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In this paper, we describe the results of a single subject study attempting at a better

understanding of the subjective mental state during musical improvisation. In a first

experiment, we setup an ecological paradigm measuring EEG on a musician in free

improvised concerts with an audience, followed by retrospective rating of themental state

of the improviser. We introduce Subjective Temporal Resolution (STR), a retrospective

rating assessing the instantaneous quantization of subjective timing of the improviser. We

identified high and low STR states using Hidden Markov Models in two performances,

and were able to decode those states using supervised learning on instantaneous EEG

power spectrum, showing increases in theta and alpha power with high STR values. In a

second experiment, we found an increase of theta and beta power when experimentally

manipulating STR in a musical improvisation imagery experiment. These results are

interpreted with respect to previous research on flow state in creativity, as well as with

the temporal processing literature. We suggest that a component of the subjective state

of musical improvisation may be reflected in an underlying mechanism related to the

subjective quantization of time. We also demonstrate the feasibility of single case studies

of musical improvisation using brain activity measurements and retrospective reports, by

obtaining consistent results across multiple sessions.
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1. INTRODUCTION

Improvisation enjoys the curious distinction of being both the most widely practiced of all musical
activities, and the least understood and acknowledged. (Bailey, 1982)

Fourty years have passed since Derek Bailey wrote these words (Bailey, 1982), and musical
improvisation has now been widely acknowledged as a model to investigate the neuroscience of
creativity (Beaty, 2015; Landau and Limb, 2017). A wealth of studies done in the last 15 years have
attempted to elucidate the neural correlates of musical improvisation, mostly through hypothesis-
driven research, and broadly asking questions of two types: (1) what makes brain activity during
improvisation different than other music-related activity, and (2) is there long term plasticity
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associated with the (expert) practice of improvisation (Beaty,
2015). Much of these hypotheses seem driven by initial accounts
proposed by the theoretical framework from Pressing (Pressing,
1988, 1998), which considers improvisation as a complex activity
requiring significant domain-specific expertise related to musical
training such as sensorimotor synchronization, motor planning,
procedural memory for accurate sensorimotor execution, as
well as a combination of a range of cognitive functions such
as long term memory and generative processes involved in
creativity (Pressing, 1988). A wealth of neuroscientific studies
have confirmed the role of many brain networks such as
the executive control network, notably involved in regulating
attention and working memory, as well as the default mode
network which mediates mental simulation (e.g., mental time
travel) and mind wandering (Beaty, 2015). Studies have shown
that while the activity in these two networks were traditionally
considered as anti-correlated (Raichle, 2015), they can operate
concurrently during musical improvisation (Pinho et al., 2015).
More recently, authors have proposed that motor and premotor
regions are also involved in musical improvisation, possibly
managing temporal aspects of performance (Bashwiner and
Bacon, 2019). Taken together, these studies have brought light on
brain areas that are important for musical improvisation, either
because they are activated during performance, or because of long
term plasticity effects associated with expertise.

Most of the aforementionned studies have used functional
MRI in order to shed light on the spatial location of
brain networks involved in improvisation. Many other
studies have used electroencephalography (EEG) and
magnetoencephalography, in order to get a finer temporal
understanding of neuronal activity during improvisation.
Studies have found improvisation related activity in the alpha
(8–12 Hz) and beta (13–30 Hz) frequency ranges (Dolan et al.,
2013; Boasen et al., 2018; Stevens and Zabelina, 2019) located
in prefrontal and medial frontal areas, while other studies have
examined brain connectivity (Müller et al., 2013; Wan et al.,
2014) or power changes at the sensor level (Dikaya and Skirtach,
2015; Sanyal et al., 2016; Sasaki et al., 2019).

Another perspective developed in the literature consists in
considering musical improvisation as a subjective state (Beaty,
2015; Lopata et al., 2017; Dolan et al., 2018; Tan and Sin, 2019).
Such an angle considers primarily musical improvisation as an
instance of flow state. Flow state is defined as “the holistic
sensation that people feel when they act with total involvement,”
Csikszentmihalyi (1975), and has been extensively studied with
respect to many domains of subjective experience including
creativity and aesthetics, but also in other activities requiring
full subject engagement such as sports (Csikszentmihalyi, 1990).
Flow state has been studied in the context of the musical
improvisation (e.g., see Chirico et al., 2015; Dolan et al., 2018;
Luft et al., 2018; Tan and Sin, 2019). These studies have
discussed the involvement of brain networks of spontaneous,
endogenous activity such as the default mode network (Pinho
et al., 2015), and considers the notion of flow state as central
in the phenomenology of musical improvisation (Tan and Sin,
2019). Interview and observation studies have noted that the
concepts usually discussed relating musical improvisation and

flow state are selflessness, dream-like experiences, modulation in
the passage of time, various forms of mental imagery, and a sense
of disconnection with reality (Tan and Sin, 2019; Barrett et al.,
2020). Therefore, previous literature suggest that the subjective
experience of musical improvisation is rich and complex, as well
as idiosyncratic, which motivates the need for qualitative studies
using single cases or structured interviews.

Single case studies are quite common in music studies
of improvisation, and have attempted at characterizing the
creative process (Wopereis and Derix, 2016; Wopereis and
Braam, 2017). Interview studies using small groups of expert
musicians were also done to investigate group dynamics in
musical improvisation (Wilson and MacDonald, 2016), as well
as subjective assessment of musical qualities (Wopereis et al.,
2013; Pras et al., 2017). Interestingly, these studies show that
musicians do not necessarily agree on what makes a good
musical improvisation, which suggest that the study of musical
improvisation on single cases might give unique insights on
the cognitive and neural basis of creativity. A recent single
case study on a internationally acclaimed musical improviser
attempted at examining brain activity during improvisation
using fMRI using a classical block-design with controlled
experimental conditions (Barrett et al., 2020). Results suggested
the involvement of large scale brain networks beyond mere
auditory and motor activity, such as visual areas, parietal cortices
and areas of the default mode network, thus agreeing with
previous group results (Pinho et al., 2015).

However, the complexity and idiosyncrasy of musical
improvisation might not be ideally captured using controlled
experiments that compared improvisation with “non-
improvisation” conditions, or mere effects of expertise in
improvisation on brain plasticity, paradigms which are used in
the vast majority of studies as shown in Beaty (2015). To address
this bias, it has been argued that the study of the neuroscience
of creativity, and in particular musical improvisation, would be
better approached by setting up collaborations between scientists
and artists in order to achieve both ecological and scientific
validity (McPherson and Limb, 2013). Notably, a recent study
performed EEG measurements on performers and audience
in a live concert (Dolan et al., 2018). Results demonstrate
potential neural correlates of flow state using a measure of
signal complexity, and this study more generally shows the
feasibility of such ecological designs to better understand musical
improvisation in a live context (Dolan et al., 2018).

Building upon these different directions, our goal is to
study musical improvisation from the point of view of an
improviser, by implicating the musician in the scientific
design of the experiment. We propose here to setup a
collaborative process with the musician in order to define
an appropriate paradigm, and repeated this paradigm in a
series of rehearsals and public performances. Our objective is
to maximize ecological validity by studying a single subject
on many occasions, in an attempt at generalizing findings
within this subject. By doing so, we also hope that such
an approach can be of interest for the musician itself, by
providing some scientific insights toward an introspection of his
creative process.
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The rest of this paper is organized as follows. In section 2,
we describe our general setting, the collaboration with the artist,
and the definition of an ecological paradigm to study musical
improvisation. We performed EEGmeasurements on a musician
during live concerts, followed by retrospective ratings of the
performance. This paradigm has led us to consider a new
hypothesis to test with regards to subjective time during musical
improvisation. We present in section 3 a controlled paradigm
designed to test this hypothesis. Finally, we discuss our results
and our approach in section 4.

2. EXPERIMENT 1 : ECOLOGICAL
PARADIGM

2.1. Materials and Methods
2.1.1. Subject Description
This study was performed on a single subject, also co-author
of this manuscript, Christophe Rocher (CR), 53 years old. CR
started playing the clarinets at the age of 7, and plays both the
clarinet and the bass clarinet. CR has performed regularly in
regional, national and international music scenes, in particular
in the free improvisation scene, with ensembles of various sizes,
as well as in performances with other artists such as dancers
or spoken word artists. Importantly, the present study involves
CR more than as a mere participation as a musician; we setup a
collaboration with CR in order to define an appropriate approach
to study musical improvisation from the point of view of an
improviser. This collaboration was kept all along the project, but
its goal was to assist on the definition of the main paradigm. As
a consequence, the data collection performed in this study was
agreed upon with CR in the preliminary phase of the study. An
informed consent form was signed so that CR was aware of what
kind of data we were going to collect (EEG and audio), that he
could decide to withdraw at any time, and that he could ask that
his data was deleted at any time.

2.1.2. Preliminary Phase
We aimed at defining an ecological paradigm to study
improvisation, with two aims. First, we tried to approach
improvisation from the point of view of CR. The point made here
consists in examining in detail the strategies developed by one
particular improviser during his career, and document closely his
creative process. Second, we target the study of subjective mental
states associated with his performance. The proposed approach
attempts at studying improvisation using a bottom-up approach,
starting from the subjective experience of the improviser and in
an ecological manner.

Experimental sessions consisted of free improvised concerts
with an audience, followed by a relistening session. The
goal of the relistening session was for CR to attempt a
retrospective mental replay of his subjective experience during
the performance. We aimed at documenting this retrospective
phase. In preliminary experiments taking the form of private
rehearsals, CR made an open commentary while listening to
the performance. A first informal discussion around the content
of these commentaries has enabled us to consider several
emerging concepts : focus on improvisation, flow, satisfaction

about the music being played, and the relationship between the
musicians and subjective time perception. According to CR, these
concepts were the ones that forge his everyday practice, and are
related to the musical and personal objective occurring during
a performance with an audience. At this stage in the project,
we identified and acknowledged two important limitations
in our approach. First, we were aware of the idiosyncrasies
of these concepts, which may or may not apply to other
professional improvisers. Second, as the open commentary of
CR of his improvised performances tended to lean toward the
same concepts, we decided to attempt a quantification of these
concepts, by performing a continuous rating with three factors
while listening to the performance.

Six rehearsals were performed in total, which are considered
as the pilot phase of the project. During the first rehearsal, the
retrospective phase consisted of the open commentary described
above. During the second and third rehearsal, we asked CR to
annotate the performance using a continuous rating with three
factors. We agreed with CR on the meaning of the extreme values
of these factors, and debriefed after each annotation session to
make sure that the annotation were performed consistently.

The first factor was “focus,” and corresponds to how much
CR felt he was successfully focused on improvising. A high
value in Focus meant that CR was improvising while not being
distracted. A low value meant that the focus on improvisation
was compromised for various reasons. These reasons can relate to
sonic or technical aspects of playing such as being in tune, having
a nice clarinet sound, breathing. CR also reported higher level
cognitive distractions related to the audience or music unrelated
mind-wandering, in which case he also put a low value for focus.
The second factor was "Subjective Temporal Resolution" (STR),
corresponding to variability in the subjective quantization of
time as retrospectively assessed by CR. According to CR, such
a subjective quantization influences how he reacts to the music
being played by other musicians, and can be loosely related to
a subjective musical tempo (while the music itself often doesn’t
have a clear tempo), or a clock with a period of a few 100 ms
up to a few seconds. Note that while STR is linked to the speed of
subjective time, CR claims that it does not necessarily correspond
to the speed of notes that he is currently playing, if he is playing
at all, and we specifically tested this hypothesis (see section 2.3.4).
CR reported that he consistently set low (respectively high) values
of STR when his subjective quantization is slow (respectively
fast). The third factor was “quality,” related to the personal
satisfaction about the music being played. This factor judged a
posteriori the quality of the music, from the point of view of CR,
in terms of whether it corresponds to what he expects to offer to
the audience.

These three factors were used for annotating the second
and third rehearsal. The performances were annotated just after
being played. A debriefing at the end of the third rehearsal was
done and we agreed with CR that the third factor, “quality,”
was most of the time highly correlated with “focus,” and it
was also challenging to annotate three factors simultaneously
and continuously while listening. We therefore decided to drop
the “quality” factor. The three other rehearsals were used for
piloting the EEG recording, getting familiar with playing with
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FIGURE 1 | Experimental Protocols Schematics. (A) ecological Paradigm. The experiment included two parts. In the first, EEG was recorded while the subject

performed musical improvisation. In the second part, the subject listened to his own performance and performed the retrospective rating using the two factors Focus

and STR, detailed in section 2.1.2. (B) controlled Paradigm. The experiment was carried out in 2 days. In the first, the subject underwent a preparation session where

he performed 60 s of Resting (Eyes Opened), 60 s of Baseline and 60 s of Meditation. He then performed a musical improvisation imagery task with a Slow, Fast or

Free conditions. The second part (2 days later) was as the first, with the exception that two training sessions were performed.
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the EEG device while minimizing head or eye movements. We
also performed these last rehearsals with a very limited audience
(1–2 people) in order to have people actually listening, which
according to CR helped him to be in a state closer to an
actual performance.

2.2. Procedure
2.2.1. Ecological Paradigm
Here, we describe the final ecological setting that was used for
the three public performances considered in this paper. Two
performances took place in March 2019 in Brest, France, in
front of audiences of 50 people (referred to as performance 1
and performance 2 in the rest of this paper). The third
performance (performance 3) took place in Montreal at the
Montreal Neurological Institute in June 2019. Each performance
was scheduled to last 20 min maximum, and the aim was to break
it into two sessions of 10 min. The performances were followed
by a 20 min long talk and a discussion, presenting the project
aims, and involving CR in the discussion with the audience.
Following a preliminary recording session where we qualitatively
assessed the impacts of blinks, eye movements and movement
artifacts while recording and after recording, we discussed how
to reduce them during the performance. It was agreed that CR
would keep his eyes closed and that he would make his best
to limit his movements (i.e., body, fingers, breathing,. . . ). A
video of performance 3 can be found here https://www.youtube.
com/watch?v=ILhaZYtW8fs, as well as a short documentary (in
french) with excerpts of rehearsals and of performances 1 and
2, here https://www.kubweb.media/page/nautilis-neurosciences-
jazz-improvisation-nicolas-farrugia/.

2.2.2. Data Acquisition
Each session was structured in the following way (Figure 1A).
CR played pieces in duet or trio lasting approximately
10 min. During each piece, we recorded audio and
electroencephalography (EEG) on CR. Audio was recorded
using a RME Fireface 400 FireWire audio interface, with two
Neumann KM184 microphones. Microphones were placed to
record the whole band for the subsequent relistening phase.
The Bitwig software was used for the recording. EEG was
acquired using an open BCI 8 channel Cyton amplifier. We used
the headband kit to measure three frontal flat snap electrodes
positioned on Fpz, Fp2 and Fp1, as well as two temporal dry
comb electrodes located at FT7 and FT8. EEG was recorded at a
sample rate of 250Hz using the Fieldtrip buffer (Oostenveld et al.,
2011) and the EEG synth software (https://github.com/eegsynth/
eegsynth). A 1 min resting state was acquired, during which CR
relaxed and prepared himself silently. This 1 min performance 2
resting state was part of the public performance and served as a
silent introduction. CR was deliberately instructed to keep his
eyes closed during the performances. Following each piece, CR
listened back to the audio recording (no later than 24 h following
the performance), and performed the retrospective rating
using the two factors Focus and STR, detailed in section 2.1.2.
Retrospective rating was acquired using the Bitwig software
using a USB-MIDI control interface with two continuous sliders.

2.3. Data Analysis
2.3.1. Behavioral Data Analysis
A qualitative analysis of the values taken by Focus, suggested
that the Focus rating was generally high during performance
(Figure 2, right panel). Discussions with CR have led us to
consider that Focus did not represent a source of variability
inherent to musical improvisation, but rather was indicative
of whether he reached the target state enabling him to
improvise. As a consequence, in the rest of our analysis, we
will only consider the STR rating. We used Hidden Markov
Models (HMM) (Rabiner, 1989) to quantify the STR time
series into discrete states. HMM is a probabilistic sequence
model that estimates a series of hidden states from a set of
observations. These hidden states are interpretable as causal
factors of the probabilistic model (e.g., subjective “states”
of STR). We considered a HMM with Gaussian emissions
with two hidden states corresponding to low and high values
of STR. We used the hmmlearn package (https://hmmlearn.
readthedocs.io/en/latest/index.html) to learn the HMM model
solving the iterative Baum-Welch Expectation-Maximization
algorithm (Dempster et al., 1997).

2.3.2. EEG Preprocessing
EEG data were preprocessed using the MNE-python toolbox
(Gramfort et al., 2013). First, signals were bandpassed filtered
with a FIR (Finite Impulse Response) filter in the 1–40 Hz
frequency band. To reduce eye movement artifacts, we perform
Independent Component Analysis (ICA) using the fastica
algorithm (Hyvarinen, 1999) applied to continuous data. We ran
an autodetection algorithm to find the independent component
that best matched the “EOG” channel (prefrontal electrode Fp2).
ICA components that strongly correlate with the EOG signal
were then removed (adaptive Z-score threshold = 1.6) and the
EEG signal was reconstructed with the remaining components.
In order to reject residual movement artifacts, we then segmented
data into consecutive epochs of 3 s and remove those in which the
signal amplitude of one or more channels exceeded a threshold
set to keep the 85% of recordings.

2.3.3. Time-Frequency Analysis and Decoding Model
We performed a time-frequency analysis using multitaper filters
to estimate the EEG power spectral density and the average
power in different frequency bands (theta, alpha and beta)
computed with reference to the individual alpha frequency
(Babiloni et al., 2010) of the subject (IAF = 9.3 Hz). Based
on IAF frequency we estimated the theta, alpha and beta
bands, respectively equal to [4.5–7.5] Hz, [7.5–11.5] Hz, and
[11.5–25] Hz. We estimated the EEG power for 3 s epochs
and assessed whether it could predict the STR as being low or
high using a decoding model with a Support Vector Classifier
(SVC) and a radial basis function kernel with regularization
(C = 1, penalty on the squared l2 norm), implemented in the
scikit-learn package (Pedregosa et al., 2011). In order to test for
within-sample generalization of our decoding model using the
data at hand, we used a stratified K-fold cross-validation with
4 folds in order to consider the same percentage of samples of
each class per fold. We measured classification accuracy and
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FIGURE 2 | Ecological Paradigm: Results of HMM analysis of subjective rating scores for performance 1 (A) and performance 3 (B) Left: STR samples histograms

and distribution (black) as a mixture of low (blue) and high (orange) states Gaussian distributions. Right: STR (solid line) and Focus (dotted line) time-series relative to

the performances 1 and 3. For the STR, samples corresponding to the low and high states are labeled with blue and orange markers, respectively.

f1-score for each class and fold. In order to provide an even more
conservative robustness assessment of our results, we performed
a hundred repetitions of the same cross-validated SVC training
using random permutations of class labels (see https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.
permutation_test_score.html). This permutation test score
provides an estimation of the chance level of our decoding model
according to the variance in the dataset. We performed a post-hoc
univariate statistical inference analysis by investigating changes
in the different frequency bands related to the STR state. More
specifically, we assessed differences between average EEG power
during low and high states in the theta, alpha and beta bands by
means of a pair-wise two-sided Welch t-test.

2.3.4. Audio Analysis
The aim of the audio analysis was to characterize note
density (number of notes played every second) and volume

of the musical performance of CR on the three performances,
in order to study their relationship with Subjective Time
Resolution (STR) and EEG rhythms. This analysis was performed
separately for each performance. First, we separated the different
musical instruments recording before counting notes. For each
performance there were three instruments: clarinet (CR), drums
and double bass for the first two performances and clarinet,
double bass and trumpet for the third performance. As we are
focusing on the performance of CR (specifically, the number of
notes he played) we separated the clarinet from the two other
instruments. We used the 4 stem source separation pretrained
model from the library Spleeter (Stöter et al., 2018; Hennequin
et al., 2020) developed and open-sourced by Deezer. Spleeter
allowed us to split music instruments leveraging pre-trained
neural networks implemented in TensorFlow. Next, note onset
detection was performed on the clarinet track separated during
step 1. For this, we used an onset detection method available
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in the librosa package (https://librosa.org/doc/main/generated/
librosa.onset.onset_detect.html#librosa.onset.onset_detect) that
works by detecting local peaks in the envelope strength, using
hyperparameters set on a large music database. We validated
note density extraction qualitatively by retrieving several samples
for each note density bin and checked qualitatively if the
note density was well estimated. Then, we assessed the link
between note density during the musical performance and
subjective state (STR). First, we estimated the distribution of
note density values across performances. As there are many
moments during which CR does not play, we get an important
proportion of note density values of 0. However, non-zero density
values followed an approximately gaussian distribution, that we
binned in three equally spaced intervals based on non-zero note
density value histograms (low, medium and high density, see
Supplementary Figures 1, 2). We tested the hypothesis whether
CR plays more notes per second as a function of subjective state
(high or low STR), by using the annotations of the HMM (see
behavioral data analysis) and performing aWelch’s t-test on non-
zero note density distributions. We also compared qualitatively
the count of note densities equal to zero (i.e., moments during
which CR does not play for 1 s) in the subjective states. We also
tested the hypothesis that the volume of musical performance
was related to subjective state. To this end we calculated the
RMS energy of each performance using the librosa function
librosa.rms() and compared RMS distributions for low and high
STR using Welch’s t-test.

Finally, to test whether audio features had a significant impact
on EEG power in different frequency bands, we first used
Spearman correlation to test whether power in each frequency
band was related to RMS volume. Next, we tested for associations
between EEG power in each band and note density using a
Kruskal Wallis Anova with the four abovementioned categories:
silence (note density equal to zero), low density, medium density
and high density. When relevant, we performed post-hoc tests for
pairwise differences using Welsch’ t-tests.

All statistical analysis presented in this manuscript were
performed using the stats module of scipy (https://docs.
scipy.org/doc/scipy/reference/stats.html#module-scipy.stats),
as well as scikit-posthocs for post-hoc tests (https://scikit-
posthocs.readthedocs.io/en/latest/). Supervised learning and
statistical inference on the decoding models was performed
with sklearn Pedregosa et al. (2011). We report raw p-values
everywhere possible, considering a significance threshold
of α = 0.05.

2.4. Results
2.4.1. Analysis of Subjective Ratings
Results of the HMManalysis of STR time-series for performances
1 and 3 are reported in Figure 2. Two hidden states
corresponding to low and high STR values were identified:
the relative estimated Gaussian distributions are represented
in the left panels of Figure 2 while their values during the
performance, together with the Focus index trends are reported
in the right panels. EEG recordings of performance 1 were highly
contaminated by environmental and movement artifacts (see
EEG results section). Since we only examined behavioral indexes
relative to preprocessed EEG epochs, the number of samples

of STR and Focus for performance 1 is drastically reduced as
compared to performance 3, resulting in a sparser histogram
distribution and shorter time-series.

We note that Focus values are generally staying high
during performance, with a few disrupted moments occurring
with low values. As a consequence, we did not model the
variability in Focus, and the rest of the analysis was performed
with respect to HMM states obtained by the analysis of
STR values.

2.4.2. Link Between Subjective States and

Audio-Derived Features
We first sought to test whether the identified subjective states
(low and high STR) were related to the volume of the overall
performance. RMS energy (volume) was lower in the low STR
state than in the high STR state for performance 2 [t(1,046) = –
7.7, p = 1e-14], while it was higher in low STR than in high
STR state for performance 1 [t(581) = 7.0, p = 5e-12] and
performance 3 [t(1,045) = 10.9, p = 1e-26]. Next, we analyzed
the note count played by CR per second (note density) as a
function of subjective state. We found quantitative differences
when examining moments during which CR does not play
(approximated by a note density of zero, meaning no note played
for 1 s), with a lower number of zero densities in low STR
compared with high STR in performance 3 (3 for low STR, 29
for high STR), while the opposite was true for performance 1 (47
for low STR, 16 for high STR) and performance 2 (104 for low
STR, 54 for high STR). Finally, slightly more notes per second
were played in low STR than in high STR for performance 2
[mean density for low STR = 11.1 note per second, 9.8 for
high STR, t(888) = 5.7, p = 1e-8] and performance 3 [mean
density for low STR = 10.3 note per second, 9.4 for high
STR, t(1,367) = 4.8, p = 1e-6 but no difference was found
in performance 1 [mean density for low STR = 8.7 note
per second, 8.6 for high STR, t(518) = –0.4, p = 0.7]. A graphical
depiction of those results for performances 1 and 3 is given
in Supplementary Figures 1A, 2A.

2.4.3. Link Between EEG Oscillatory Power and STR
A hardware problem with the EEG amplifier occured when
recording performance 2, so we only report results on
performance 1 and performance 3. The EEG recordings of
performance 1 being very noisy, only the equivalent of 10 min
recordings survived artifact rejection and were considered for
further analysis. For performance 1, SVC results indicated that
high and low STR states could be classified with an average
accuracy of 0.69 ± 0.11 (standard deviation across folds) (f1-
score high 0.63 ± 0.16–94 examples-, f1-score low 0.74 ± 0.10–
87 examples-). Similarly for performance 3, a SVC trained on
EEG power distinguished low from high states with an average
accuracy of 0.69± 0.11 (f1-score high 0.69± 0.16–165 examples-
, f1-score low 0.66 ± 0.12–170 examples-). The permutation
test in both cases indicated that the decoding model performed
significantly better than chance (p < 0.01).

Post-hoc statistical analysis (Figure 3) for the different
frequency bands revealed that theta, and beta average power
was higher in the high STR state condition as compared to
the low condition both in performance 1 [theta: p = 2.5e-08,
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FIGURE 3 | Ecological Paradigm: Results of EEG post-hoc frequency analysis in relation to STR for performance 1 (A) and performance 3 (B) Results represent EEG

power averaged across electrodes. Left: EEG Power Spectral Density (mean across 3 s epochs) corresponding to low (blue) and high (orange) states, with 95%

confidence intervals. Right: Bar plots representing the EEG power (mean ± std) in the Theta, Alpha and Beta bands in low and high states. Square brackets indicate

significant differences as assessed with pair-wise two-sided Welch t-test (****p < 0.00001).

t(155) = –6.30; beta: p = 6.4e-07, t(19) = –5.69] and performance
3 [theta: p = 3.1e-06, t(239) = –5.24; beta: p = 1.9e-05,
t(226) = –4.8]. This trend was also observed in the Alpha band
for performance 1 [p = 1.8e-07, t(154) = –5.91] but was not
significant in performance 3 [p= 7.8e-01, t(201) = –1.7].

2.4.4. Link Between EEG Oscillatory Power and

Audio-Derived Features
The volume of performance 1 was positively correlated with theta
power (ρ = 0.2, p= 0.03), but not with alpha (ρ = 0.09, p= 0.3)
andmarginally with beta power (ρ = 0.2, p= 0.07). Interestingly,
the opposite relationship was found for performance 3, with
volume being negatively correlated with alpha power (ρ = –0.2,
p = 0.007), beta power (ρ = –0.2, p = 4e-4) and theta power
(ρ = –0.3, p = 1e-5). We subsequently tested for associations
between note density and EEG power, by using four bins of
note density (zero, low, medium, and high) in separate Kruskal
Wallis tests for each frequency band. In performance 1, we
found a significant effect of note density on alpha power (t =

9.5, p = 0.02), beta power (t = 9.2, p = 0.02) and theta
power (t = 11.3, p = 0.01). A similar pattern of results was

obtained for performance 3, with an effect of note density on
alpha power (t = 11.6, p = 0.001), beta power (t = 8.8,
p = 0.03) and theta power (t = 10.8, p = 0.01). In performance
3, post-hoc t-test revealed higher EEG power during zero note
densities than during the three other levels of note density,
with the largest effect obtained in the three frequency bands
(all comparisons between zero density and other levels with
p < 0.01). In performance 1, lower alpha and beta power was
observed during zero note density than during medium note
density (p < 0.05). Lower theta power was also observed during
zero density than during low (p = 0.004), medium (p = 0.003)
and high (p = 0.04) densities. These results are illustrated
in Supplementary Figures 1B, 2B.

3. EXPERIMENT 2 : CONTROLLED
PARADIGM

3.1. Materials and Methods
3.1.1. Procedure
The experimental paradigm is described in Figure 1B. The main
goal of this experiment is to manipulate STR in a controlled
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setting, by asking CR to perform amusical improvisation imagery
task, while constraining himself to stay in a particular state with
respect to STR, thus corresponding to different quantization of
subjective time. Three conditions were considered : Slow, Fast
and Free. Slow and Fast corresponded, respectively, to slow
or fast quantization of subjective time. These conditions are
considered according to the states found when analyzing the
retrospective rating phase of Experiment 1 (see sections 2.1.2,
2.4.1). For these two conditions, the instructions given to CR
were to imagine he was improvising while keeping a subjective
state that he would have rated as either Low or High STR during
the retrospective phase. The third condition, Free, corresponded
to musical improvisation imagery without constraints on a
subjective state related to STR. The experiment was carried out
over two separate sessions on two different days. During each
session, we performed a preparation phase which consisted of
a 1-min long resting state with eyes open (R), a 1-min active
baseline consisting in counting backwards (B), and a 1-min
meditation phase (M) during which CR attempted to focus on
breathing. In both B and M phases CR kept his eyes closed.
These conditions were implemented in order to have clear cut
comparisons between states with different mental workload in
order to check signal quality, and were not analyzed further
(except for the B condition which was used to determine IAF).
Following the preparation phase was the musical improvisation
imagery task. The experiment was organized into a training
block, followed by 5 musical imagery blocks. The order of
conditions was randomized and counterbalanced across blocks,
and each condition was presented fifteen times in total. Each
block consisted of three consecutive trials of 20 s. Instructions
were given vocally at the beginning of each trial, with the
experimenter pronouncing the words “Slow.” “Fast,” or “Free.”
These instructions were explained before the training block. A
debriefing after the practice block of each session was made, in
order to gather informal feedback on the feasibility of the task.
Within a block, a condition might be repeated, in order to avoid
that CR predicts the third condition and change his strategy
accordingly. A short break was done after each block. During the
first session, we performed only five blocks, while two times five
blocks were done during the second session, with a longer break
between after the fifth block.

3.1.2. EEG Acquisition
The measurements were done in two slightly different settings
for day 1 and day 2. During day 1, we performed the experiment
in a moderately quiet environment, a common space with a
few people passing. During day 2, we performed experiments
in a quiet room with only the experimenter and CR. As for the
ecological paradigm, at the beginning of each session CR was
given precise instructions to keep his eyes closed during musical
imagery. CR performed all the conditions while closing his eyes,
and could open his eyes between blocks. CR was sitting in front of
a white wall with the experimenter in his back. EEG was acquired
using the same amplifier and software setup than in Experiment
1 (see section 2.2.2), but with a different electrode montage. Four
goldcup electrodes were positioned at O4, P4, C4 and Fp4 using
conductive paste.

3.2. Data Analysis
3.2.1. EEG Preprocessing
As for the first experiment, we performed ICA on the band-
pass filtered EEG signals (1.0–40.0 Hz) in order to reduce eye
movements artifacts using the prefrontal electrode Fp2 as a proxy
for the EOG channel. We then divided each block into 20 s
segments according to the trial onsets, and removed the first 5
s of each trial to reduce the effect of transition between trials.
Finally, trials were segmented into consecutive epochs of 3 s, and
epochs in which the signal amplitude of one or more channels
was high were removed, using a threshold set to keep 90%
of data.

3.2.2. Statistical Analysis
Individual Alpha Frequency (IAF) (Babiloni et al., 2010) was
determined by finding the individual dominant EEG frequency
in the baseline signal. As for the first experiment the resulting
frequency bands were: theta [4.5–7.5] Hz, alpha [7.5–11.5] Hz,
and beta [11.5–25] Hz. To conduct our analysis, we estimated
the average power spectral density across the four electrodes
(Fp2,C4, P4, O2) using multitaper filters, and we computed the
power in the different frequency bands. The 3 s-long epochs were
labeled with the corresponding condition (free, slow, and fast)
and Welch pair-wise t-tests were performed to assess the effect
of condition on the EEG power magnitude in different frequency
bands of interest. Results were corrected for multiple comparison
according to the Bonferroni correction.

3.3. Results
3.3.1. Behavioral Results
CR indicated that he could generally perform the task, and
gave details about specific mental imagery strategies that he
used to help him perform the task correctly. CR indicated
that he imagined himself playing in specific places, with
specific people. As a consequence, the feedback given by CR
suggest that he engaged more than in a constrained mental
imagery exercise.

3.3.2. EEG Results
Statistical analysis results (Figure 4) revealed that beta power was
higher in the Slow condition as compared to the Fast condition
[p = 0.049, t(116) = 2.83]. The Free condition was associated
with a higher beta [p = 0.011, t(119) = 3.31] and theta power
[p = 0.008, t(134) = –3.41] if compared with the Fast condition.
This trend was also observed in the Alpha band but did not
survive Bonferroni correction.

4. DISCUSSION

4.1. Summary
We have presented an ecological paradigm of musical
improvisation live performance with an audience, consisting
in EEG measurements of an improviser, followed by a listening
phase with retrospective rating. The objective of the rating was
to perform a posteriori mental replay of the subjective state
of the performer. A discussion with the improviser led us to
consider two continuous factors when rating performance: Focus
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FIGURE 4 | Controlled paradigm: EEG power changes as a function of subjective time condition. EEG power (mean ± std across electrodes Fp2, C4, P4, and O2) in

the Theta, Alpha and Beta bands in epochs corresponding to Slow, Fast and Free condition. Square brackets indicate significant differences as assessed with

pair-wise Welch t-test (*p < 0.05, **p < 0.01, Bonferroni corrected).

and Subjective Temporal Resolution (STR). The meaning of
these factors was discussed, piloted and consistently confirmed
with the subject. Focus measured a general tendency to “feel
in the music,” or “being in the zone.” STR measured subjective
temporal resolution, which indicates whether the improviser
was in a state of slow or fast subjective time quantization. Using
a decoding model trained on EEG power during performance,
we found that states of high and low STR could be reliably
distinguished, and were related to increases in average theta
and beta power during the high STR state. We also showed
that CR played more notes in states of low STR than in states
in high STR, in performances 2 and 3, and that states of low
STR could be associated with higher volume (resp. lower
volume) than states of high STR in performances 1 and 3
(resp. performance 2). When testing for associations between
EEG power and number of notes played, we found global
changes in power when CR plays compared to when he does
not, but the number of notes played did not influence EEG
power. We also found that EEG power was weakly correlated
with volume in performance 1, and negatively correlated
with volume in performance 3. In a second experiment in
a controlled setting, we designed a musical improvisation
imagery experiment targeted at testing differences in brain
oscillations with respect to STR, and we found elevated EEG
power in the beta band when CR was in a subjective state of
low STR.

4.2. Musical Improvisation as a Target
Subjective State?
We approached the question of characterizing improvisation
as a target subjective state, measured by two factors in a
retrospective rating. The concept of musical improvisation as
a subjective state was previously proposed (Lopata et al., 2017;
Dolan et al., 2018), and was interpreted in the context of flow
state (Csikszentmihalyi, 1975). In the following, we attempt to
interpret the two factors we measured, Focus and STR.

What we have termed Focus in this study corresponds to a
component of a common definition of flow state, “the holistic
sensation that people feel when they act with total involvement,”
(Csikszentmihalyi, 1975), and has been extensively studied,
including in the music improvisation literature (e.g., see Chirico
et al., 2015; Dolan et al., 2018; Luft et al., 2018; Tan and Sin,
2019). Previous research on flow state during improvisation was
mostly done using interviews and observations (Tan and Sin,
2019). In our case, a qualitative analysis of the values taken by the
Focus rating, together with informal observations discussed with
the performer, suggested that Focus was generally staying high
during musical improvisation performance, and corresponded
to a target for appropriate performance. Preliminary exploratory
correlation analysis between EEG power and the Focus factor did
not reveal any link in our measurements.

On the contrary, STR, considered by CR as the quantization
of subjective time, has not been previously documented as an
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aspect of flow state. Previous studies have proposed that the
distortion of subjective time perception is an important part of
the psychological state of flow (Csikszentmihalyi, 1975, 1990).
Such an account usually refers to the feeling of an accelerated
passing of time during flow state, and has been measured
previously in laboratory conditions (Im and Varma, 2018), as well
as in previous studies such as in gaming (Nuyens et al., 2019) and
music performance (Chirico et al., 2015). To our knowledge, STR
has not been a measure of interest in previous studies on flow
state of musical improvisation. We therefore have to turn to the
temporal processing and the attention literature to bring some
light on our findings.

4.3. Subjective Temporal Resolution and
Temporal Processing
Temporal resolution has been measured experimentally
with simultaneity judgment tasks (Stone et al., 2001), in
particular audiovisual simultaneity. Recent reviews have
shown considerable variation in task performance according
to stimulus modality, inter-individual differences, age, as well
as subjective states (Arstila and Lloyd, 2014; Wykowska and
Arstila, 2014). Interestingly, musical training has been shown to
influence audiovisual simultaneity judgments (Jicol et al., 2018),
suggesting that long-term training modulate musician’s ability
to integrate audiovisual information concurrently. Recently,
audiovisual simultaneity has been linked to phase resetting in
the EEG beta band (Kambe et al., 2015). However, we cannot
comment on whether such integration processes are related to
our findings on STR, as simultaneity judgments can only be done
in lab settings with controlled stimuli. Another account related
to temporal resolution is the concept of temporal receptive
windows (Lerner et al., 2011), with a hierarchy spanning from
early auditory cortices at the smallest time scales (<1 s), up to
parietal and frontal areas for the largest ones (up to a minute).
Here, our attempt at measuring STR had the objective of tapping
into subjective processes related to the quantization of subjective
time. While a very large body of literature exists on subjective
timing paced by an internal clock with periods from seconds
to minutes (as initially proposed by Church, 1984, see Allman
et al., 2014 for a recent review), we are interested here in shorter
periods in the range of a few 100 ms up to a few seconds. Such
short time scales have been tackled in studies on the neural basis
of temporal processing.

4.4. Brain Oscillations and Subjective
Temporal Resolution
The proposed STR measure as well as our EEG results may
also be interpreted with regards to a large body of work on
electrophysiological correlates of temporal processing (Macar
and Vidal, 2004; Wiener and Kanai, 2016), in light of predictive
processes (such as isochronous sounds or beat perception),
duration estimation and attention to temporal events (Nobre
and Van Ede, 2018). We note first that no single EEG frequency
band has been dominantly associated with temporal processing,
as comprehensively shown in the cross-study review by Wiener
and Kanai (2016). More specific effects have been suggested

in different types of paradigm. First, it has been shown
that temporal expectations may modulate power in the theta
band, as well as the coupling between theta phase and beta
power (Cravo et al., 2011), which could indicate the existence of a
central mechanism for controlling neural excitability according
to temporal expectations. These results have been recently
complemented by a study that combined electrical stimulation
and reanalysis of previous EEG data, showing an intrinsic role
of beta oscillations in the memory of temporal duration (Wiener
et al., 2018). The beta band has also been associated with effects
of temporal prediction in the case of beat-based timing in
perception (Fujioka et al., 2012) and imagery (Fujioka et al.,
2015). Finally, a classical paradigm to study temporal attention
consists in providing a cue that predicts (or not) a short or
long foreperiod between a warning stimulus and an imperative
stimulus requiring a motor response. This paradigm revealed
shorter reaction times when the cue successfully predicts the
length of the foreperiod, together with an increases amplitude
of the Contingent Negative Variation (Miniussi et al., 1999), as
well as an increased EEG power between 6 and 8 Hz for stimuli
with short foreperiods compared to long ones (Babiloni et al.,
2004). These results suggests that the brain allocates a temporal
attention window of variable length mediated by underlying
oscillatory mechanisms, namely the magnitude of EEG power in
the 6–8 Hz band (upper theta band).

In experiment 1, we found a higher power in low frequency
oscillations (4.5–7.5 Hz, dubbed theta in our study) and beta
band (11.5–25 Hz) with high STR compared to low STR. As
we are associating a retrospective subjective rating with EEG
acquired in the presence of noise and movement, we attempted
at disentangling the effect of overall volume and quantity of
motor commands (approximated by a measure of note count
per second) on the measured EEG. In performance 1, we found
a weak correlation between theta power and volume, as well as a
global increase in EEG power when CR plays compared to when
he doesn’t. The opposite pattern was found in performance 3,
with a negative correlation between volume and EEG power, as
well as a global reduction of EEG power when CR plays. However,
in both performances, the number of notes played did not
influence EEG power. Importantly, we also showed using audio
analysis of performances 1 and 3 that high STR was associated
with lower note counts and higher volume than low STR.
Therefore, it is unlikely that the EEG modulations we observed
with respect to STR are solely due to motor activity, as otherwise
we may expect to observe a relationship between EEG power
and note count. Finally, we remark that the effect of STR on
EEG power was consistent in both performances. This suggests
that STR as measured in this ecological paradigm might reflect
an underlying endogenous timing mechanism that calibrates the
duration of a temporal window of integration, or equivalently, the
rate of a sampling mechanism involved in musical performance
and perception. This interpretation would fit with the description
of the behavioral relevance of STR as discussed with CR
during the definition of the protocol. It is obviously difficult to
compare the ecological paradigm of experiment 1 with controlled
experiments such as the ones mentioned previously, as we do
not have controlled stimuli and multiple repetitions. The choice
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of performing a first experiment in an ecological setting was
essential to define behavioral indexes related to the subjective
experience of the musician, but came with some drawbacks. The
main one is the limited quality of EEG signals collected in an
environment exposed to noise and while CR was performing
(e.g., freely moving). This compromised EEG recording during
perf 2 and affected perf 1 signal quality. These limitations also
motivated us to perform a second study in a controlled setting,
where we could experimentally manipulate the subjective time
state and assess STR changes on good-quality EEG recordings.
As a consequence, we attempted to test specifically the effect
of varying the rate of this sampling mechanism by defined a
controlled paradigm. In experiment 2, we instructed the subject
to perform musical improvisation imagery while keeping a
specific state of STR. In a third condition, no constraint was
given and the subject could perform imagery without keeping a
constant STR state. We found an elevated theta and beta power
when comparing the Free (unconstrained) condition with the
Fast condition (corresponding to a high STR state), as well as
higher beta power for Slow compared to Fast. While it can
seem surprising to find a reverse effect than in experiment 1,
it is difficult to conclude as theta and beta power was overall
higher in the Free condition, which is the one that is closer to
the ecological paradigm. Nevertheless, our results suggest that
oscillatory power in the theta and beta band is correlated with an
internal, subjective temporal processing system related to STR.

4.5. Brain Oscillations and Flow State in
Musical Improvisation
A qualitative analysis of our ecological paradigm led us to
consider the first rating, Focus, as an indicator of flow state
during improvisation. We did not find any statistical association
between the values of Focus and EEG power spectrum. However,
in experiment 2, we did find a higher power in the theta and
beta band when comparing the Free condition with the Fast
condition. In this experiment, the Free condition corresponded
to an unconstrained, more natural situation with respect to
experiment 1, in contrast with the Slow and Fast conditions
that instructed CR to perform mental imagery of a specific
STR state. Therefore, the power increase observed in the Free
condition may be interpreted in light of previous findings that
showed EEG activity increases when comparing improvisation
with “non-improvisation” (Boasen et al., 2018; Sasaki et al.,
2019). Note however that the observed power increase might also
be interpreted in a more general framework of creativity and
flow state. Several studies have suggested a correlation between
alpha-band activity and creative tasks (Stevens and Zabelina,
2019). Generally, it has been observed that tasks requiring greater
creativity resulted in higher alpha power (Fink and Benedek,
2014). In particular, musical improvisation studies have reported
higher alpha power in central and posterior regions of the brain,
and a deactivation in prefrontal regions during the experience
of flow (Dietrich and Kanso, 2010). Overall, the majority of the
studies investigating creativity and musical improvisation report
changes in alpha power, some studies even report clearer changes
specifically in upper alpha (Boasen et al., 2018; Sasaki et al., 2019).

In experiment 2, the power increase between Free and Fast was
found in the upper frequency band [11.5–25] Hz, as we defined
alpha as [7.5–11.5] Hz in which only a trend toward statistical
significance could be observed. As a consequence we can situate
our results among previous studies, while keeping it clear that
we only considered one expert subject. This effect requires
replication with a larger and more diverse sample, and could
be the goal of future controlled studies attempting at examining
musical improvisation or creativity using mental imagery.

4.6. Implications for the Artistic Endeavor
The proposed collaboration between arts and sciences represents
an original contribution toward artists in terms of imagination, a
resource for them to explore new ideas. Personal introspection
in the form of retrospective ratings has the potential to give
artists a special insight into creation and musical practice.
Open questions arise with respect to understanding the link
between subjective states and musical outcomes, and such an
understanding could potentially enhance the creative process.
Furthermore, the discovery of experimental research and
neuroscientific methods could bring artists with several new
insights. Such collaborations could help make the artists aware
that the scientific view of artistic creation contribute to a
better understanding of creativity (McPherson and Limb, 2013).
Such an endeavor may challenge the place of the musician
as part of a complex, dynamical system including the other
musicians and the audience. This questioning is in line with
recent accounts on understanding musical creativity using the
embodiement framework and dynamical systems (Van der Schyff
et al., 2018). Another contribution for artists is to learn about new
technologies available today, with the idea of possibly directing
musical and technological research toward the fabrication of new
tools for musical computing, using for example neurofeedback
or the sonification of brain waves. The wealth of research on
brain computer interfaces, neurofeedback (Sitaram et al., 2017),
and music information retrieval (Mueller et al., 2018), could
potentially contribute to the future of musical creation.

4.7. Limitations and Perspectives
The limitations in this study are mostly inherent to the choices
made regarding the ecological setting and the collaboration
with a musician. As we considered a single subject, we do
not have clear indications on the ability to generalize the
concepts developed here and the findings to other musicians or
other creative process. Future studies could attempt at testing
hypothesis related to STR or flow in ecological settings using
larger groups of musicians. In addition, while we decided early
on to focus on a single subject, we relied only on retrospective
reports and EEG recordings. The use of retrospective reports is
limited by the metacognitive abilities of the rater, namely his
ability to perform mental replay of the improvised performance.
Such an ability might not be present with all musicians, which
is another limitation toward a generalization of this procedure.
Alternatively, future studies could consider semi-structured
interviews in addition to retrospective ratings, which could
potentially alleviate the bias introduced by ratings, while giving
a richer qualitative view on the creative process, as done in
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previous musical improvisation studies (Tan and Sin, 2019).
Another concern in our study is the lack of control for the content
of musical imagery in experiment 2, in particular regarding the
number of notes imagined. This could have an effect on resulting
oscillatory power, and we plan to design future controlled
experiments to try to disentangle imagined content and
subjective state. Finally, as we measured brain activity on a single
subject using EEG during musical performance, the measured
signal is largely contaminated with movement artifacts and other
sources of noise inherent to the ecological context. While we
attempted at controlling for motor commands associated with
clarinet playing by estimating note density, we cannot easily rule
out the presence of other cognitive mechanisms, such as the
attention to other players, auditory working memory, or simply
cognitive load, that might influence the measured EEG in such a
free, naturalistic setting. The setup used in this study is simple
and lightweight, but it includes too few electrodes to enable a
high resolution study of the complex mechanisms involved in
naturalistic musical improvisation. Future studies could build
upon this study, and attempt to measure brain activity in
ecological settings with a higher resolution. In addition, one
way to limit contamination by movement artifacts would be to
consider using functional near infrared spectroscopy (fNIRS)
and motion capture simultaneously with EEG in order to
provide a complementary view on brain activity while accounting
for movement.

4.8. Conclusion
In this study, we have setup a collaboration with an artist,
CR, performing free musical improvisation. This collaboration
has led us to define an ecological paradigm to study musical
improvisation during live performances with audiences, using
retrospective ratings and electroencephalography. We have
suggested a measure of Subjective Temporal Resolution as
a correlate of a subjective state related to the quantization
of internal time of the improviser during performance, and
were able to relate this measure to EEG oscillatory power in
the theta/low alpha and beta band. We subsequently devised
a controlled musical improvisation imagery experiment and
found a relationship between constraints on subjective time
and oscillatory power in the EEG. Our results bring an
original perspective on the study of musical improvisation and
creativity, by showing the potential of single subject studies and
ecological paradigms.
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