to
the output convolutional layer and l1-penalty applied to weights
of the convolutional layers were utilized as a regularization
strategy. As a loss function, binary cross-entropy was utilized. We
used the Adam optimization algorithm with a batch size of 100
and learning rate of 3 × 10−4 to optimize binary cross-entropy
between model predictions and true labels.

LF-CNN Parameters Interpretation
The LF model was supposed to allow the interpretation of the
model parameters in terms of the underlying neural activity, since
the model structure reflected the assumptions about the data
generation process (Zubarev et al., 2019).

According to the underlying generative model, the observed
data X was considered as a function of some latent (that is,

1https://github.com/hyperopt/hyperopt

FIGURE 2 | Architecture of the CNNs used in this study (Figure 1 in Zubarev et al., 2019, license CC BY-NC-ND 4.0).
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hidden) variables called components or LSs (Haufe et al., 2014).
In the linear case such a model can be written as,

X = AS+ ε, (1)

where X ∈ Rn×t is a single MEG epoch, n is the number of
channels (e.g., n = 204 in case of gradiometers), S ∈ Rk×t is the
representation of a MEG epoch in space of k underlying LSs, and
ε is an additive Gaussian white observation noise.

Since LF-CNN is an example of a discriminative (as opposed to
generative) model, we followed a procedure suggested by Haufe
et al. (2014) to obtain activation patterns from the spatial filters

W trained by the spatial convolution layer (see Figure 2). These
filters are related to the spatial activation patterns A of the LSs in
the generative model (eq. 1) via,

WTX = Ŝ, (2)

A = 6XW6−1
Ŝ

, (3)

where 6X is the spatial data covariance and 6−1
Ŝ

is the precision
matrix of the latent time courses (Haufe et al., 2014).

FIGURE 3 | Output weights of LF-CNN learned on participant 114 data for spontaneous and voluntary classes (B,D, respectively), LS weights for each class
according to eq. 4, where proportion of the L1-norm of output weights over time points in the total sum of L1-norms of all LSs (E), averaged weights in every time
point over all LSs for spontaneous and voluntary classes (A,C, respectively).
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As a measure of LS contribution to the assignment to a
particular class, we considered normalized L1-norm of the output
weights for this class, corresponding to the given LS on the final
classification layer of LF-CNN:

wc
s =

∑t
j=1

∣∣∣wc
j,s

∣∣∣∑k
i=1
∑t

j=1

∣∣∣wc
j,i

∣∣∣ , (4)

where w ∈ Rt×k×2 is output weights matrix, c = 0, 1 is a
class index corresponding to spontaneous and voluntary class,
respectively, and s is LS index.

It should be emphasized that choosing a single LS which
had the largest contribution to each class assignment may be
incorrect especially in the case when all LSs have approximately
equal contributions to classification: see an example in Figure 3E,
where the calculation of the normalized L1 norm of the output
weights for every LS revealed fluctuation in the vicinity of
weight mean wmean = 1/k. This observation confirmed our

suggestion that all LSs should be taken into account in the
analysis of LS patterns.

As the matrix W in eq. 2 transforms data from the signal
space X ∈ Rn×t into data from the source space (see Figure 2),
it is reasonable to assume that obtained source data belongs
to the subspace of useful signal for classification. To assess the
amount of spatial information, utilized by LF-CNN, the fraction
of explained variance (FVE) in every gradiometer was used as,

FVEi =
(
r
(
Xi, Xreci

))2
, i = 1 . . . n, (5)

Xrec = AŜ,

where Xi, Xreci is input signal and reconstructed signal in i-th
gradiometer, r is Pearson correlation coefficient.

CNN Testing Algorithms
To assess the quality of the classification, nested cross-validation
(CV) with five folds was utilized. There were two loops of

TABLE 1 | Individual classification performance of LF-CNN for 25 participants.

Subj. ID Number of trials per class Performance on original data Result of permutation test

AUCval AUCna ïve AUCensemble

101 104 0.67 ± 0.03 0.60 ± 0.10 0.61 ± 0.07

102 133 0.73 ± 0.04 0.70 ± 0.05 0.72 ± 0.06

103 110 0.67 ± 0.03 0.69 ± 0.06 0.69 ± 0.05

104 123 0.62 ± 0.03 0.56 ± 0.07 0.56 ± 0.07

106 119 0.64 ± 0.04 0.66 ± 0.06 0.63 ± 0.07

107 141 0.66 ± 0.02 0.65 ± 0.04 0.66 ± 0.04

108 100 0.63 ± 0.03 0.55 ± 0.08 0.53 ± 0.05 –

109 95 0.73 ± 0.04 0.78 ± 0.06 0.76 ± 0.07 +

110 150 0.72 ± 0.01 0.63 ± 0.08 0.63 ± 0.04

113 97 0.62 ± 0.07 0.65 ± 0.06 0.64 ± 0.04

114 129 0.71 ± 0.03 0.63 ± 0.08 0.67 ± 0.08

115 101 0.69 ± 0.04 0.65 ± 0.10 0.65 ± 0.10

202 205 0.72 ± 0.03 0.70 ± 0.04 0.73 ± 0.02 +

203 217 0.74 ± 0.03 0.76 ± 0.04 0.75 ± 0.04 +

204 124 0.69 ± 0.02 0.61 ± 0.06 0.65 ± 0.03

213 111 0.69 ± 0.03 0.70 ± 0.07 0.69 ± 0.06

214 70 0.62 ± 0.06 0.55 ± 0.13 0.55 ± 0.14 –

215 177 0.71 ± 0.02 0.70 ± 0.04 0.73 ± 0.06 +

216 81 0.56 ± 0.02 0.54 ± 0.13 0.52 ± 0.15 –

217 157 0.67 ± 0.03 0.65 ± 0.07 0.68 ± 0.09

218 76 0.60 ± 0.05 0.57 ± 0.02 0.54 ± 0.07 –

221 196 0.72 ± 0.03 0.74 ± 0.03 0.76 ± 0.04 +

222 165 0.73 ± 0.04 0.69 ± 0.07 0.69 ± 0.04

223 98 0.69 ± 0.02 0.73 ± 0.07 0.72 ± 0.08

224 137 0.75 ± 0.04 0.71 ± 0.04 0.72 ± 0.04 +

M ± SD 128 ± 38 0.67 ± 0.05 0.66 ± 0.07 0.66 ± 0.07

ROC AUCs computed for the test subsets on time interval –0.2 . . . 0.5 s using the naïve and ensemble testing procedures are denoted as AUCnaï ve and AUCensemble,
respectively. AUCval corresponds to mean AUC over cross-validation folds. All AUCs values are presented as M ± SD computed over cross-validation and test folds (for
details see section “CNN Testing Algorithms”).
“+” denotes the participants with p < 0.05 on all testing folds (H0 hypothesis was always rejected, i.e., the difference from random performance was found for all folds)
for both testing procedures.
“–“ denotes the participants with p > 0.05 on all testing folds (H0 hypothesis was always accepted, i.e., the difference from random performance was not found for any
fold) for both testing procedures.
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CV, one inside another. The inner loop corresponded to 4-
fold CV (dataset was divided into train/validation subset in
ratio 3:1) and was used to determine the optimal number of
the training iterations. It was defined as the average number
of training iterations, where the maximum AUC value was
achieved on a given fold, over all CV folds. The outer loop
was 5-fold CV, used to assess the classifier performance on the
test subset. Such organized CV with several times testing was
preferable in order to obtain a more stable estimation of classifier
performance as in the situation of small dataset neural networks
tend to overfitting and classification results may vary when data
are splitted anew.

Estimation of the CNN performance on the test dataset was
carried out in two different ways, by a naïve approach and by
means of a network ensemble.

(1) In the case of the naive method, after obtaining the optimal
number of training iterations CNN was retrained anew, using the
obtained iterations number, on the entire training sample. The
trained network was then used to calculate ROC AUC on the test
sample in each of the five folds of outer CV loop.

(2) To construct an ensemble of the neural networks, we used
the weights obtained on each fold of inner CV loop. Thus, an
ensemble of 4 CNNs was obtained. Their predictions on the test
subset were averaged to calculate the target class probability. The
obtained probabilities for each MEG trial from the test set were
used for classification.

A permutation test was applied to examine whether the
classifier had learned a significant predictive pattern in the data,
that is, a real connection between the data and the class labels
(Ojala and Garriga, 2010). The null hypothesis (H0) was that the
features and the labels were independent (there was no difference
between the classes). The distribution of the ROC AUC values
under this null hypothesis was estimated by permuting the labels
of the test data set. We used 1000 permutation for examining a
single classification result. P-values were calculated for each of
the five testing folds (Ojala and Garriga, 2010).

RESULTS

The results of LF-CNN application to the MEG accompanying
spontaneous and voluntary eye fixations in the gaze-
controlled game are presented, per individual, in Table 1.
Corresponding results of VAR-CNN are presented in
Supplementary Table 1. CNNs performance, obtained by
naïve testing method, is visualized on Figure 4 for both
time intervals. Group statistics for both CNNs is given in
Table 2.

The application of both CNNs resulted in a similar group
mean AUC values. Individual AUC strongly varied across the
group for both CNNs. LF-CNN and VAR-CNN demonstrated
significantly nonrandom classification in all test folds for 6 and

FIGURE 4 | AUC values (M ± SD) for both CNNs, computed by naïve testing method for the test subsets of every participant.
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TABLE 2 | Group mean ROC AUC values (M ± SD).

Time interval, s LF-CNN VAR-CNN

AUCna ïve AUC ensemble AUCna ïve AUC ensemble

−0.2. . .0.5 0.66 ± 0.07 0.66 ± 0.07 0.67 ± 0.07 0.67 ± 0.07

−0.2. . .1.0 0.90 ± 0.06 0.90 ± 0.06 0.91 ± 0.05 0.91 ± 0.05

AUCs computed for the test subsets using the naïve and ensemble testing
procedures are denoted as AUCnaï ve and AUCensemble, respectively.

8 participants, respectively. Only in a few participants (4 in the
case of LF-CNN and 3 in the case of VAR-CNN) was nonrandom
performance not achieved in any test fold. Notably, all these
participants had low number of available fixations (not higher
than 100). Pearson correlation coefficient showed significant
positive linear correlation between the naïve/ensemble testing
AUC and the number of trials per class both in the case of
LF-CNN (r = 0.55/0.64, p = 0.0049/0.0005) and in the case of
VAR-CNN (r = 0.57/0.60, p = 0.0030/0.0014), i.e., the more
data were available for training, the better were the observed
classification performance. For all participants strong overfitting
of the CNNs were observed: mean group AUC values were about
0.98 on the training subset. ROC AUC curves for training and
testing procedures are represented on Supplementary Figure 1
in Supplementary Data Sheet 1 for datasets of three subjects
containing more than 100 trials per class: the first one (subject
104), revealed below group classification performance; the second
one (subject 114) with AUC values near group average; and the
third one (subject 221) with above mean AUC values.

Table 2, among other group statistics, includes AUCs also for
the time interval extended beyond the time when the participants
received the visual feedback to their gaze fixations. Extension of

the interval led to a much better single-trial MEG classification
(AUC > 0.9), confirming the good ability of both CNNs to
discriminate the data. Wilcoxon matched pairs signed-ranks test
comparing classification performance of LF-CNN and VAR-CNN
for each type of testing procedure did not reveal a statistically
significant difference between the results of CNN applications.

The weight matrices of the output layer (see an example
in Figures 3B,D) and mean weights at every time point (see
in Figures 3A,C) revealed no assignment of large weights to
particular time points. It should be emphasized that for time
interval −0.2 . . . 1.0 s (which included the feedback) the CNN
did not assign larger weights for time points after 0.5 s, when
feedback was received (see similar picture for enlarged interval on
Supplementary Figure 2 in Supplementary Data Sheet 1). The
mean weights of the time points over the group of the participants
are presented on Figure 5 for both intervals.

We assessed that the full fraction of explained variance (FVE),
computed for signal reconstructed from spatially filtered data as
the share of the initial information passed through the spatial
filter, was 35.12% and 31.92% in the case of intervals−0.2 . . . 0.5 s
and 0.2 . . . 1.0 s, respectively, indicating that a significant part of
the spatial information was utilized by the classifier.

To identify spatial features that contributed to the assignment
of a given epoch to a particular class and to assess the possible
contribution of the eye movement artifacts to classification
results, the weights in matrix A (see eq. 3) of the LF-CNN’s
LSs, weighted according to their contribution to each class,
were visualized. We assumed that the topographical maps would
present spatial patterns of features, most useful for the classifier,
and that if they showed increased weights for frontal sensors, it
would point out that the classifier heavily relied on eye movement
artifacts, which mostly affect these sensors. Note that using gaze
features to classify the voluntary and spontaneous gaze fixations

FIGURE 5 | Mean output weights of LF-CNN in every time point averaged over participants for intervals –0.2 . . . 0.5 s (A) and 0.2 . . . 1.0 s (B). The filled area
corresponds to 95% confidence interval.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2021 | Volume 15 | Article 619591

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-619591 February 1, 2021 Time: 18:11 # 10

Ovchinnikova et al. MEG Detection of Voluntary Eye Fixations

could be, in principle, beneficial, but it deserves an additional
study that should consider different issues, such as possible
differences in gaze behavior patterns between the data used for
classifier training and its application. At the current stage of
the EBCI development it seemed reasonable to consider the
classification of MEG data alone.

To take into account all LSs obtained we considered two
variants of LSs averaging: weighted averaging, when weights
were calculated by eq. 4 for each class separately, was proposed
to reveal averaged patterns of each class, and mean pattern
calculation, when every LS had equal weight wmean. Spatial
patterns obtained by sets of averaging weights, corresponding to
distinct classes, appeared to be almost equal which is consistent
with the observation that the weights for each class determined

by eq. 4 are close to wmean. While this result was observed for
all participants, further in the paper we will illustrate only mean
patterns over LSs, assuming that presented results were also
obtained for the case of the weighted averaging. The mean pattern
did not take into account LSs contributions to classification,
therefore, the mean pattern could be used as an estimate of
the common pattern of the subspace of the useful signal from
LF-CNN’s point of view.

The spatial patterns observed in the scalp projection maps
(based on the location of gradiometers) of different participants
revealed three dominant types: medial parietal areas, lateral
central and pre-central areas of cortex (both left and right or
mostly left) and joint pattern, including two first types (see
Figure 6A). It was found out that patterns were strongly affected

FIGURE 6 | Mean spatial pattern over LSs, averaged over test folds, for three participants who revealed distinct types of the patterns (A); input signal variance (B).
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by the variance of the input signal (see Figure 6B and eq.
3). Variance influence caused the stability of spatial patterns
obtained for the pre-feedback interval and for the interval with
the interface feedback. To reduce variance impact, we calculated
FVE in every gradiometer according to eq. 5. Examples of the
FVE scalp topography patterns are presented in Figure 7.

Visual analysis of FVE topographies (Figures 7, 8 and
Supplementary Figure 3 in Supplementary Data Sheet 1)
showed that areas with high FVE were localized primarily over
left motor and pre-motor areas of the cortex, expanding in the
rostral direction to the frontal and medial parietal lobe. This
fact was consistent with the observations made in the statistical
comparison of MEG amplitudes related to the same voluntary
and spontaneous fixation data, where the most pronounced
difference between them on the group level was also found in
the left hemisphere. Note that spatial patterns did not change
significantly with the enlargement of the time interval.

To capture the variation of sensor loadings the averaged
pattern of FVE was calculated over the participants (Figure 8).

To further examine the possible use of eye movement artifacts
by the classifier, the dependence of L1-norm of frontal sensor
weights in each LS on L1-norm of LS output weights, i.e.,
the contribution of given LS to classification, was plotted for
all participants (Figure 9). We expected that if the artifacts
made a significant contribution to the classification results, the
plot should reveal some relationship between these variables,
especially in participants with high classification performance,
or at least outliers in the upper right corner of the plots
(meaning that high weights related to the frontal MEG sensors
corresponded to highest class separation ability). Although some
patterns of this kind appeared and the corresponding Pearson
correlation coefficient values were relatively high (see plots and
correlation coefficients for the participants 110, 113, 115, 218,
and 222 in Figure 9), group analysis revealed no relation between

individual correlation coefficients and classifier performance
(see Figure 10). Thus, although the contribution from the eye
movement artifacts to the classification performance could not
be ruled out in some participants, this contribution could be
considered negligible at the group level.

DISCUSSION

In this study, MEG co-registered with the eye tracker data was
utilized to distinguish voluntary eye fixations used for sending
commands to a computer from spontaneous ones. Above-chance
classification results were obtained for 21 out of 25 participants
using 700 ms (−0.2 . . . 0.5 s) epochs of MEG data centered
on the onset of the fixation. AUC values (M ± SD) for naïve
and ensemble testing procedures appeared to be the same and
equal to 0.66 ± 0.07 and 0.67 ± 0.07 for LF-CNN and VAR-
CNN, respectively.

Extending MEG epochs up to 1000 ms from the fixation onset
to include the evoked response to the visual feedback to fixation
improved the classification performance dramatically (Table 2)
for both CNN architectures: for LF-CNN AUC appeared to be
0.91 ± 0.06 and 0.91 ± 0.06, for VAR-CNN – 0.91 ± 0.04 and
0.91± 0.05 for naïve and ensemble testing, respectively.

Spatial patterns informative for classification with LF-CNN
were localized mainly over left motor and pre-motor areas
expanding in the rostral direction in the frontal lobe and over the
medial parietal lobe, suggesting that in both cases (expectation
and processing of the visual feedback to voluntary saccade)
classification was primarily based on the activity from brain
areas controlling eye movement, such as the frontal and parietal
eye fields (FEF, PEF) (Schall and Thompson, 1999; Medendorp
et al., 2011). It is tempting to propose, based on such good
single-trial performance, a new EBCI that could utilize the data

FIGURE 7 | Topographical maps of full explained variance fraction (FVE) for the same participants as in Figure 6 (For the maps for other participants, see
Supplementary Figure 3 in Supplementary Data Sheet 1).
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FIGURE 8 | Group mean FVE patterns, as point plot with 95% confidence intervals for every gradiometer (A,C) and as topographical maps (B,D). The data were
averaged over test folds for each participant prior to other computations.

from this enlarged time interval. However, gaze behavior in this
interval alone might be already enough to reliably distinguish
voluntary and spontaneous fixations, and it is indeed utilized in
some of the existing gaze-based input systems. Moreover, the
use of this interval would imply that a response to feedback
should be required in the online implementation of the EBCI,
which clearly contradicts our goal to create an interface for
fluent human-machine interaction, in which the action should
be triggered by gaze directly, without the need to make any
additional confirmation actions.

Interestingly, informative spatial patterns (Haufe et al.,
2014) obtained from the model weights learned from shorter
(−0.2 . . . 0.5 s) and longer (−0.2 . . . 1 s) segments of the
MEG data generally remained the same within participants
(Figure 6A). One explanation for this could be that in
both cases activation pattern estimates were strongly affected
by the covariance structure of the data. Because sensors
with greater variance have higher SNR, it is reasonable
to assume that these same sensors were also the most
informative for classification. At the same time, because the
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FIGURE 9 | Dependence of the L1-norm of LS frontal sensor weights on L1-norm of LS output weights for the voluntary class. Each picture corresponds to a single
participant, dots correspond to LSs. Positions of the frontal sensors (presumably most vulnerable to the eye movement), whose weights were averaged, are shown
in bold on the head map in the left bottom corner.

inhomogeneity of the spatial variance may have affected our
estimates of the contribution of the oculomotor artifacts to
the performance of the classifier, we recommend caution when
interpreting these results.

To reduce variance impact, we assessed the fraction of
variance extracted by the spatial filter from each gradiometer.
The resulting FVE spatial patterns differed slightly for cases of
the pre-feedback and enlarged time intervals (Figures 7, 8). It
is still difficult to fully exclude the usage of eye movements
by the CNNs, but analysis of spatial filters contributing to LF-
CNN performance revealed no signs of substantial eye movement
contribution. Spatial patterns of weights and FVE did not reveal
maxima in frontal sensors and, therefore, provided no evidence
for the use of eye movement artifacts by the classifier. At the
same time, a full FVE obtained for signal reconstructed from
spatially filtered data showed that 35.12% and 31.92% of the

input information passed through the spatial filter and was
utilized by the classifier in case of intervals −0.2 . . . 0.5 s and
−0.2 . . . 1.0 s, respectively. Thus, the LF-CNN network likely
classified the voluntary and spontaneous eye fixations based
mainly on MEG components originating from brain sources and
not oculomotor activity.

As we made no prior assumptions regarding the MEG
signatures that might inform the classification, we were interested
in spatiotemporal features of the signal that were extracted
from MEG by CNN. It should be also emphasized, that the
pattern obtained from the forward model does not reflect the
full spatiotemporal data/feature structure, but only shows from
where the signal features were taken by the classifier. One way
to assess the involvement of signal features in classification is to
estimate the amount of variance (FVE in the article) shared by the
original signal and the source subspace extracted by CNN. The
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FIGURE 10 | Dependence of AUC obtained by naïve testing procedure on
Pearson correlation coefficient value between L1-norm of frontal sensors
weights in each LS and L1-norm of LS’s output weights (see Figure 9).

CNN’s source subspace can differ significantly from actual signal
sources in the brain which are differently activated in the two
classes. It should be considered as subspace of features, useful for
a given classifier (Weichwald et al., 2015). FVE metric allows us
to estimate the fraction of information, utilized by classifiers from
every gradiometer. Thus, obtained patterns should be considered
as maps of features selected by the classifier. In an earlier study,
where the EEG was co-registered with eye tracker data in a similar
paradigm, ROC AUC was 0.69 ± 0.09 (Shishkin et al., 2016), i.e.,
close to the results obtained in this study, and these results were
improved with the use of a CNN (Kozyrskiy et al., 2018). Note
that perfect single-trial classification is not necessary: as proposed
by Protzak et al. (2013), the classifier can be tuned to have high
specificity and relatively low sensitivity, and in the case of a miss
the user can just dwell at the same target for a longer time, so
that the interface would detect the intention to click by applying
the second dwell time threshold, this time without using the BCI
part of the EBCI.

As it was already found in an online EEG-based study
(Nuzhdin et al., 2017), this level of classifier performance is
insufficient for online EBCI studies. There are, however, at least
several ways in which classification can be improved upon:

(1) Joint use of MEG, EEG, and gaze data, for example, by
fusing the outputs of the classifiers each of which works
with the specific type of data. Gaze data are typically
considered to be not different between voluntary gaze-
based control and spontaneous gaze behaviors.

(2) Use of MEG and EEG spectral features. Some advanced
methods of deep learning sensitivity analysis, e.g., the
gradient-based attribution methods (Ancona et al., 2018)
and methods for frequency spectral analysis in deep
architectures developed for brain signals application in
works (Schirrmeister et al., 2017; Hartmann et al., 2018)
can also help to reveal discriminative signal features in the
experiment paradigm described in this work.

(3) Use of more data for classifiers training, especially by using
several sessions recorded on different days in the same
participant or a large group of participants. The latter
approach, i.e., transfer learning, was shown to be feasible
for the CNNs used in this work (Zubarev et al., 2019). It
did not provide improvement when applied to the data
used in the current study (mean AUC value for leave-
one-subject-out testing was 0.59; in case of training and
testing on the joint dataset of all participants AUC was
equal to 0.63), possibly due to higher variability of the
MEG patterns or lower signal-to-noise ratio, but it is not
unlikely that the classifier performance will improve with
more participants involved.

(4) Changing the preprocessing pipeline for better handling
of the single-trial data. In the current study, MEG raw
data were preprocessed using the MaxFilter software that
applied the tSSS procedure. As it is applied blockwise, this
procedure could likely introduce certain irregularities to
the signal that do not affect the averaged signal (typically
used in the studies of phase-locked MEG components)
but may make more difficult classification of the single-
trial data. In online experiments, tSSS cannot be used
due to the blockwise organization of processing and
relatively large size of blocks needed for its effective work
(typically of the order of seconds), thus a certain change of
preprocessing is inevitable.

These approaches to improving classification (or at least
those of them that will prove to be effective) can be
combined, so that significant improvement of the classification
performance seems likely.

CONCLUSION

In this study, we attempted to determine if short single-trial
segments of MEG data related to voluntary and spontaneous eye
fixations can help to distinguish between such types of fixations.
The adaptive CNNs, LF-CNN and VAR-CNN, developed recently
for MEG data classification (Zubarev et al., 2019), were applied
for binary classification of the MEG signals corresponding to
spontaneous and voluntary eye fixations collected in participants
who used voluntary fixations with 500 ms dwell time threshold
to play a game. Nonrandom classification results were obtained
with both CNNs for the majority of 25 participants using
short (700 ms) MEG intervals without the formation of feature
vectors (group M ± SD were 0.66 ± 0.07 for LF-CNN
and 0.67 ± 0.07 for VAR-CNN). Analysis of spatial patterns
contributing to classification did not reveal signs of significant
eye movement contribution to the classification results. We
conclude that the classification of MEG signals may help
to determine the correctness of the responses of gaze-based
interfaces to eye fixations on a single-trial basis. Current results
of intention detection prior to gaze-based interface’s feedback
are not sufficient for online single-trial eye fixation classification
using MEG data alone, and further work is needed to find out if
it could be used in practical applications.
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