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Background: A number of studies in recent years have explored whole-brain dynamic
connectivity using pairwise approaches. There has been less focus on trying to analyze
brain dynamics in higher dimensions over time.

Methods: We introduce a new approach that analyzes time series trajectories to identify
high traffic nodes in a high dimensional space. First, functional magnetic resonance
imaging (fMRI) data are decomposed using spatial ICA to a set of maps and their
associated time series. Next, density is calculated for each time point and high-density
points are clustered to identify a small set of high traffic nodes. We validated our method
using simulations and then implemented it on a real data set.

Results: We present a novel approach that captures dynamics within a high
dimensional space and also does not use any windowing in contrast to many existing
approaches. The approach enables one to characterize and study the time series
in a potentially high dimensional space, rather than looking at each component pair
separately. Our results show that schizophrenia patients have a lower dynamism
compared to healthy controls. In addition, we find patients spend more time in nodes
associated with the default mode network and less time in components strongly
correlated with auditory and sensorimotor regions. Interestingly, we also found that
subjects oscillate between state pairs that show opposite spatial maps, suggesting an
oscillatory pattern.

Conclusion: Our proposed method provides a novel approach to analyze the data
in its native high dimensional space and can possibly provide new information that is
undetectable using other methods.

Keywords: functional magnetic resonance imaging, brain dynamics, independent component analyses, resting
state– fMRI, density clustering
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INTRODUCTION

Recent work in fMRI has focused on relaxing the assumption
that the brain is static during an experimental session. There
are many studies that have shown that the brain is time-
varying (or dynamic) within a single scanning session (Chang
and Glover, 2010; Sakoglu et al., 2010; Hutchison et al., 2013;
Calhoun et al., 2014; Faghiri et al., 2018; Lurie et al., 2020).
One common way to analyze the dynamic aspect of the brain
is by estimating time varying connectivity using sliding window
paired with a connectivity estimator such as Pearson correlation
(Handwerker et al., 2012; Allen et al., 2014). This approach is
useful and widely used due in part to its simplicity, but it has
some limitations. Windowing the data results in smoothing the
temporal information in fMRI, potentially missing important
information. A more minor issue with this method is that one has
to use a specific window length for this analysis and changing this
window length can change the final results (Sakoglu et al., 2010;
Shakil et al., 2016). To remedy the smoothing problem several
methods have been proposed that are either more instantaneous
(Shine et al., 2015; Omidvarnia et al., 2016; Faghiri et al., 2020) or
use different filtering and time-frequency approaches to explore
the full spectrum of connectivity (Chang and Glover, 2010;
Yaesoubi et al., 2015; Faghiri et al., 2021). For more detailed
reviews of time-varying connectivity please (see Bolton et al.,
2020; Iraji et al., 2020a). Many of these proposed connectivity-
based approaches do not directly leverage the dynamics of
the data in its original high dimensional space (i.e., the data
is used to calculate the sliding window correlation, which is
calculated between each of the component pairs separately). This
causes the data to be examined in many two-dimensional (2D)
spaces independent of other 2D spaces (where each 2D space
is specific to a component pair). Recently novel methods have
been proposed that try to go from these 2D spaces to higher
dimensions using different methods (Faskowitz et al., 2020; Iraji
et al., 2020b).

Apart from connectivity-based approaches, there are others
that aim to extract dynamism directly from activity domain
information. For example, hidden Markov models have been used
to estimate several hidden states from the activity data in fMRI
(Karahanoğlu and Van De Ville, 2017; Vidaurre et al., 2018).
Others have either including activity information in the pipeline
directly (Fu et al., 2021) or have instead focused on a metric
calculated based on activity like power (Chen et al., 2018). In
addition, there are a family of methods based on co-activation
between different part of the brain that directly include activity
information in their analysis pipeline too (Liu and Duyn, 2013;
Karahanoglu and Van De Ville, 2015).

Over the last decade, many studies have compared the
brains of individuals with schizophrenia with those of healthy
controls using both resting state (Damaraju et al., 2014; Guo
et al., 2014; Faghiri et al., 2021) and task fMRI (Boksman
et al., 2005; Ebisch et al., 2014). Recently more emphasize has
been put on methods that explore the dynamic aspects of the
brain (Damaraju et al., 2014; Kottaram et al., 2019; Gifford
et al., 2020; Faghiri et al., 2021). Using dynamic methods,
some studies have reported lower dynamism in individuals

with schizophrenia (Miller et al., 2016; Kottaram et al., 2019;
Gifford et al., 2020) or in individuals with high risk for
schizophrenia (Mennigen et al., 2018a). In addition, Rashid
et al. (2016) showed that using dynamic connectivity instead
of static connectivity we can reach better classification of
individuals with schizophrenia and bipolar disorder. For a
detailed review on the matter (see Mwansisya et al., 2017;
Mennigen et al., 2019).

In this study, we propose a novel approach to study brain
dynamics in resting state fMRI. We consider the brain data
at each time point as a location in a high dimensional space
defined by multiple time series. Analyzing brain data within
a high dimensional temporal space allows us to consider
the fMRI data for each subject as a path along which each
individual’s brain is moving within this high dimension space.
In contrast to pairwise connectivity-based methods, we move
beyond the bivariate/2D space (i.e., a focus on two time series
without considering other time series) and work in a high
dimensional space. Our proposed method does not use any
temporal windowing unlike many sliding window methods
(e.g., sliding window Pearson correlation) or filtering (e.g.,
amplitude of low-frequency fluctuation) therefore allowing us
to use the information from the whole spectrum of data. In
addition, unlike methods based on co-activation, our method
is not sensitive to the absolute value of the time series and
instead captures the density around each sample in a high
dimensional space.

In the next section, we describe our proposed method in detail,
show its utility via simulation data, and implement it on a real-
world data set to compare the patients with schizophrenia (SZ) to
healthy control (HC) participants.

MATERIALS AND METHODS

Calculating Density
Let us assume our data for each subject includes C time series
(each representing a separate component) with T time points. In
our framework, this would mean that each subject occupies one
location in a space with C dimension at each of the time points
(i.e., the location of subject j at time t in this high dimension space
is xj,t). This is a vector with a length of C.

Using these vectors, a scalar metric called density is defined
(dj,t). This metric is higher if xj,t has several close points in our
defined space. The formula for calculating dj,t is:

dj,t =
1∑

t0∈Nj,t

√∣∣∣∣xj,t − xj,t0

∣∣∣∣
2

(1)

Nj,t is a neighborhood around xj,t defined by a number of closest
points to xj,t . So essentially, we calculate the distance between
xj,t and all xj,t0 for all values of t0 and pick the ones that have
the small distance value. We call this parameter the city size
and it essentially determines the size of detectable high-density
neighborhoods (hence the name city size). Note that we have one
density time series with length T for each subject. i.e., density is
defined using all components time series for each subject.
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Next, we define a density threshold for each subject based on
all of the density values for that specific subject:

d_thrj = max
∀t

(dj,t)× cutoff (2)

Where max∀t(dj,t) is the maximum value of all dj,t for all t
values for a specific subject (i.e., j). It is important to note that
this threshold can be unique for each subject. An example value
for cutoff can be 0.9. Next, this threshold was used to identify
high-density time points for each subject (i.e., any time point
with density greater than this value is defined as a high-density
location (see Figure 1). Note that these high-density points are
vectors with length C. Alternatively, we can calculate an average
of the five highest percentile energies and use that value instead
of max∀t(dj,t) to reduce the effect of outliers.

The high-density locations for all subjects were then combined
and clustered using k means. The number of clusters was
calculated based on the elbow criteria (Thorndike, 1953). In the
last step, we used the cluster centroids estimated via k means
clustering on the high-density locations to initialize a clustering
of all the data for each subject. A summary of the algorithm is
explained in Table 1.

Simulation
To validate our proposed approach and explore the effect
of different parameters of the method, we present different
simulation scenarios here. All the simulations were constructed
using two components for easy visualization (C = 2). For each
simulation, we first randomly chose three locations in the 2D
space to act as high-density nodes (Li; i 1, 2, 3). A large portion
of the data will be in the close neighborhood to these nodes. For

each high-density node (i.e., cluster), a number is then chosen to
act as that cluster size (CSi). Next, CSi samples are drawn from
a 2D Gaussian with a mean equal to Li and a standard deviation
equal to a parameter we call path spread. This parameter defines
how closely the cluster members are spread around Li. We believe
this path spread can represent the noise impact on the data. For
all simulations, a number of time points are simulated to act as
noise (i.e., do not belong to any high-density clusters).

Next, these simulated time series are analyzed using steps
discussed the in previous section. Below, we explain different
simulation scenarios that we have designed. For each simulation,
we give all the parameters of the simulation (CSi, and path spread)
and the analysis (city size, and cutoff). Note that the first two
scenarios are run only once and are designed to give the readers
some intuition on the reasoning behind the design of the pipeline
and parameters that can impact the results.

Scenario 1
In this scenario, our goal was to show the effect of path spread on
the analysis. For this simulation, we have used 60 for all cluster
sizes (CSi) while we have varied the path spread of the simulation
between 0.1 and 0.3. For our analysis, we used 20 as the city size
and 0.9 as the cutoff for the density.

Scenario 2
This scenario was designed to show the effect of using a different
city size for analysis. This scenario has two simulations. In the
first simulation, the cluster size is constant at 60 for all clusters.
Path spread was chosen as 0.1. For the analysis, 0.9 was used as
cutoff value. We used variable city size between 10 and 60 for
analysis. In the second simulation, cluster sizes were varied (30,

FIGURE 1 | Illustration of the main ideas of the proposed method. (A) Simulated time course for the two components. The color of markers represents the density
value of the data at each point. For each time point, density measures the closeness of that time point to all other time points. Note that this value is the same for the
two components at each point (i.e., each point has an density value). (B) The black squares are the true high traffic nodes. The blue lines connect points that are
adjacent in time. The color of points shows the density value. Here, the points close to high traffic nodes have higher density. (C) The same information as part b but
the color of the points represent time.
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TABLE 1 | Summary of all the steps in the clustering algorithm.

Data isxN,T,C where N is number of subjects, T is number of time points and C is number of components

1. For each subject j and time point t
a. Inverse of Euclidean distance for subject j at time point t with all other time points were calculated (Euclidean distance dimension is C)
b. The above distance vector (with length T-1) was sorted
c. The highest subset of these T-1 values were selected (size of this subset is determined by city size)
d. These values are summed to get one value that determines the density for subject j at time point t (i.e., dj,t)

2. For each subject j maximum value of dj,t for all t ∈ 1 : T was found and multiplied by a cut-off value to get a density threshold for each
subject (i.e., d_thrj)

3. For each subject j, data points with density higher than d_thrj was selected to be used in the clustering step

4. Clustering was performed on all selected time points from all subjects.

5. The estimated clustering centroids were used to cluster the original data (i.e., xN,T,C).

50, and 80 were chosen). All other parameters were selected equal
to the previous simulation.

Scenario 3
For this scenario, we show that our steps used for selecting high-
density time points are improving the overall method. To do
this for each simulated time series, we conducted the clustering
step twice; one time using all time points as data to be clustered
and another time using only high-density points (our proposed
approach). For each path spread, we repeated the simulations
1,000 times and, for each method, the distance between estimated
cluster centroids and the original cluster centroids (Li) were
calculated. City size and cutoff value were 50 and 0.9, respectively
for this scenario.

Scenario 4
The last scenario is designed with the same aim as scenario
3. The difference here is that we first define a null hypothesis
and then build the null space. Using this null space, we can
define a p-value for results from our proposed method. The null
hypothesis here is that our proposed method either perform as
“good” or “worse” when compared to a method in which time
points are chosen randomly and then clustered (in contrast to
our method where density is defined for each point and high-
density points are clustered). To do this for each simulation,
first the number of high-density points is calculated, and then
random points are drawn from the same simulation 10,000 times
(number of random samples drawn is the same as the number
of high-density points). Next, these random points are used in
clustering and the sum of the distance of resulting centroids
from the original high-density location (Li) is calculated. This
results in 10,000 distance values. We then compared the sum
of the distance resulting from our proposed method to these
10,000 values. The p-value is defined as the ratio of times the
distance resulting from null method was lower than the distance
resulting from our proposed method. This approach resulted in
one p-value for each simulation. For each of the path spread
values, the simulation was repeated 1,000 times. City size and
cutoff value were 50 and 0.9 respectively for this scenario.

Analysis of fMRI Data
The data used for this study has been published by our group
previously (Damaraju et al., 2014). This data was acquired from

151 SZ patients and 163 HC participants. Resting state fMRI
scans were acquired using 3T scanners at seven different sites.
A gradient-echo planar imaging paradigm was used with the
following parameters: FOV of 220 x 220, TR = 2 s, TE = 30 ms.
162 volumes were acquired during the scanning session. Table 2
shows some of the important parameters for both the data and
the algorithm.

In summary, for preprocessing, motion correction, slice-
timing correction, despiking, registering to MNI template and
smoothing was done. Prior to conducting gICA, each voxel
time course was variance normalized. Then gICA was used as
implemented in the GIFT software (Calhoun et al., 2001; Calhoun
and Adali, 2012). First, the subject-specific time dimension was
reduced from 162 to 100 using principle component analysis
(PCA) approach. Then, all subjects’ data were concatenated and
group level dimension reduction (using PCA) was used to reduce
the dimension to 100. Next, using gICA, the data was separated
into maximally independent spatial maps and their associated
time series (Calhoun et al., 2001; Erhardt et al., 2011). Subject-
specific time series and spatial maps were calculated using back
reconstruction methods. For a full explanation on gICA please
(see Allen et al., 2014).

All spatial maps were visually inspected and 47 were used as
components of interest based on the literature findings. For a
more complete explanation of the analysis for this data set (see
Damaraju et al., 2014).Here, we used the same 47 components
used in that study. Consequently, for each subject we are working
in a 47-dimension space. As mentioned in the first part of section
“Materials and Methods,” density was calculated for each time

TABLE 2 | Important parameters.

Data parameters

Schizophrenia individuals N = 151

Healthy control N = 163

repetition time (TR) 2 s

Number of volumes 162 volumes

Algorithm parameters

dj,t Density for subject j at time t

d_thrj Density threshold for subject j

Nj,t High density neighborhood for
subject j at time t
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FIGURE 2 | Simulation scenario 1. For this scenario, different simulations
were done using different path spread values. Circle markers show points in
our defined 2D space. The filled ones are high-density points while the empty
ones are points with lower density values. The black squares are centered
around the high traffic node (their size is for better visualization only). Higher
path spread causes the clusters to have more overlap as was expected.

FIGURE 3 | Scenario 2 results. This analysis shows one simulated data set
with balanced clusters using different city size values. The black squares
indicate the high traffic nodes used for simulation (the size is for visualization).
Each marker shows one point of the simulated data in the 2D space. The filled
markers are high-density points while the empty markers are low density
ones. As expected, the city size parameters do not seem to significantly
impact the results.
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point of each subject and high-density points for all subjects
were concatenated and k means was used to cluster this matrix
(we have 47 features for k means). This analysis thus represents
an analysis in a high dimensional (D = 47) space. The cluster
centroid that we calculated using k means was used to cluster all
the time points for all subjects (k means only clustered the high-
density time points). After doing this last clustering, each subject
time point belongs to one of the clusters and we can calculate
several metrics based on these results.

The first metric we calculated was mean dwell time. This
metric is the average time each subject spends in one specific
cluster (i.e., how long each individual stays in a given cluster).
The next metric is called the transition number and is simply the
number of times each subject changes states. For the last metric,
we calculated a transition matrix that is the number of times each
subject changed from one specific state to another state (if we
have five clusters, this will be a 5 by 5 matrix). All these metrics
were compared between HC and SZ groups.

RESULTS

Simulation
Figure 1 depicts one of the simulations where cluster size is 50
and 3 clusters are simulated therefore we have 150 time points
all in all. This data set was simulated to have three high traffic
nodes (i.e., location in our defined space that has a lot of points
that are in their close neighborhood) and a path spread of 0.2.
As seen in this figure, points closer to high traffic nodes have
higher density and therefore can pass density thresholds, while
points further away from these clusters (e.g., more noisy points)
have lower density.

For the first simulation scenario, we wanted to show the
effect of path spread parameters on the simulation. Figure 2
shows the simulation results for different path spreads. Here
filled markers show high-density points while empty markers
are points with lower density values. The black squares are the
high-density neighborhood. As seen here, increasing path spread
causes clusters to have more overlap with each other.

For the next scenario, our goal was to show the effect of
city size (one of the analysis parameters). Figures 3, 4 show
two cases for this scenario. For the first cases, the data set was
simulated to have clusters with equal member numbers (60),
while for the second case each cluster had a different number
of members. Figure 3 shows the first case where clusters are
balanced. As seen here, the points closer to the center of the
squares are mostly high-density points. For all city sizes, we
have an almost equal number of members from each cluster
as high-density points. This is different for the second case
(Figure 4). The clusters with a higher number of members (80)
have more high-density points for all city size values. Please
note that the smaller cluster (with 30 members) does not have
any high-density points for city sizes 40 and 60 (which are
larger values compared to 30). This is the reason we have
added city size to our proposed approach. In contrast, if we
would calculate the density of one point using all of the other
points in the data, the larger clusters would dominate the

FIGURE 4 | Scenario 2 results. We analysed one simulated data set with
unbalanced clusters using different city size values. The black squares show
the high traffic nodes used for simulation (the size is for visualization). Each
marker shows one point of the simulated data in the 2D space. Filled markers
are high-density points while the empty markers are low density ones. As
seen here, larger clusters have more high-density points. In addition, using
larger city sizes, we were unable to generate any high-density points for
clustering with the 30 original members.
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results. Therefore, this city size parameter defines the cluster size
detectable by the algorithm.

For scenario 3, we compared our proposed method to a
method which uses all time points for clustering (In contrast

to our approach which only uses high-density points). For
different path spread values 1000 simulations were ran and
the sum of distances from estimated clusters to the original
clusters were calculated for each simulation. Figure 5 show

FIGURE 5 | Scenario 3 results. For this simulation, we aimed to examine if our calculated metric improves the clustering accuracy. For each simulated time series,
First all the points were included in the clustering (the red line). Next, only the high-density points were included in the clustering (the blue line). To access the
accuracy of clustering, the distance between estimated cluster centroids and the true cluster centroids were calculated and summed for our three clusters. As visible
in this figure, our proposed metric improves the accuracy of clustering by a noticable margin (especially for lower path spread values).

FIGURE 6 | Scenario 4 Results. For this scenario, we first built a null space by using random points in clustering. We then calculate the p value by finding the portion
of times the randomly selected points resulted in better clustering accuracy (defined as the sum of distances between estimated centroids and the true ones). As
can be seen here, even for the largest path spread values the p value is small (compare to significant p value of 1 × 10−2).
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FIGURE 7 | Composite maps of the seven connectivity domains. After gICA, 47 components were chosen and grouped into seven different connectivity domains.
Each color in each domain represents a separate component.

FIGURE 8 | Cluster centroids. Cluster 1 shows a strong negative activation in CC and DM. Clusters 2 and 3 show strong (positive and negative respectively)
activations in AUD, VIS and SM domains. Clusters 4 and 5 show strong activations in CC and DM. The main point here is these cluster centroids are different from
each other while pairs 2–3 and 4–5 show very opposite patterns. The numbers at the bottom of the image are the component numbers.
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the results for this scenario. It is obvious that our method
has resulted in lower distances for all path spread values.
This is more apparent for smaller path spreads. For this
scenario around 50% of points passed the density threshold
for each cluster. This value was not different between different
path spread which means that no matter how much points
spread around the cluster centroids around 50% of them are
high density points. On the contrary, the number of high-
density points for noisy points (points not in any given
cluster) are below 5% of those points which is a positive
finding as it shows that those points are not included in
clustering part.

As explained in the previous section, we built a null
hypothesis for the last scenario to check if the proposed
feature selection step works better than a completely random
method. Figure 6 shows the p values calculated using this
approach. The p value for all path spread values are low
and also pass a 0.01 threshold (the average p value for
the largest path spread is less than 0.5e-3). These results
provide evidence that our feature selection step (finding
points with high density) is informative and improves the
results considerably.

Real Data
Figure 7 illustrates the selected 47 components grouped
into seven connectivity domains following our earlier work
(Damaraju et al., 2014).

The elbow criterion was used to determine a cluster number
of 5. We used 0.9 as the cutoff for calculating density threshold
based on the simulation results. City size was equal to 16 (10% of
number of time points). Figure 8 shows the calculated centroids
for the five clusters. The centroids (each representing one cluster)
are visibly different between clusters. Cluster 1 shows negative
activations for cognitive control (CC) and some components of
default mode (DM). Clusters 2 and 3 show strong activations in
auditory (AUD), visual (VIS), and sensorimotor (SM) domains
with cluster 2 being mostly positive while cluster 3 is mostly
negative. Clusters 4 and 5 show somewhat strong activations in
CC and DM domains. One very interesting observation here is
that cluster pairs 2–3 and 4–5 show opposite effects.

Next, the cluster centroids were used to cluster all the original
data. The first metric calculated based on these final clustering
results, was the mean dwell time. Figure 9 show the mean dwell
time for all 5 clusters. The p-values are corrected using FDR
method. As seen, dwell time for all clusters are significantly
different between HC and SZ subjects. SZ subjects tend to stay
more in states 1, 4, and 5 (which show similar patterns where
clusters 4 and 5 show opposite patterns). HC subjects tend to
stay more in clusters 2 and 3. Figure 10 shows that the transition
number between clusters is significantly higher in HC subjects
compared to SZ (P < 0.05).

We also calculated state transition matrices for 1 lag. FDR was
used to correct for multiple comparison (p < 0.01; Figure 11).
Only significant entries for the matrix are shown. The values of
the matrix are the mean state transition for SZ subtracted by the
mean state transition for HC.

Results from different analysis parameter are show in
Supplementary Figures 1–6.

DISCUSSION

In this article, a new approach is used to study the dynamic
aspects of brain functional activity. This approach allows
us to identify specific activation patterns exhibiting similar
behavior by analyzing the trajectory of the dynamics directly,
hence avoiding the need for windowing. First, we used a
simulation to validate our approach. Then, using an actual dataset
including SZ patients and HCs, we have demonstrated the utility
of our approach.

In the null simulation, we show that our method
works well for finding the high traffic locations. It is
important to note that this simulation was done in 2D,
while the data occupy a high dimension and should benefit
even more from our proposed approach for selecting
high-density time points.

In our simulation, we found that our approach does not work
as well for medium noise amplitudes. To explain this, note that if
the noise amplitude is relatively high, the affected points will have
a higher distance from the original high-density node; therefore,

FIGURE 9 | Mean Dwell Time for each Cluster. Mean dwell time is significantly different between HC and SZ for all clusters. SZ patients stay more in clusters 1, 4,
and 5 that show strong activation in DM and CC (both positive and negative). HC subjects stay more in cluster 2 and 3 that have strong activations in AUD, VIS, and
SM. Asterisk indicates p < 0.01 (p-values are corrected using FDR method).
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FIGURE 10 | Transition Number Between Different Clusters. HC subjects
move between different clusters more. Asterisk indicates p < 0.01.

their corresponding density will be lower. This can prevent those
points from passing the high-density threshold, which results
in their exclusion from clustering. This is an interesting aspect

of our proposed method and might point to possible noise
reduction applications that require further exploration.

Using a previously analyzed dataset, we demonstrated the use
of our proposed method. Results show that the state transition
number is significantly higher in HC subjects. More specifically,
HC subjects tend to transition between activation states more
frequently than the patients. In agreement with this finding, some
studies have reported diminished connectivity dynamism in SZ
compared to HC using different approaches (Miller et al., 2016;
Mennigen et al., 2018b).

One of the state that SZ subjects tend to occupy more (i.e.,
state 1) shows an overall sparse activation. This is to some degree
in line with the previous study that has used the same data
set (Damaraju et al., 2014). In that study, the authors reported
that SZ subjects stay in states that show weak connectivities
in general. This sparse connectivity has been reported in other
studies as well (Garrity et al., 2007; Whitfield-Gabrieli et al., 2009;
Liu et al., 2012).

In the previous study (Damaraju et al., 2014), it was
reported that HC subjects stay more in states that have
strong connectivity in AUD, VIS, and SM. In our study,
HC subjects have a significantly higher dwell time for
states 2 and 3, which shows a strong connectivity in the
same three domains. In addition, this observation can be
viewed as more evidence for disconnectivity in SZ that has

FIGURE 11 | State Transition Matrix for Two Lag Values (SZ - HC). SZ subjects tend to transition between clusters 4 and 5. These are the clusters that SZ subjects
tend to stay in more as compared to HC subjects. In contrast, HC subjects go from states 2 and 3 to states 4 and 5.
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been previously reported. For a review of the matter (see
Pettersson-Yeo et al., 2011).

Beyond this, our approach shows that SZ subjects transition
more between states 4 and 5 when compared to HCs,
while HC subjects tend to transit between states 2 and 3
to states 4 and 5 (Figure 11). That is, SZ subjects tend
to stay in states that are similar to each other (strong
connectivity in DMN and CC), while HC subjects switch
between states that are quite different (i.e., transit between
states 2, 3 to 4, 5). A restriction in dynamic range like
what we found here has been reported in another study
(Miller et al., 2016).

As can be seen from Figure 8, cluster pairs of 2 and 3 have
an almost opposite spatial map. This can point to an oscillatory
organization of brain networks. In a similar fashion, Gutierrez-
Barragan et al. (2018) reported several functional states with
opposing spatial maps. We have found this phenomena in our
other work using the same dataset (Faghiri et al., 2021). In
our future work, we want to explore if there is any difference
between SZ and HC in their ability to oscillate between the
opposite state pairs.

There are some limitations to our approach. First in our
proposed formulas, we have one major parameter that we have
to define (city size). As we showed using our simulations,
City size determines the size of detectable states (in our
defined high dimensional space). This parameter is quite
similar to window size in sliding window approaches, where
using large window sizes results in undetected information
while using short window sizes increase the standard error
of the estimator. For our approach, we performed our whole
pipeline on fBIRN data set using different city size values and
found no notable difference between the results. As a rule of
thumb we suggest using 10 percent of time courses length
as the city size.

Another limitation of the proposed method is that it does
not directly consider the connectivity aspect of fMRI as in
other studies (e.g., calculating a windowed Pearson correlation
and then clustering). However, because of the nature of gICA,
the concept of connectivity is indirectly present in our results.
Each component resulting from gICA can be viewed as a small
connectivity between smaller regions. In addition, this method
uses all component information for the analysis; therefore, we are
not able to use results to study a subset of the whole components.
This could be done by rerunning analysis on the subsets of the
components. This is a topic for future work. Finally, although the
number of subjects in this study is relatively large for a clinical
study, the impact of study size cannot be overlooked. Future
studies are needed for both examining the replicability of the
results and the impact of study size on this specific algorithm.

CONCLUSION

Our method provides a new and useful approach for studying
brain dynamics that analyzes the data in a high dimensional

temporal space without requiring any windowing. Using
this approach, we found several interesting new results
related to schizophrenia. Importantly, we believe our
approach provides a novel way to study brain dynamics by
computing metrics directly from the high-dimensional space
(in contrast to the sliding window Pearson correlation approach
that looks at each of the component pairs separately). In
addition, our proposed method can also be used to visualize
fMRI data in low dimensions (2 or 3) while preserving
interesting information.
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