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Acutely challenging or threatening situations frequently require approach-avoidance
decisions. Acute threat triggers fast autonomic changes that prepare the body to
freeze, fight or flee. However, such autonomic changes may also influence subsequent
instrumental approach-avoidance decisions. Since defensive bodily states are often
not considered in value-based decision-making models, it remains unclear how they
influence the decision-making process. Here, we aim to bridge this gap by discussing
the existing literature on the potential role of threat-induced bodily states on decision
making and provide a new neurocomputational framework explaining how these effects
can facilitate or bias approach-avoid decisions under threat. Theoretical accounts
have stated that threat-induced parasympathetic activity is involved in information
gathering and decision making. Parasympathetic dominance over sympathetic activity
is particularly seen during threat-anticipatory freezing, an evolutionarily conserved
response to threat demonstrated across species and characterized by immobility and
bradycardia. Although this state of freezing has been linked to altered information
processing and action preparation, a full theoretical treatment of the interactions with
value-based decision making has not yet been achieved. Our neural framework, which
we term the Threat State/Value Integration (TSI) Model, will illustrate how threat-
induced bodily states may impact valuation of competing incentives at three stages
of the decision-making process, namely at threat evaluation, integration of rewards and
threats, and action initiation. Additionally, because altered parasympathetic activity and
decision biases have been shown in anxious populations, we will end with discussing
how biases in this system can lead to characteristic patterns of avoidance seen in
anxiety-related disorders, motivating future pre-clinical and clinical research.

Keywords: approach-avoidance, defensive freezing, threat processing, anxiety disorders, bodily states,
autonomic nervous system, parasympathetic, cardiac deceleration

INTRODUCTION

Effectively responding to a threatening situation poses a dilemma with ancient evolutionary origins:
our survival may be at stake if we make a wrong decision. Do we approach the threat that may
potentially harm us, or do we avoid it? This dilemma places vital selection pressures on our body,
as we often need to execute a fast and appropriate response. While our body prepares to take
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the action, a characteristic pattern of heightened sympathetic
arousal and parasympathetically driven immobility and
bradycardia occurs (Nijsen et al., 1998; Bradley et al., 2001;
Azevedo et al., 2005; Vila et al., 2007; Hagenaars et al., 2014;
Gladwin et al., 2016): a bodily state referred to as threat-
anticipatory freezing (Kozlowska et al., 2015; Roelofs, 2017).
Freezing has been observed in both humans and non-human
species, frequently in response to more distal threat (Blanchard
et al., 2011; Mobbs et al., 2015). Human studies have shown
that the magnitude of the freezing response is associated with
altered information processing (Lojowska et al., 2015) and
action preparation (Mobbs and Kim, 2015; Gladwin et al., 2016;
Hashemi et al., 2019a,b; Rösler and Gamer, 2019). Given the
importance of information gathering and action preparation
in making adaptive responses in threatening situations,
freezing could therefore be more than a passive state to avoid
predator detection. In fact, freezing may facilitate value-based
decision processes by optimizing threat perception and action
preparation. Indeed, the magnitude of freezing has been shown
to bias subsequent instrumental approach or avoid action (Ly
et al., 2014). What remains unclear is how threat-anticipatory
freezing affects these value-based decision-making processes.

Despite a potential role of threat-anticipatory freezing in
value-based decision-making, current models of approach-
avoidance decisions generally do not take bodily states of the
decision maker into account. Mobilization of systems evolved
for acute threat may underpin a variety of decision events
in everyday life, where for example socially mediated sources
of threat evoked by social hierarchies are present (Price,
2003). Therefore, not taking bodily states into account when
trying to understand value-based decision-making potentially
limits ecological validity. Moreover, clinical research shows
that patients with anxiety-related disorders display chronically
elevated autonomic activity (Brawman-Mintzer and Lydiard,
1997; Brosschot et al., 2016). Heightened autonomic activity
likely underlies characteristic decision-making biases, including
increased avoidance—a main symptom observed in anxiety
patients (Hartley and Phelps, 2012). The high prevalence of
anxiety-related disorders in the population (Bandelow and
Michaelis, 2015), and the fact that individual differences
in avoidance behaviors associate with variation in anxiety
(Hulsman et al., 2021) highlights the importance of including
bodily states (e.g., threat-anticipatory freezing) in value-based
decision models.

In this paper we aim to outline the evidence for the role
of threat-anticipatory freezing in value-based decision-making
and instrumental action. Further, we will propose a new
theoretical framework that incorporates a parasympathetically
dominated threat-anticipatory freezing response into a decision-
making model. Before presenting the new model, we provide
an overview of the freezing state in the brain and body in the
section “The Threat-Anticipatory Freezing State,” and describe
evidence that threat-induced autonomic states exert influence
on approach-avoidance decisions in the section “Threat-
Anticipatory Freezing Is Associated With Information Gathering
and Action Preparation.” We then more closely examine the
case of value-based decisions in the section “Threat-Anticipatory

Freezing Could Bias Value-Based Decisions,” and the separable
processes of valuation and action preparation in the section
“Threat-Anticipatory Freezing Could Bias the Switch to Action,”
demonstrating how the freezing state may affect each of these in
turn. Finally, in the section “The Threat State/Value Integration
Model: A New Theoretical Neural Framework of Anticipatory
Freezing on Approach-Avoidance Decisions Under Threat”, we
outline our model, discuss how this model builds on existing
theories of autonomic influence on decision processes, and
outline a research agenda to further probe its predictions.

The Threat-Anticipatory Freezing State
When faced with an acute threat, the body starts to prepare for
action. The amygdala, especially the basolateral amygdala (BLA),
is strongly connected to sensory input regions (Pitkänen et al.,
1997; LeDoux and Daw, 2018) and thereby plays a key role in
the initial detection and processing of the threat. Through intra-
amygdala connections between BLA and the central nucleus
(CeA), and projections from the CeA to the periaqueductal
gray (PAG), hypothalamus, and rostral ventrolateral medulla,
phasic autonomic activation is initiated. The hypothalamus
and ventral medulla are involved in activating eccrine sweat
glands and pupil dilation, heart and skeletal muscles (Jänig and
McLachlan, 1992; Saha, 2005; Dawson et al., 2011; McDougal
and Gamlin, 2014) serving the purpose of initiating fast fight-
or-flight reactions. Alternatively, when threat is still at a distance
and multiple action options are available, an increase in phasic
parasympathetic activation typically occurs in concert with the
sympathetic activation. During the resulting state of freezing,
sympathetically driven heart rate increases are counteracted by
projections from the ventrolateral PAG (vlPAG) through the
vagus nerve to the heart, resulting in net bradycardia (Morgan
and Carrive, 2001; Koba et al., 2016; Schipper et al., 2019). The
vlPAG also suppresses phasic motor outputs through inhibition
of motor neurons via the medulla, resulting in immobility but
increased muscle tone from heightened arousal (Walker and
Carrive, 2003; Kozlowska et al., 2015; Tovote et al., 2016). The
increase in parasympathetic activation serves to put a brake
on the already activated motor system. This leads, in addition
to bradycardia, to physical immobility (Nijsen et al., 1998;
Bradley et al., 2001, 2005, 2008; Roelofs et al., 2010; Hermans
et al., 2013; Hagenaars et al., 2014; Löw et al., 2015; Gladwin
et al., 2016; Bublatzky et al., 2017). It is this degree of motor
reduction and bradycardia that mark out the parasympathetically
dominated freezing state from sympathetically dominated fight-
or-flight states (Kozlowska et al., 2015; Roelofs, 2017). When the
switch from threat-anticipatory freezing to an action is made,
parasympathetic withdrawal shifts the net balance of autonomic
activity to sympathetic dominance, marked by tachycardia (Paton
et al., 2005; Vila et al., 2007; Roelofs, 2017; Hashemi et al.,
2019a). Neurally, subdivisions of the anterior cingulate cortex
may play a role in switching autonomic modes, in particular
the perigenual ACC (pgACC). The pgACC (and potentially
the neighboring subgenual ACC) has a key role in controlling
both branches of the autonomic nervous system, supported
by extensive connections with hypothalamus and autonomic
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brainstem nuclei (Devinsky et al., 1995; Matthews et al., 2004;
Critchley et al., 2005; Benarroch, 2012).

The freezing response may thus play a role particularly in
circumstances where instrumental approach/avoidance actions
may be possible, and where taking such actions may improve
outcomes (accounting for the costs and benefits of action
consequences) compared to automatic defensive reactions. Some
examples are when more distal threat allows more time to
calculate and prepare the next action (Mobbs et al., 2007;
Brandão et al., 2008; Kozlowska et al., 2015; Roelofs, 2017;
Wendt et al., 2017; Hébert et al., 2019), where levels of predator
threat are intermediate (Eilam, 2005) and when there are no
immediate escape routes available (Blanchard et al., 2011).
Subsequent instrumental actions can be in line with the prepotent
defensive reaction (i.e., engaging or escaping for fight and flight,
respectively, or withholding action after freezing), but can also
override automatic tendencies. Therefore, before an approach
or avoid action is taken, the threat-anticipatory freezing state
could provide a window in which value-based decision-making
processes could occur.

THREAT-ANTICIPATORY FREEZING IS
ASSOCIATED WITH INFORMATION
GATHERING AND ACTION
PREPARATION

One theoretical account of a role for threat-anticipatory freezing
in value-based decision-making, is that the parasympathetic
brake on the sympathetically activated motor system allows
further information gathering that can facilitate making the
appropriate response (Friedman, 2007; Kozlowska et al., 2015;
Roelofs, 2017). Thereby, threat-anticipatory freezing may allow
for risk assessment (Blanchard et al., 2011) or resolve ambiguity
and uncertainty (Eilam, 2005). Evidence for the involvement
of freezing in information gathering comes from studies in
humans showing that the magnitude of the freezing-related
bradycardia is associated with changes in perception. For
example, stronger freezing responses have been associated with
preferential processing of low over high spatial frequency
features of a visual stimulus (Lojowska et al., 2015, 2018)
and reduced visual exploration of non-threat-relevant stimulus
features (Rösler and Gamer, 2019).

Another example of how freezing may influence value-
based decisions is that threat-anticipatory freezing can influence
instrumental actions. Animal models have shown that threat-
induced freezing can hamper active avoidance strategies
(Martinez et al., 2013; Moscarello and LeDoux, 2013; Pavlova
et al., 2020). Indeed, the transition from an automatic defense
freezing reaction to successful instrumental avoidance requires
a switch to action (Lázaro-Muñoz et al., 2010; Moscarello and
LeDoux, 2013). Not all animals learn active avoidance strategies,
and those that don’t may show persistent freezing in response
to a Pavlovian threat cue (Choi and Kim, 2010; Lázaro-Muñoz
et al., 2010). Lesioning the CeA, a region critically implicated in
the freezing response increased active avoidance in those animals

(Choi and Kim, 2010; Lázaro-Muñoz et al., 2010). In contrast,
human studies show that freezing facilitates rapid responding
(Jennings and van der Molen, 2005; del Paso et al., 2015; Gladwin
et al., 2016; Hashemi et al., 2019a,b; Ribeiro and Castelo-Branco,
2019; Rösler and Gamer, 2019) and one study showed that threat-
anticipatory freezing responses biased subsequent instrumental
actions toward faster threat avoidance (Ly et al., 2014). Two
recent studies (Hashemi et al., 2019a,b) manipulated threat of
shock by using a task in which an avatar would shoot if an
incorrect or delayed response was made. Under threat of shock,
heightened bradycardia was observed, which was associated
with an increase in immobility measured using a stabilometric
force platform. Critically, the stronger the threat-anticipatory
freezing response was, the faster participants responded in
subsequent correct responses (Hashemi et al., 2019a). In the area
of perceptual decision making, there is also evidence associating
anticipatory bradycardia with faster decision making (Jennings
and van der Molen, 2005; del Paso et al., 2015; Ribeiro and
Castelo-Branco, 2019). Moreover, threat-anticipatory freezing
responses are stronger when active responses are available to
mitigate the threat, as compared to when it is not possible to
escape the threat (Gladwin et al., 2016; Rösler and Gamer, 2019).
To understand the apparent discrepancy between non-human
animal and human findings, it is important to note that animal
studies index freezing typically as the duration of immobility,
while human studies typically index freezing as the magnitude
of the freeze response (baseline-to-trough in terms of heart rate
and/or immobility). Therefore, it remains unclear whether active
avoidance in the above mentioned animal studies by Martinez
et al. (2013) and Moscarello and LeDoux (2013) is in fact
preceded by a transient state of freezing, and whether stronger
magnitude of such initial freezing reaction may be related to
faster subsequent responses as observed in human studies (e.g.,
Hashemi et al., 2019a). Further, the overall level of threat may
be considerably higher in non-human animal studies than in
humans, from ethically permissible shock magnitudes, possible
selection bias in which participants sign up, and the ability of
human participants to withdraw from studies. This raises the
possibility that the action facilitation by freezing is only present
in anticipation of intermediate threat levels.

Information gathering and action preparation are crucial
aspects of making adaptive responses in threatening situations.
Therefore, in the case when there is not an immediate defensive
response (i.e., fight/flight), freezing allows enhanced information
gathering and action preparation and potentially bias or facilitate
the instrumental approach or avoid action. Figure 1 provides an
overview of the time course of processes from threat appearance
to instrumental action decisions.

THREAT-ANTICIPATORY FREEZING
COULD BIAS VALUE-BASED DECISIONS

One possible way threat-anticipatory freezing can influence
the decision to approach or avoid, is by biasing the assessed
value of the outcome. In a situation with potential danger, the
organism needs to compare costs (i.e., the level of threat and
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FIGURE 1 | Schematic of processes from threat appearance to instrumental action decisions under approach-avoidance conflict. The appearance of threat gives
rise to automatic defensive reactions in the first instance, including orienting, freezing and fight/flight. The situation may resolve itself at this stage, or no instrumental
actions may be available, shown in the arrows terminating in no A/A dilemma. Otherwise, freezing and fight/flight are associated with prepotent action tendencies. Of
those, freezing could be continued into inaction (top arrow, resulting in passive approach or avoidance) and fight/flight into approach/avoidance behavior (bottom
arrow) without the need to override the prepotent action tendency. However, a decision can be made to control the prepotent tendencies in favor of an anticipated
reward-punishment outcome. Both the decision to control, and the subsequent behavior if control is exerted, are based on the two scales shown: the predicted
outcome from the assessed reward-punishment balance, and the autonomic balance of parasympathetic and sympathetic states (where for example more freezing
requires a larger shift in order to take active action—see section “Threat-Anticipatory Freezing Could Bias the Switch to Action” for further details). These are
integrated through state/value integration (middle arrow) to determine the choice of action—passive or active behavioral mode, and approach or avoidance action. P,
parasympathetic; S, sympathetic; A/A, Approach/Avoidance.

the foregone reward) with benefits (i.e., potential reward and
avoided threat), to select the appropriate instrumental approach.
For example, escaping from potential predators incurs a cost
in energy expenditure and foregone consumption opportunities
which may itself prove survival-critical, while competition with
social conspecifics for mating opportunities carries both the
benefit of reproductive fitness and the danger of harm from
physical conflict (Choi and Kim, 2010; Mobbs and Kim, 2015;
Fendt et al., 2020).

Evidence for the notion that threat-anticipatory freezing
may directly influence value computations of the approach-
avoidance decision comes from studies in humans showing
a relationship between bradycardia and decision-making. For
example, in a non-threatening gambling task, bradycardia (as
well as sympathetic driven skin conductance response; SCR)
was shown to be higher in anticipation of disadvantageous
relative to advantageous options for individuals that performed
well, but not those who performed badly (Crone et al., 2004).
Moreover, in an instrumental approach-avoidance study in
humans, Ly et al. (2014) measured freezing responses by
assessing reductions in body-sway to visually displayed angry
(vs. happy) face primes, while participants were standing on
a stabilometric force platform. This independent face prime
was shown prior to an instrumental (monetary punished or
rewarded) approach-avoidance decision. A critical observation

in this study was that the magnitude of the threat-anticipatory
freezing responses to angry faces biased subsequent behavior
toward threat avoidance and against threat approach. As freezing
responses to angry faces have been consistently linked to
bradycardia (Roelofs et al., 2010; Niermann et al., 2017),
this finding may be associated with the relationship between
parasympathetic dominance during freezing and increased threat
appraisal of angry faces (Bradley et al., 2001). These studies,
however, have not directly investigated the link between threat-
anticipatory freezing and value-based computation.

To date, relatively little research has investigated the influence
of threat-anticipatory freezing and parasympathetic dominance
on value-based decisions in threatening contexts, although recent
work has specifically tested this link (Klaassen et al., 2021—
discussed in the section “The Threat State/Value Integration
Model: A New Theoretical Neural Framework of Anticipatory
Freezing on Approach-Avoidance Decisions Under Threat”).
There is some evidence, however, for an association between
threat-induced sympathetic activation and subsequent decision-
making. For example, using threat-of-shock tasks, associations
were found between sympathetically driven pupil dilation and
the processing of environmental uncertainty (Browning et al.,
2015; de Berker et al., 2016), integrally related to subsequent
learning and decisions. In addition, it was found that pupil
dilation was associated with successful adaptation to changing
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contingencies (Browning et al., 2015). While these studies have
provided important insight into autonomic contributions to
decisions, without a concurrent parasympathetic measure it is
not possible to determine the specificity of these effects to the
sympathetic nervous system, particularly as freezing presents
with phasic activity of both branches.

Changes in the balance between the sympathetic and
parasympathetic nervous system during threat-anticipatory
freezing may impact the reward-threat balance, by placing more
weight on the aversive outcome. Indeed, it has been shown that
threat and aversive value assessment occur largely in amygdala-
PAG pathways (Seymour et al., 2005; Boll et al., 2013; McHugh
et al., 2014; Roy et al., 2014), which is distinct from the
pathway involved in appetitive value assessment, which occurs in
striatal regions and the ventromedial prefrontal cortex (vmPFC;
O’Doherty, 2004). Importantly, the amygdala-PAG pathway is
also critically implicated in initiating threat-anticipatory freezing
and thus accounts for a pathway that may increase the weight of
the aversive outcome.

The impact of freezing on the reward-threat balance may also
occur at the level of the integration. Indeed, threat assessment
must be weighed against potential reward assessment that occurs
in striatal regions and the vmPFC (Simon et al., 2010; Spielberg
et al., 2013; Klumpers and Kroes, 2019). A region that may
play a critical role in integrating value across modalities is the
anterior cingulate cortex (ACC; Botvinick et al., 2004; Aupperle
et al., 2015; Schlund et al., 2016). Importantly, the dorsal ACC
(dACC) shows specific modulation of connectivity with the
amygdala by exposure to threat (Carlson et al., 2013) and with
the PAG by nociceptive stimuli (Hohenschurz-Schmidt et al.,
2020). Although much literature localizes value integration in the
dACC, some research also points to the neighboring subgenual
area (Talmi et al., 2009; Park et al., 2011) and broader regions of
the cingulate cortex (Roy et al., 2014; Gold et al., 2015).

This means that pathways involved in value integration
overlap with pathways involved in threat detection and may
thereby play a role in integrating the current bodily state (i.e.,
sympathetic vs. parasympathetic activation) and the value of the
outcome (i.e., threat vs. reward).

THREAT-ANTICIPATORY FREEZING
COULD BIAS THE SWITCH TO ACTION

Another way threat-anticipatory freezing can influence the
decision to approach or avoid lays more at the level of the action.
Namely, the weight of the threat-reward outcome must also
be weighed against the cost to switch from parasympathetic to
sympathetic activation.

For example, it was shown that in a non-threatening
perceptual decision-making task, participants’ perceptual
decisions on ambiguous stimuli were biased by the manipulated
motor cost of response, despite no awareness that the motor
cost was being incrementally altered (Hagura et al., 2017).
This demonstrates that response initiation integrally involves
the effort cost of behavior rather than being simply an output
of higher-level decisions. The notion that the execution of

an action may come at a cost may be relevant to understand
dissociations of avoidance behavior across anxiety-related
disorders. Namely, active avoidance (e.g., leaving a party to not
engage in social interaction) may be more costly than passive
avoidance strategies (e.g., not initiate eye contact to avoid a
conversation). While depression and generalized anxiety are
typically associated with passive avoidance, panic disorder and
specific phobias are associated with active avoidance (Deakin and
Graeff, 1991; Krypotos et al., 2015), so a closer understanding of
this distinction both behaviorally and neurally may shed light on
the distinctive features of these disorders.

Active and passive avoidance have also been associated with
distinct neural pathways (Gozzi et al., 2010; Levita et al.,
2012; Eldar et al., 2016; Tovote et al., 2016; Yu et al., 2016;
Fadok et al., 2017). Animal models have identified neurons
in the CeA responsible for switching behavioral responses to
a threatening stimulus from freezing to overt approach-action
(Gozzi et al., 2010; Moscarello and LeDoux, 2013; Fadok et al.,
2017). A recent human study found connectivity between the
pgACC, amygdala and PAG related to the switch from freeze
to action (Hashemi et al., 2019a). This finding suggests that the
ACC not only plays a role in conflict resolution but also in
the switch from freezing-induced immobility to action. Intra-
ACC connections to the perigenual region may then activate
sympathetic responses to facilitate the chosen behavior, an idea
supported by cytoarchitectural studies showing dense dorsal-
perigenual ACC connections in monkeys supporting valenced
responses to stimuli and initiation of active responses (Morecraft
et al., 2012; Kim et al., 2018).

In contrast to the notion that freezing may enhance the cost
of switching to action, in humans, stronger freezing has been
observed in situations where an action has to be taken compared
to when no action can be taken (Löw et al., 2015; Gladwin et al.,
2016; Wendt et al., 2017) and the magnitude of freezing responses
is associated with faster reaction time (Jennings and van der
Molen, 2005; del Paso et al., 2015; Hashemi et al., 2019a,b; Ribeiro
and Castelo-Branco, 2019).

Together these findings suggest that the switch from freeze
to action also involves a value-based decision process and
furthermore highlights the importance of incorporating the
balance between parasympathetic and sympathetic activation
into decision-making models.

THE THREAT STATE/VALUE
INTEGRATION MODEL: A NEW
THEORETICAL NEURAL FRAMEWORK
OF ANTICIPATORY FREEZING ON
APPROACH-AVOIDANCE DECISIONS
UNDER THREAT

Taken together, the empirical work we reviewed in the previous
sections allow us to formulate a new theoretical model
of how threat-induced bodily states could affect value-base
decision-making. The key proposal of this model is that the
parasympathetically dominated state of freezing immediately
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following threat detection may be associated with biasing of
subsequent decisions. The mechanism of this biasing may occur
at three potential stages, corresponding to (1) the processing of
aversive value, (2) value integration, and (3) switching to action.
As the stages are along a common pathway, influences at each
stage may be separable and interacting, and can be disentangled
with computational and neural models.

Figure 2 illustrates these three decision stages through which
freezing possibly affects the decision-making process (paths 1–3).
Box 1 shows an exemplar model with corresponding effects on
behavior that are predicted by influence at each stage.

Stage 1: computation of aversive value in the amygdala-PAG
circuit. This pathway is thought to be involved in carrying
aversive information (e.g., pain) detected in the PAG to the
amygdala (McHugh et al., 2014; Roy et al., 2014). Both the PAG
and amygdala have additionally been implicated in initiation of
defensive behavior, such as the freezing response (Hermans et al.,
2013; Tovote et al., 2016; Hashemi et al., 2019a; Schipper et al.,
2019). Thus, this circuit’s close relationship with initiation of
threat-related behavior leads to a possible interaction between
degree of freezing and predicted aversive value that may
accordingly bias decisions and subsequent learning. Specifically,
alterations in this circuit during freezing may be instantiated
through inflated predictions of upcoming threat, amplifying the
expected aversive value, correspondingly leading to an increase in
avoidance behavior.

Stage 2: integration of threat and reward values in dorsal
ACC. Comparison and integration of values across potential
rewards and threat of aversive outcomes is thought to take
place in the ACC, particularly the dorsal part. The dorsal ACC
receives its value information from fronto-striatal regions and
the amygdala, for appetitive and aversive outcomes respectively
(Aupperle et al., 2015; Schlund et al., 2016), integrating these
to determine the action to take. Through this route, freezing
would not directly alter the value of any individual outcome (e.g.,
threat of shock), but rather bias the degree to which estimated
reward and threat leads to behavior. This may therefore make
behavior more deterministic (a steeper softmax function) if the
effect of estimated reward-punishment balance is stronger, or
more stochastic if it is weaker (a shallower function). Thus, taking
together stages 1 and 2, freezing may affect evaluation of threats
at lower and/or higher areas in the decision hierarchy.

Stage 3: switch to action in perigenual ACC. The third
potential avenue of influence may lie in the switch from “passive”
anticipation to action (approach/avoidance). Here, the pgACC is
specifically implicated in switching from the parasympathetically
dominated freezing state to a sympathetically dominant state for
behavioral action (Hashemi et al., 2019a), in line with its role in
autonomic control. Flexibility of this system, as well as the depth
of the freezing state, may determine the relative cost of active
behavior due to the effort of switching modes, and therefore
bias value decisions depending on whether an action is required
or not. This is in keeping with findings that decision making
can be biased by the motor costs of responses (Hagura et al.,
2017): response initiation is not simply an output of higher-
level decisions but an interaction integrally involving the effort
cost of behavior. This stage allows for freezing biases to be

differentially evoked according to the type of response required
for avoidance. Situations may require active avoidance (initiation
of withdrawal behavior) or passive avoidance (inhibition of an
approach response that results in non-engagement with the
threatening stimulus), and these response modes are dissociable
neurally (Gozzi et al., 2010; Levita et al., 2012; Eldar et al.,
2016; Tovote et al., 2016; Yu et al., 2016; Fadok et al., 2017).
Differential biases can be contrasted by using a task incorporating
decisions of both types, and behavioral models incorporating
both aversive value and switch costs. It is not always the case that
freezing would bias to a higher action cost. In situations where
freezing allows action preparation, it may in fact be associated
with reduced action cost and bias toward active responding.
Based on recent insights from both animal and human literature,
individual differences in active and passive biases may impact the
direction of effects in this stage (Moscarello and LeDoux, 2013;
Klaassen et al., 2021).

In a recent study from our group (Klaassen et al., 2021) we
developed the Passive-active Approach-avoidance Task (PAT) in
which participants performed active and passive approach-avoid
decisions. Heart rate, body sway, and skin conductance were
measured throughout. In this task, participants were presented
choices of varying monetary and shock levels, and required to
make an approach-avoidance decision in both passive and active
action conditions. Action contexts were created by manipulating
the movement direction of the target to be approached/avoided.
This study replicated previous findings showing a relationship
between bradycardia and faster responding. It also demonstrated
an association between freezing and the interaction between the
response mode and subjective value of the choice options. This
was found through computational modeling of these factors on
the probabilities of approach and avoidance responses.

The Threat State/Value Integration (TSI)
Model’s Relationship With Existing
Theoretical Frameworks
Theoretically, our theory fits with notions of two stage
models (Mowrer, 1960), proposing that action invigoration
is dissociable from value of the predicted outcome (Huys
et al., 2011; Geurts et al., 2013; Guitart-Masip et al., 2014).
Previous evidence is largely based on Pavlovian-instrumental
transfer tasks, where the value of the Pavlovian response
transfers to the instrumental action and the instrumental
action itself does not occur under acute threat. Bach and
colleagues have developed tasks where the approach-avoidance
conflict involved potentially winning or losing points (Bach
et al., 2014; Bach, 2015). However, unlike (for example) the
threat of receiving an electrical shock,losing points is not a
primary reinforcer. Threat of shock evokes activation at the
level of the amygdala-PAG (Lojowska et al., 2018; Hashemi
et al., 2019a; Schipper et al., 2019) where autonomic changes
could influence instrumental approach-avoidance decisions. Our
model is in line with several influential theories proposing that
current bodily states can indeed impact approach-avoidance
behavior (e.g., McNaughton and Corr, 2004; Porges, 2007;
Strigo and Craig, 2016; Bach and Dayan, 2017). For example,
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FIGURE 2 | Schematic of Threat State/Value Integration (TSI) Model, with neural structures and functions involved in approach-avoidance action decisions under
threat and illustrative map of locations within the brain. In our model approach-avoidance action decisions are determined not only by the predicted reward and
aversive values of the action outcome but also by the costs of switching to action. Aversive and reward values are computed in amygdala-periaqueductal gray and
ventromedial prefrontal cortex-ventral striatum subsystems, respectively (left of schematic), then compared in the anterior cingulate to output to action behavior (right
of schematic; via sensorimotor regions, not shown). The degree of freezing is measured by the level of immobility and bradycardia, which are the result of the
balance in sympathetic and parasympathetic activation. The degree of freezing may impact approach-avoidance action decisions at three possible stages
(numbered in the figure): (1) altered aversive value assessment in threat-related pathways; (2) altered integration of values within the dorsal anterior cingulate; (3)
altered cost of switching between parasympathetically dominated freezing and sympathetically dominated action in perigenual anterior cingulate cortex (pgACC).
The circular arrows show the forward process of value comparison generating action, and the reverse process whereby action costs may retroactively affect value
computations via a feedback loop. AMY, amygdala; PAG, periaqueductal gray; (d/pg)ACC, (dorsal/perigenual) anterior cingulate cortex; vmPFC, ventromedial
prefrontal cortex; VS, ventral striatum. Green denotes reward and reward-related areas, red denotes threat and threat-related areas, and blue denotes areas of value
integration and post-integration action switching.

Porges (2007) and Strigo and Craig (2016) both outline roles for
the balance of sympathetic and parasympathetic influences in
governing response to threat challenge, and in particular the
regulatory role played by parasympathetic activity in maintaining
healthy responses. McNaughton and Corr (2004) and Bach

and Dayan (2017) focus on threat-specific systems, autonomic
(sympathetic) arousal and their influences on approach-avoid
behaviors. However, those theories do not explain at which stages
threat-induced bodily states can impact approach-avoidance
decisions. Nor do they make a distinction between sympathetic
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BOX 1 | Exemplar model of freezing effects on approach-avoidance decisions at the three stages.
The probability of an approach response is modelled here using a softmax function on values of reward and punishment, plus a dummy variable indicating whether
the mode of response is active or passive in the current context. This produces three parameters that model the three stages of possible freezing influence on the
approach-avoid decision. Estimation of individual subject parameters on behavioral data can then be used in parametric modelling of neural activity in the relevant
brain areas discussed in Figure 2.

(1) At the stage of threat assessment, freezing may be associated with increased assessment of the aversive value of the current situation (higher value of β1),
resulting in a lower likelihood of an approach action for a given reward-punishment balance. (2) At the value integration stage, freezing may modify the degree to
which value assessment impacts behavior, resulting in more deterministic (higher β2), or stochastic (lower β2) decisions at different levels of reward and punishment.
(3) At the stage where assessment may lead to triggering or inhibition of action, biases in active and passive response modes may lead to differential behavior
according to whether an active or passive response is required to approach or avoid the stimulus. An active (positive) response bias results in a greater probability of
approach (positive β3), while a passive response bias produces the opposite effect (negative β3).

p (approach) =
1

1+ eβ2 ·(βr ·reward+β1 ·punishment)+β3 ·mode

and parasympathetically dominated states. Lastly, it remains
unknown what the neural implementation is of the effect
of bodily states on decision-making. As such, our model
extends previous accounts by including both branches of the
autonomic nervous system.

Predictions Based on the Model
Further testing of the predictions of the model will require
research targeted specifically at the neural correlates of
value-based approach-avoidance decisions under threat. Both
neuroimaging work on humans, and translational studies
with the greater specificity and causal testing allowed by
animal methods such as optogenetics, can help to explore the
interactions postulated by the model. We hypothesize that the
interaction of freezing with predictions of aversive value in
amygdala-PAG circuits and dACC will present with biases in
active avoidance behavior through its alteration of the balance
of assessed reward and aversive value. If interaction takes place
on the process of switching to sympathetically driven action in
pgACC, it will instead present with biases in passive avoidance,
reflecting changes in the effort cost of switching to initiation
of active behavior. Involvement of these brain circuits would
be reflected in parametric changes in activity and connectivity
in response to differing levels of threat. Further, we predict
individual differences in biases related to these interactions,
which may relate to clinical presentations on the more extreme
ends. Previous research has indicated that clinical disorders may
present with differential biases in passive and active response
modes: panic disorder where a strong active avoidance bias is
present, and generalized anxiety or ruminative presentations
with a strong passive avoidance bias (Deakin and Graeff, 1991;
Krypotos et al., 2015; White et al., 2016). Further research on

clinical populations, or with animal models of these disorders,
can determine whether these biases have explanatory power.
Another important unresolved question regarding the model
is the potential role of the bed nucleus of the stria terminalis
(BNST). This region, sometimes referred to as the extended
amygdala because of its close anatomical connections and
overlapping function, plays a critical role in situations where
threat is more ambiguous and/or distant in space or time (Lebow
and Chen, 2016; Shackman and Fox, 2016; Klumpers et al.,
2017). The BNST has strong connections to striatal and frontal
regions involved in value calculations and motor control. Taken
together, the BNST is anatomically very well placed to influence
approach-avoidance decision making. So far however, its role
in approach-avoidance decision making remains surprisingly
unclear (Klumpers and Kroes, 2019). Further research would
be needed to determine whether its role in approach-avoidance
decisions fits within that of the amygdala as a whole, or whether
these are distinguishable in levels of threat immediacy.

If connectivity between ACC and reward/threat-evaluative
areas do support the comparison of these values under approach-
avoidance decision making, this may allow for non-invasive
brain stimulation to provide causal testing of this association.
Recent work has shown that transcranial magnetic stimulation
(TMS) can disrupt emotional (approach-avoidance) action
control (Volman et al., 2011), while transcranial alternating
current stimulation (tACS) can enhance this control through
facilitation of coupling between prefrontal and sensorimotor
areas (Bramson et al., 2020). Both interventions resulted in
altered activity in fronto-amygdala-motor circuits. Behavioral
interventions could focus on training a psychophysiological state
compatible with bradycardia and increased heart rate variability
prior to approach-avoidance decision making, such as recently

Frontiers in Neuroscience | www.frontiersin.org 8 March 2021 | Volume 15 | Article 621517

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-621517 March 25, 2021 Time: 15:37 # 9

Livermore et al. Approach-Avoidance Decisions Under Threat

developed in a biofeedback-integrated virtual reality game, where
people make speeded approach avoidance decisions under acute
threat (Brammer et al., 2021).

Whereas these more traditional brain stimulation techniques
might not be ideal given our hypotheses on the involvement
of deeper brain structures, new brain stimulation techniques
that are capable of non-invasively manipulating brain activity
in deep structures are currently being developed. For instance,
it might be possible to change amygdala activity or modulate
ACC functional connectivity with deeper brain structures using
transcranial ultrasonic stimulation (macaques: Folloni et al.,
2019; humans: Legon et al., 2018; Badran et al., 2020; Fini and
Tyler, 2020), or by applying temporally interfering electrical fields
(Grossman et al., 2017). These techniques can potentially be used
to test causal predictions of the model by increasing or decreasing
synchronization between structures. Another avenue for causal
testing may lie in manipulation of neurochemical pathways
related to the two branches of the autonomic nervous system.
As these are generally differentiated between sympathetic (largely
noradrenergic) and parasympathetic (cholinergic) nerve fibers
(Sokolov et al., 1980; Paton et al., 2005; McDougal and Gamlin,
2014; Khan et al., 2016), the balance of their influences could
be altered with drugs inhibiting or enhancing these pathways. In
sum, this model provides the first neurocomputational account
of the effect of the parasympathetically dominated threat-induced
anticipatory freezing responses on decision making. We predict a
set of behavioral and neural implications, which are now being
tested. This model provides a fundamental framework of the
interaction of physiological and neural systems across levels of
the decision hierarchy in threatening contexts.

CONCLUSION

We have reviewed substantial evidence of the relationship
between threat-induced bodily states and decision making.

While a considerable amount of work has shown that
bodily states affect decision-making, a lack of integrative
theoretical frameworks in this area hinders understanding of
the exact routes by which sympathetic and parasympathetic
balance changes influence decisions. We therefore provided
a comprehensive neurocomputational account, the Threat
State/Value Integration (TSI) Model, to integrate threat-
induced bodily states with value-based decision-making
models and generate concrete testable hypotheses. Better
mechanistic understanding of how bodily states affect decision-
making may ultimately inspire innovative training and
therapy regimens, to optimize these decision processes in
health and disease.
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