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Speech-in-noise comprehension difficulties are common among the elderly population,
yet traditional objective measures of speech perception are largely insensitive to this
deficit, particularly in the absence of clinical hearing loss. In recent years, a growing
body of research in young normal-hearing adults has demonstrated that high-level
features related to speech semantics and lexical predictability elicit strong centro-
parietal negativity in the EEG signal around 400 ms following the word onset. Here
we investigate effects of age on cortical tracking of these word-level features within
a two-talker speech mixture, and their relationship with self-reported difficulties with
speech-in-noise understanding. While undergoing EEG recordings, younger and older
adult participants listened to a continuous narrative story in the presence of a distractor
story. We then utilized forward encoding models to estimate cortical tracking of four
speech features: (1) word onsets, (2) “semantic” dissimilarity of each word relative to
the preceding context, (3) lexical surprisal for each word, and (4) overall word audibility.
Our results revealed robust tracking of all features for attended speech, with surprisal
and word audibility showing significantly stronger contributions to neural activity than
dissimilarity. Additionally, older adults exhibited significantly stronger tracking of word-
level features than younger adults, especially over frontal electrode sites, potentially
reflecting increased listening effort. Finally, neuro-behavioral analyses revealed trends
of a negative relationship between subjective speech-in-noise perception difficulties
and the model goodness-of-fit for attended speech, as well as a positive relationship
between task performance and the goodness-of-fit, indicating behavioral relevance
of these measures. Together, our results demonstrate the utility of modeling cortical
responses to multi-talker speech using complex, word-level features and the potential
for their use to study changes in speech processing due to aging and hearing loss.

Keywords: speech perception, aging, electroencephalography, lexical surprisal, semantic processing, speech-
in-noise (SIN) perception, temporal response function (TRF)

INTRODUCTION

Speech perception is fundamentally important for human communication. While speech signals are
often embedded in complex sound mixtures that can interfere with speech perception via energetic
and informational masking, the auditory system is remarkably adept at utilizing attentional
mechanisms to suppress distractor information and enhance representations of the target speech
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(e.g., Ding and Simon, 2012a; Mesgarani and Chang, 2012;
O’Sullivan et al., 2019). However, the robustness of speech
perception, particularly in the presence of noise, is vulnerable
to deterioration through both noise-induced and age-related
hearing loss (Dubno et al., 1984; Helfer and Wilber, 1990; Fogerty
et al., 2015, 2020) as well as age-related cognitive decline (van
Rooij and Plomp, 1990; Akeroyd, 2008; Dryden et al., 2017).
Additionally, a small but significant portion of the population
experiences speech-in-noise (SIN) perception difficulties, without
exhibiting clinical hearing loss (Saunders, 1989; Zhao and
Stephens, 2007; Tremblay et al., 2015). Together, these SIN
perception difficulties can lead to significant impairment in
quality of life (Dalton et al., 2003; Chia et al., 2007), and in
older adults they may result in increased social isolation (Chia
et al., 2007; Mick et al., 2014; Pronk et al., 2014), potentially
exacerbating loss of cognitive function (Loughrey et al., 2018;
Ray et al., 2018).

Although subjective SIN perception difficulties are relatively
common in older individuals, objective tests for quantifying these
deficits, such as identification of words or sentences in noise (e.g.,
QuickSin; Killion et al., 2004), often do not strongly correlate with
the degree of subjective deficit (Phatak et al., 2018), particularly
in cases with little-to-no clinical hearing loss. Smith et al. (2019)
recently reported that only 8% of their sample of 194 listeners
exhibited deficits in objective SIN tasks, while 42% of listeners
indicated experiencing subjective SIN perception difficulties.
A likely reason for this mismatch is that objective speech
perception tests do not accurately reflect real world scenarios
where SIN difficulties arise. For example, while existing tests
generally require identification of isolated words or sentences
embedded in noise (e.g., speech-shaped noise or a competing
talker), real world speech perception often requires real-time
comprehension of multi-sentence expressions, embedded in a
reverberant environment, in the presence of multiple competing
speakers at different spatial positions. In these scenarios, listeners
who need to expend additional time and cognitive resources
to identify the meaning of the incoming speech may “fall
behind” in comprehension of later parts of the utterance.
Moreover, even if the listener can correctly piece together
the meaning of the utterance, their subjective confidence may
be diminished, potentially “blurring” the predictive processes
thought to facilitate perception of upcoming speech (Pickering
and Gambi, 2018). As such, behavioral measures that more
accurately reflect subjective SIN perception difficulties may
require utilization of more realistic, narrative stimuli, and focus
on quantifying comprehension, as opposed to simple word or
sentence identification (e.g., Xia et al., 2017).

While development of behavioral paradigms focusing on
characterizing SIN perception difficulties is an important goal,
a complementary and potentially more sensitive approach to
quantifying these deficits may be provided by neural measures
of continuous-speech tracking. In recent years, non-invasive
methodologies for measurement of neural representations of
continuous speech in humans have become increasingly popular
(Lalor and Foxe, 2010; Crosse et al., 2016), particularly in
application to young normal-hearing (YNH) populations. One
important result of this work has been the demonstration of

profound attentional modulation of speech whereby temporal
dynamics of neural responses to attended and ignored speech
differ considerably, both in representation of lower-level features
such as the speech envelope (Ding and Simon, 2012a; Power
et al., 2012; Kong et al., 2014; Fiedler et al., 2019), and higher-
level features related to lexical and semantic content of speech
(Brodbeck et al., 2018; Broderick et al., 2018). Indeed, while
lower-level features produce robust responses even when speech
is ignored, features related to linguistic representations only show
robust responses for attended speech, suggesting that they are
tightly linked with speech comprehension. Responses to higher-
level features may therefore be particularly sensitive to SIN
perception difficulties, which are likely associated with impaired
comprehension performance. In fact, SIN perception difficulties
could potentially manifest themselves not only in terms of poorer
tracking of higher-level features in attended speech, but also in
increased tracking of features in ignored speech, when facing
difficulties with suppression of distractor information.

Changes in neural processing of continuous speech in
aging populations, compared to young adults, are relatively
poorly understood. Several studies have utilized magneto-
and electroencephalography (M/EEG) to address this question.
Studies comparing envelope-related cortical responses have
revealed a pattern of amplified envelope representations in
older populations (Presacco et al., 2016; Decruy et al.,
2019; Zan et al., 2020), potentially reflecting changes in the
utilization of cognitive resources during speech comprehension.
More recently, Broderick et al. (2021) compared higher-level
representations of speech in younger and older populations.
They estimated EEG responses to 5-gram surprisal, reflecting
the predictability of words given the preceding sequence of
four words, as well as semantic dissimilarity, reflecting the
contribution of each word to the semantic content of a sentence.
While younger listeners showed strong responses to both of
these features, older adults exhibited a delayed surprisal response
and a near-absent response to semantic dissimilarity. These
findings demonstrate that representations of higher-level features
of speech may indeed reveal robust effects of age. However,
because Broderick et al. (2021) did not report behavioral
measures related to speech comprehension, nor measures of
subjective speech perception difficulties among their participants,
it is unclear whether these metrics would correlate with the
reported EEG-based findings. Moreover, participants in that
study were presented with clear speech without any distractors
(e.g., competing speakers), making it unclear how speech
representations differ in complex listening scenarios where
speech perception difficulties are most commonly reported.

The goal of this study was to compare higher-level neural
representations of two-talker speech mixtures between younger
and older adults, and to explore how these measures relate to
comprehension performance and self-reported SIN perception
difficulties. In particular, we examined representations related
to word dissimilarity relative to short-term preceding context,
lexical surprisal based on multi-sentence context, and word-level
audibility. We chose to pursue this paradigm for several reasons.
First, a multi-talker paradigm was chosen because subjective SIN
perception difficulties commonly arise in aging listeners in the
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context of competing speech. If age-related changes in neural
representations are confirmed, then these neural signatures
could potentially be further explored as a candidate objective
correlate for subjective SIN difficulties. Second, we chose to
characterize responses to word-level features linked to meaning
and lexical predictability because existing evidence indicates that
responses to higher-level features are tightly linked to speech
comprehension (Broderick et al., 2018). As such, we anticipated
that responses to these features are more likely to exhibit
differences as a function of age and SIN perception difficulties.
Although neural representations reflecting the end-goal of speech
perception may allow for only limited inference about the
underlying causes of SIN perception difficulties, which can range
from peripheral changes in acoustic representations to more
central changes in cognitive processes, these representations may
offer increased sensitivity due to capturing the combined effects
of the various etiologies underlying the deficit.

MATERIALS AND METHODS

Participants
In total, 45 adult volunteers completed the experiment, and data
from 41 participants were used due to a methodological change
implemented early in data collection. The participant pool was
divided into two groups, younger adults (YA) and older adults
(OA), with participants who were 18–39 years included in the
former, and participants who were 40–70 years included in the
latter. The YA group consisted of 20 participants (6 male, 14
female; mean ± SD age: 29.40 ± 6.40 years), while the OA
group included 21 participants (9 male, 12 female; mean ± SD
age: 53.48 ± 8.68 years). Note that most participants in the
OA group were not especially old (e.g., only five participants in
the OA group were older than 60 years), and therefore the YA
and OA group labels denote the relative age of these groups.
Although our sample allows for treatment of age as a continuous
variable, due to large individual differences in our measures, we
decided to pursue binary classification of age (YA and OA) to
increase the odds of detecting age-related differences between
EEG response characteristics averaged across listeners in the two
age groups. Participants were recruited via email advertisement
from a pool of students, staff, and alumni of the University of
Minnesota. All participants provided informed written consent
and received either course credit or monetary compensation
for their participation. The procedures were approved by the
Institutional Review Board of the University of Minnesota.

Audiometry
An air-conduction audiogram was measured in each ear for
each participant prior to beginning the EEG procedures.
Detection thresholds were measured at octave frequencies in
the 250 – 8000 Hz range, and frequencies for which thresholds
exceeded 20 dB HL were deemed to reflect hearing impairment
(HI). This procedure resulted in the detection of 2 participants
in the YA group, and 16 participants in the OA group as having
mild-to-moderate high-frequency HI. The skewed distribution
of HI toward the older population was expected, as hearing

sensitivity naturally diminishes with age (see reviews by Huang
and Tang, 2010; Yamasoba et al., 2013).

For participants with any hearing loss, all experimental audio
materials were amplified in the frequency regions of hearing loss,
as described in section “Stimuli” below. Under these conditions,
we observed no association between task performance and high-
frequency hearing loss.

Modified SSQ Questionnaire
Prior to the EEG procedures, all participants completed a
modified version of a subset of Speech, Spatial and Qualities of
Hearing Scale (SSQm). The original version of SSQ (Gatehouse
and Noble, 2004) was designed to measure subjective hearing
challenges faced by listeners in various situations of daily life. In
our version, we specifically probed participants about difficulties
with and frustrations related to hearing speech in noisy situations,
such as cafes and social gatherings. Each of the 14 items was
presented on a computer screen along with four graded choices
of frequency, difficulty, or discomfort related to the presented
listening scenarios. E.g.,

Item 1:
I find it difficult to talk with staff in places such as shops, cafes,

or banks, due to struggling to hear what they are saying.
Item 10:
In group conversations I worry about mishearing people and

responding based on incorrect information.
Response choices:

(1) Not at all
(2) Rarely
(3) Often
(4) Very often

Stimuli
Stimuli were four public domain short story audiobooks
(Summer Snow Storm by Adam Chase; Mr. Tilly’s Seance by
Edward F. Benson; A Pail of Air by Fritz Leiber; Home Is Where
You Left It by Adam Chase; source: LibriVox.org), spoken by
two male speakers (two stories per speaker). Each story was
about 25 min in duration and was pre-processed to truncate
any silences between words that exceeded a 500-ms interval to
500 ms. On a block-by-block basis (see section “Experimental
Procedures” below), each audiobook was root-mean-square
(RMS) normalized and scaled to 65 dB SPL. Stimuli were
presented to participants using ER1 Insert Earphones (Etymotic
Research, Elk Grove Village, IL, United States), shielded with
copper foil to prevent electrical artifacts in the EEG data.

In order to minimize the odds of finding age-related
differences in neural responses that could be attributed to
reduced audibility in participants with hearing loss, all audio
materials were custom-filtered for each participant with HI. We
used arbitrary magnitude FIR filters (order: 498) with linear-
phase response, implemented in MATLAB (Mathworks, Natick,
MA, United States; version R2019a) via the designfilt and filter
functions. The filtering procedure introduced a constant group
delay of ∼10 ms. The filter was designed to apply half gain,
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amplifying all frequency bands by half the amount of the hearing
loss:

A(f ) = 0.5× (T(f )− 20) when T(f)> 20 dB HL,
A(f ) = 0 otherwise,

where T(f) is the detection threshold in dB HL at frequency f.
Note that half gain amplification is a commonly used strategy to
mitigate reduced audibility due to hearing loss, while preventing
discomfort from loudness recruitment, whereby loudness growth
for frequencies affected by cochlear hearing loss is steeper than
that observed in normal hearing (Fowler, 1936; Steinberg and
Gardner, 1937).

Experimental Procedures
The experimental setup was implemented using the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; Kleiner
et al., 2007) in MATLAB. Two experimental runs were completed
by each study participant. In each run, a pair of audiobooks
read by different male speakers (Figure 1A) was presented
diotically (the mixture of the two audiobooks in each ear) to
the participant. One of the stories served as the attended story,
while the other was the ignored story, with these designations
being counter-balanced across participants. A run was broken
up into 24–27 blocks (variation was due to small differences in
durations of audiobooks used in each of the two runs). Each
block contained a roughly 1-min segment of audio, followed by
a series of questions, detailed below. Block duration was allowed
to exceed 1 min in order to ensure that each block concluded at
the end of a sentence in the attended story. The attended story
remained the same throughout the run. To cue the participants
to follow the correct story, the audio of the attended story started
1 s prior to the onset of the ignored story. This was further
aided by making this initial 1-s portion of the attended story in
each block (except block #1) correspond to the final 1-s of the
attended story from the previous block. These repeated segments
with the attended story alone were excluded from statistical
analyses. Throughout each block, participants were instructed
to stay as still as possible, and to keep their gaze on a central
fixation marker presented on a computer display in front of the
participant. The purpose of this was to minimize EEG artifacts
caused by muscle activity.

Following each block, participants were presented on a display
with a series of Yes/No questions about the audio from that block,
including:

(1) Four comprehension questions about the contents of the
attended story

(2) Confidence ratings for each of the comprehension
questions

(3) Intelligibility judgment about the attended speaker
(4) Subjective attentiveness rating

As each behavioral question had binary answer choices (e.g.,
for attentiveness, participants answered “Were you able to stay
focused on the target story?” Yes/No), the main purpose of
these questions was to gather information about participants’
comprehension and subjective experience throughout the run,
and to make sure that they were attending to the correct story.

Participants were given 10 s to answer each question using a
key press. If 10 s elapsed without a response, the question was
marked as no-response. After answering each block’s questions,
participants were allowed to request a short break to ensure that
they remained comfortable throughout the experiment. These
breaks were limited to up to 2 min, during which participants
remained seated. The next block started as soon as the break was
terminated by the participant with a key press, or 2 min elapsed.
Furthermore, between the two experimental runs, participants
were offered an extended break inside the booth. The EEG cap
and the insert phones were not removed during the breaks.

The second experimental run was procedurally identical to the
first one, except a different pair of stories was presented, neither
of which was used in the first run. Additionally, the attended and
ignored speakers were switched, so that the speaker that narrated
the ignored story in the first run was attended in the second
run, while the attended speaker from the first run became the
ignored speaker in the second run. Participants were explicitly
informed of this switch, and the purpose of this was to balance
any possible speaker effects on each participant’s EEG data. The
order of the story pairs in the two runs was counter-balanced
across participants.

EEG Procedures
While engaging in the experimental task described above,
each participant’s EEG activity was sampled at 4096 Hz
from their scalp using a Biosemi ActiveTwo system (BioSemi
B.V., Amsterdam, Netherlands), with 64 channels positioned
according to the international 10–20 system (Klem et al., 1999).
Additional external electrodes were placed on the left and right
mastoids, and above and below the right eye (vertical electro-
oculogram, VEOG). Prior to the beginning of the recording,
and between the two runs, the experimenter visually inspected
signals in all electrodes, and for any electrodes with DC offsets
exceeding ± 20 mV, the contact between the electrode and scalp
was readjusted until the offset fell below± 20 mV.

EEG Preprocessing
All pre-processing analyses were implemented via the EEGLAB
toolbox (Delorme and Makeig, 2004; version 14.1.2b) for
MATLAB, unless otherwise stated. To reduce computational
load, the raw EEG data were initially downsampled to
256 Hz, and band-pass filtered between 1 and 80 Hz using
a zero-phase Hamming windowed sinc FIR filter (order: 846,
transition band width: 1 Hz) implemented in the pop_eegfiltnew
function of EEGLAB.

Subsequently, data were pre-processed using the PREP
pipeline (Bigdely-Shamlo et al., 2015), in order to minimize
the risk of signal contamination from noisy reference channels
(e.g., due to poor electrode placement). Briefly, the pipeline
includes three steps. First, line noise is removed using a multi-
taper regression procedure implemented in the cleanline plugin
(Mullen, 2012) for EEGLAB. Next, disproportionately noisy
channels are detected via an iterative referencing procedure in
which the data are initially referenced by an estimate of the global
mean EEG activation, followed by detection of noisy channels
via four data metrics. These include abnormal signal amplitudes,
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FIGURE 1 | Experimental procedures. (A) Participants listened to a mixture of two speakers, while attending to one of them. Meanwhile, 64-channel EEG was
recorded from their scalp. (B) Three word-level features (dissimilarity, surprisal, and audibility) were extracted from the speech for both the attended and ignored
stories, and used to generate regressors containing impulses that were time-aligned to the word onsets scaled by the amplitude of each feature (note: word onset
regressors and responses are not illustrated in the schematic). These features were regressed against the EEG signals recorded during the experiment, resulting in
TRF and model fit contributions for each of the features. These TRFs and goodness-of-fit values were averaged across groups of frontal (yellow) and parietal (blue)
electrodes for use in group-level analyses.

unusually low correlation with other channels, unusually poor
predictability of channel data on the basis of other channels,
and unusual degree of high-frequency noise. We utilized default
parameters for each of the metrics, as outlined in Bigdely-
Shamlo et al. (2015). After each iteration of this procedure, the
noisy channels are excluded from being utilized in reference
computation in the next iteration and the procedure is repeated
up to four times or until channels identified as “noisy” don’t
change across iterations. The noisy channels are finally replaced
using EEGLAB’s spherical interpolation, and the final “clean”
estimate of the global mean activation is used as the robust
reference for the dataset.

Next, activations from all experimental blocks were epoched
and independent component analysis (ICA; Jutten and Herault,
1991; Comon, 1994) was applied to the data using the infomax
ICA algorithm (Bell and Sejnowski, 1995) implementation in
EEGLAB. This procedure decomposes the EEG signal into
statistically independent sources of activation, some of which
reflect sensory and cognitive processes, while others capture
muscle-related signal contributions and other sources of noise.

We manually identified components that matched eye-blink
related activity in component topography, amplitude, and
temporal characteristics, as well as other high-amplitude artifacts
that reflected muscle activity, and subtracted these components
out of the data. This, on average, led to the removal of 2.52 (SD:
0.97) components.

The cleaned EEG signals were then band-pass filtered between
1 and 8 Hz with a Chebyshev type 2 filter designed using
MATLAB’s designfilt function (optimized to achieve 80 dB
attenuation below 0.5 Hz and above 9 Hz, with pass-band ripple
of 1 dB), and applied to the data using the filtfilt function. This
filtering was chosen due to prior evidence indicating that neural
responses to continuous speech track predominantly the low-
frequency fluctuations within the ∼1–7 Hz range (e.g., Ding and
Simon, 2012b; Zion Golumbic et al., 2013). Afterwards, the data
were z-scored in order to control for inter-subject variability in
the overall signal amplitude due to nuisance factors such as skull
thickness or scalp conductivity, as well as to improve efficiency
in the cross-validated regression and ridge parameter search
for deriving the temporal response function (TRF), described
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below (see section “TRF Analyses”). Finally, because run duration
varied slightly due to unequal lengths of the two pairs of
audiobooks (i.e., 24–27 min), in order to equalize contributions
from each run to the overall analysis results, only blocks 2–23
from each run were used in the remaining analyses. The first
block was excluded in order to minimize effects of initial errors
in attending to the target story, which happened to a very small
number of participants (less than 5), but was quickly corrected
after initial comprehension questions were presented.

Word Timing Estimation
Word onset timings for all words within each story were
estimated using the Montreal Forced Aligner (McAuliffe et al.,
2017). Prior to running the aligner, the audiobook text was
preprocessed to remove punctuation, typographic errors and
abbreviations, and both the text and audio were divided into
roughly 30-s segments. This segmented alignment approach was
used in order to prevent accumulation of alignment errors for
later portions of the audio. All alignments were subsequently
manually inspected for timing errors, and when noticeable
alignment errors were detected, the aligner was re-run on further-
shortened (15-s) segments of the affected audio. While forced
alignment routinely results in some degree of timing errors, these
are typically small, with a median of about 15 ms for the aligner
used here. As such, only a small degree of temporal smearing of
estimated neural responses should occur due to these errors.

Data Analysis
TRF Analyses
Time courses of cortical responses to different speech features,
known as the TRFs, were extracted from preprocessed EEG
activity using cross-validated regularized linear regression,
implemented via the mTRF toolbox (Crosse et al., 2016). Briefly,
deconvolution of a TRF for a given feature from the EEG signal
is accomplished by first constructing a regressor containing a
time series, sampled at a rate matching the EEG signal, of that
feature’s amplitudes. By including multiple time-lagged copies
of the regressor for each feature, the effect of a given feature
on the neural activity at different latencies relative to the word
onset can be estimated, resulting in a time course of neural
response. Regressors for all features are combined into a full
design matrix, and this matrix is then regressed against the EEG
signal to yield the impulse responses (i.e., TRFs) for each of the
included features at each electrode site.

In practice, this procedure was implemented through 11-fold
cross-validation, with each fold involving three steps. First, the
data and regressors were split into a training set, composed of
40 blocks of the data (∼40 min), and a testing set, containing
the remaining 4 blocks of the data (∼4 min). Next, the training
set was used to determine the ridge parameter, λ, using leave-
one-out cross-validation. On each iteration, 39 trials from the
training set were used to fit the cortical-response model using
a range of ridge parameters, and the resulting TRFs were then
evaluated on their ability to predict the data in the remaining
trial by computing the Pearson’s correlation coefficient between
the predicted and actual EEG signal. The goodness-of-fit values
for each λ were then averaged across all cross-validation folds

and all electrodes, and the parameter with the best average fit
was selected to be used for estimating the TRFs using all 40
training trials. These TRF estimates were then used to assess
the model goodness-of-fit using the test data. This was done by
convolving the estimated TRFs with the corresponding word-
feature regressors for the test data set, and computing the
Pearson’s correlation between the predicted and actual test data.
Following cross-validation, average TRFs for each feature and an
average model goodness-of-fit were computed from results of all
cross-validation folds for use in group-level analyses.

Regression features
Word features used in the regression analyses included word
onsets, semantic dissimilarity, surprisal, and word audibility
(Figure 1B). All regressors included feature values for all words
(both content and function words) in the speech stimuli. Word
onset regressors contained unit-amplitude features aligned with
word onsets, and their purpose was to account for lower-level
activity elicited by the acoustic onset.

Semantic dissimilarity. Semantic dissimilarity, reflecting
approximately the degree to which each word adds new
information to a sentence, was computed as described in
Broderick et al. (2018). Briefly, we used Google’s pre-trained
word2vec neural network (Mikolov et al., 2013a,b), implemented
using the Gensim library (Rehurek and Sojka, 2010) for Python,
to compute a 300-dimensional vector representation (otherwise
known as an embedding) of each word within our stimuli. An
important property of these vector representations is that in
the 300-dimensional vector space, vectors of words with similar
meanings point in similar directions. Computing the correlation
between vectors representing any two words approximates their
semantic similarity. Because EEG response to incongruent words
has been shown to elicit a strong N400 component (Kutas and
Hillyard, 1980), for regression purposes these similarity values
were subtracted from 1 to convert them to dissimilarity.

To construct semantic dissimilarity regressors, we computed
the dissimilarity between each word’s vector, and the average of
vectors for all preceding words in a given sentence. In the case
of the first word in a sentence, we computed dissimilarity from
the average vector for words in the previous sentence. These
dissimilarity values were then used to construct the regressor
consisting of unit-length impulses aligned to word onsets that
were scaled by each word’s dissimilarity value and zeros between
these impulses. Although neural responses to semantic content
of words may not be strictly time-locked to word onsets,
potentially leading to some degree of temporal smearing in
the estimated TRFs, word onset timings have been successfully
used as timestamps for characterizing higher-order lexical and
semantic processes (e.g., Broderick et al., 2018; Weissbart et al.,
2019).

Lexical surprisal. Surprisal regressors were constructed in an
identical way to dissimilarity, except the feature values were
computed using OpenAI’s GPT-2 (Radford et al., 2019; 12-
layer, 117M parameter version) artificial neural network (ANN),
similar to the approach demonstrated by Heilbron et al. (2019).
These procedures were implemented in Python using the
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Transformers library (Wolf et al., 2020) for PyTorch (Paszke
et al., 2019). GPT-2 is a transformer-based (Vaswani et al., 2017).
ANN that, using a “self-attention” mechanism, is capable of
effectively using hundreds of words worth of preceding context
in order to generate seemingly realistic sequences of text. As a
result, it can be used as a proxy for computing the predictability
of words within a sequence. Surprisal is calculated based on
a much longer time scale (a large number of words in the
preceding context) than semantic dissimilarity. Specifically, by
providing GPT-2 with a segment of text and then generating the
distribution over the next word, it is possible to assess the relative
probability of the actual next word within GPT-2’s distribution
of possibilities. Generation of all probabilities involves iteratively
adding words into the context, and computing the probability
of each successive word. In practice, GPT-2 utilizes a tokenized
representation of text, whereby GPT-2’s vocabulary corresponds
to a combination of whole words (particularly in the case of
shorter words) and word fragments.

As a result, the probability of the i-th word wi was computed
as a product of conditional probabilities of the constituent word
tokens t, with each token’s probability being computed with
the model’s knowledge of the preceding tokens (i.e., preceding
text plus current word’s tokens whose probabilities were already
estimated):

p(wi) =

n∏
j=1

p(tk+j|tk+j−512, ...tk+j−1)

where j indexes the n tokens of word wi, k is the absolute
index of the last token in the preceding word (relative to text
beginning), and 512 is the maximum number of tokens utilized
for prediction. For token indices less than 512 (i.e., early portions
of the text), all of the available context was used. Furthermore,
in cases where one or more tokens from the word at the
far boundary of the context window did not fit into the 512
token limit, that word’s tokens were excluded from being used
for prediction. Although GPT-2 is capable of utilizing up to
1024 tokens for prediction, we utilized a context length of 512
tokens due to limited computational resources. Across the four
stories, when full predictive context was utilized for prediction, it
contained on average 393.3 [SD = 31.1] words.

Because brain mechanisms underlying lexical prediction
respond more to unexpected than to expected words (Kutas and
Hillyard, 1984), surprisal was computed by taking the negative
log of the conditional probabilities of each word, leading to less
expected words receiving higher surprisal values:

S(wi) = − log10(p(wi))

Audibility. Word audibility regressors were constructed
separately for the attended and ignored stories to capture the
degree of masking of each word in one story by the speaker of the
other story. In contrast to dissimilarity and surprisal, this value
reflects the information at the shortest, word-by-word time scale,
with higher signal-to-noise ratio (SNR) values reflecting greater
peripheral fidelity of target speech, leading to lower uncertainty
in speech identification on the basis of the bottom-up signal. For

each word wi in a given story, its audibility was defined in dB
SNR units:

Aud(wi) = 20 log10
RMS(y(wi))

RMS(z(wi))

where y(wi) is the acoustic waveform of a word wi spoken by one
speaker, and z(wi) is the acoustic waveform of the other speaker
at the same time. Because neural responses have limited dynamic
range while the audibility measure ranged from –inf to inf, the
audibility values were rescaled to range from 0 to 1. In order to do
this, audibility values were first clipped above 10 dB and below –
10 dB, and then scaled to the 0–1 range by:

Audscaled =
Aud + 10

20

Finally, because the distributions of regressor values had distinct
means for different features, we scaled each feature’s non-zero
regressor values to have an RMS of 1. Bringing different features
into similar amplitude ranges was done in order to make the
amplitudes of corresponding TRFs more similar to each other,
thus improving regularization performance.

It is notable that although neither dissimilarity, nor surprisal
correlated with audibility (r = 0.03 and –0.02, respectively), there
was a modest correlation between dissimilarity and surprisal
(r = 0.22), suggesting that both features captured some aspects of
speech predictability. Nevertheless, the fact that the correlation
was relatively low suggests that much of the variance in each of
the two features captured distinct aspects of the linguistic content
in the speech stimuli.

Feature-Specific Model Performance
After fitting the full multi-feature model as described above, we
computed the unique contribution of each feature (except for
word onsets; see below) to the overall model fit using procedures
described in Broderick et al. (2021). Briefly, on each cross-
validation fold, we estimated each feature’s contribution to the
overall fit by comparing the goodness-of-fit for the full model to
a null model, in which that feature’s contribution was eliminated.
This was done by permuting regressor values of that feature,
while maintaining their original timing. For all other features,
the original regressors were used. Null model fits were computed
by convolving the estimated TRFs with these regressors and
correlating the predicted EEG waveform with the test data. This
procedure was repeated 10 times to estimate the average null-
model performance. Each feature’s model contribution was then
computed as the difference between the goodness-of-fit metrics
for the full model and its null model. Note that because feature
values in the word onset regressor did not vary, the contribution
of word onset to the overall model fit was zero by definition. As
such, model fit contributions were only computed and analyzed
for the remaining three features.

Regions of Interest
To strengthen our statistical analyses in light of inter-subject
variability due to nuisance variables such as head shape
and electrode cap placement, all analyses were performed on
two regions of interest (ROI) derived by averaging model
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goodness-of-fit and TRFs from subsets of frontal and parietal
electrodes (Figure 1B). The parietal ROI was chosen because
of prior evidence that responses to higher-level features such
as dissimilarity or surprisal tend to peak over parietal sites
near electrode Pz (e.g., Broderick et al., 2018; Weissbart et al.,
2019). The frontal ROI was included because we hypothesized
that recruitment of frontal regions may aid prediction and
disambiguation of the speech signals, particularly in challenging
listening scenarios such as in the presence of a competing speaker.

Statistical Analysis
Group-level statistical analyses were applied to pooled outputs
of single subject TRF analyses. Linear mixed-effects modeling
(LMM), implemented using IBM SPSS 27, was used to assess how
age group (YA vs. OA), ROI (frontal vs. posterior), model feature
(dissimilarity, surprisal, and audibility), and attention (attended
vs. ignored speech) related to feature-specific contributions to
the TRF model’s goodness-of-fit. In addition to specifying the
full interaction design in the fixed effects portion of the LMM,
for each participant we included random intercept and random
effects of feature and attention. We chose to include these
random effects to reflect the possibilities that during speech
processing high-level features may be weighed differently across
participants, and that different participants may vary in their
attentional control capabilities. Although this random effects
specification was a priori reasonable, we verified that simpler
and more complex specifications did not meaningfully change
the outcome of the analysis. LMM was fit using maximum
likelihood method, with Satterthwaite approximation for degrees
of freedom, and diagonal covariance matrix pattern for random
effects, in order to partially account for heteroscedasticity in
the data. Goodness-of-fit values were scaled by 1000 in order
to reduce the impact of rounding errors on the outcome of
analysis. To statistically assess main effects and interactions, we
used LMM ANOVA (type 3). Interactions were interpreted via
post hoc examination of simple effects.

Comparisons of TRFs for the attended and ignored stories
were performed for each TRF time point between 0 and 780 ms
using two-tailed, paired-samples t-tests. Because this involved
hundreds of statistical comparisons, we applied the false discovery
rate (FDR; Benjamini and Hochberg, 1995) correction to control
for the proportion of false positives among all significant
discoveries. Similarly, between-group comparisons (i.e., YA vs.
OA) were performed on TRF time courses, with two-sample
t-tests applied separately to the attended and ignored TRFs and
corrected using the FDR method.

As a potentially more sensitive alternative to TRF analyses
utilizing pre-determined ROIs, we also conducted cluster-based
permutation analyses (Maris and Oostenveld, 2007) utilizing
all 64 electrodes. Briefly, this non-parametric approach assesses
differences between two conditions by comparing spatio-
temporal clusters of a particular test statistic (e.g., the sum
of spatially and temporally adjacent t-statistics that exceed a
given uncorrected α threshold) to an empirically computed null
distribution for this statistic. The null distribution is established
by repeated random permutation of the labels for the two
conditions (i.e., assuming that there is no difference between

the conditions), each time splitting the data according to the
permuted labels and computing the same cluster statistics.
The maximum-valued cluster statistic from each iteration is
used to build the null distribution. Statistical significance for
each of the clusters present in the original data is then
established by computing the probability of exceeding that
test statistic value within the null distribution. In practice,
we utilized the ft_timelockstatistics function from FieldTrip
toolbox (Oostenveld et al., 2011) for MATLAB (configuration
parameters: ‘montecarlo’ method for computing cluster statistics,
‘indepsamplesT’ statistic for forming clusters when assessing
effects of attention, with α = 0.05, ‘depsamplesT’ statistic for
effects of age, ’maxsum’ cluster statistic, and 1000 iterations for
establishing the null distribution).

Finally, exploratory correlation analyses were performed on
different combinations of neural (e.g., full model goodness-
of-fit, feature-wise model contributions, TRF amplitudes) and
behavioral (e.g., comprehension, confidence, and SSQm scores)
metrics. In these analyses, we corrected each set of correlation
statistics using the Bonferroni correction. Importantly, this
represents less stringent multiple comparisons correction than
correcting by the total number of comparisons across all
combinations of correlation analyses. This choice was made as an
attempt to improve the balance between the likelihood of Type I
and Type II errors in these exploratory analyses.

RESULTS

Behavioral Measures of Speech
Understanding
Following each 1-min block of listening to a two-talker
speech mixture, participants responded to four true/false
questions about the content of the attended story and indicated
confidence about their response. The average performance on
this comprehension task was 83% (SD: 7.5%, 64.4 – 94.2%
range), significantly above the 50% chance level [t(40) = 28.4,
p < 0.001], indicating that participants were successfully able
to attend to the target speaker and comprehend the content
of the story. At the same time, the fact that these scores were
considerably below ceiling is an indication that the two-talker
mixture produced overall a challenging listening scenario. Older
participants showed a trend of performing better than younger
participants (YA: mean± SD = 80.8± 7.9%, OA: 85.1%± 6.5%),
but this difference did not reach statistical significance (z = –
1.8, p = 0.07, Mann–Whitney U-test). When treating age as a
continuous variable, its association with the proportion of correct
responses was also non-significant (r = 0.14, p = 0.4). Confidence
measures showed the same general pattern of results as the
comprehension scores and the two measures were positively
correlated [r = 0.68, p < 0.001], indicating that participants had
good awareness of their performance.

Because hearing loss was more common among the older
participants, and we compensated for it by amplifying the audio
in frequency ranges of elevated thresholds (see section “Materials
and Methods”), we assessed whether this amplification could
account for the difference in performance. As expected, in the
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portion of participants who received amplification (n = 18), there
was no relationship between average high-frequency audiogram
(2–8 kHz range), and comprehension-performance (r = –0.23,
p = 0.37) or confidence (r = 0.12, p = 0.63) scores. The same
pattern was observed when using the average of the entire 0.25–
8 kHz range of audiometry. As such, there was no evidence
that amplification had an impact on performance, or that it
could account for the marginal difference in the between-group
comparison of performance.

Prior to the experimental session, each participant filled out
a modified subset of the SSQ (SSQm) questionnaire to assess
their subjective difficulties with SIN perception. We found no
significant difference in these measures between younger and
older participants (z = –0.37, p = 0.71, Mann–Whitney U-test),
and no correlation between SSQm score and the proportion of
correct responses from the behavioral task (r = –0.13, p = 0.43),
or between SSQm and high-frequency hearing loss (r = –0.03,
p = 0.92).

Cortical Measures of Speech-Mixture
Processing
In order to characterize cortical responses to semantic content
of speech, we applied computational models to EEG responses
measured while participants listened to a mixture of two distinct
narrative stories, while attending to one of them. The features
included in the model were word onsets, word audibility
reflecting word-by-word fidelity of the incoming acoustic signal,
semantic dissimilarity reflecting short-term (sentence timescale)
dissimilarities between the word2vec vector characterizing each
word and its immediately preceding context, and word surprisal
reflecting long-term predictability of each word given the
preceding multi-sentence context.

Linear regression of these features against the EEG signal
produced responses that explained a significant amount of
variance in the data pooled across participant groups and
electrodes, as reflected by a significant positive correlation
between the full-model EEG prediction and held-out data
for both attended [t(40) = 20.95, p < 0.001] and ignored
[t(40) = 13.47, p < 0.001] speech, with a significantly stronger
fit for the former [t(40) = 9.07, p < 0.001; Figure 2]. The same
pattern of results was observed when examining model fits in
frontal and parietal ROIs. Figure 3 depicts the average attended
(green) and ignored (purple) TRFs in the two ROIs for each
of the features included in the model. Attended speech elicited
robust neural responses for most of the features included in
the model, with prominent early (∼100 ms) peaks observed
frontally for onsets and surprisal, and late (∼400 ms) peaks
observed frontally for audibility, and parietally for surprisal
and audibility. In contrast, ignored speech elicited flatter and
noisier responses, with prominent peaks only appearing for
surprisal and audibility. Direct comparison of attended and
ignored TRFs revealed significant attentional modulation for all
features, as depicted by black horizontal bars at the bottom of
each TRF plot (indicating time points corresponding to FDR-
corrected significant effects of attention). This modulation was
most pronounced for surprisal and audibility, which exhibited

FIGURE 2 | The four-feature model explained a significant amount of variance
in responses to both attended and ignored speech. Box plots (top) represent
distributions of goodness-of-fit values averaged over electrodes across all
participants. The significance level (***) for the statistical comparison between
attended and ignored speech corresponds to p < 0.001. The topographic
plots (bottom) depict the distribution of goodness-of-fit values for attended
and ignored speech across the scalp.

differences at both earlier (∼200 ms) and later (400 and 600+
ms) time points in at least one of the ROIs. Consistent with these
results, supplementary cluster-based permutation test analyses
also indicated that attended and ignored speech produced
significantly different responses for each of the four features (see
Supplementary Figure 1).

Contributions of each feature (except for onsets; see section
“Feature-Specific Model Performance”) to the overall model fit
for both age groups are plotted in Figure 4. Model fit contribution
values represent the difference in goodness-of-fit for the held-out
EEG data between the full model and null models in which a given
feature’s regressor was selectively disrupted by shuffling its feature
amplitudes (see section “Feature-Specific Model Performance”).
Thus, for a particular feature, a model fit contribution exceeding
0 represents the scenario where the EEG responses scaled, to
some degree, with that feature’s regressor values. To compare
how these model contributions differed in the two age groups,
we performed a LMM ANOVA with within-subject factors of
ROI, model feature, and attention, and a between-subjects factor
of age group (Table 1). We found a main effect of age group
[F(1,41.6) = 6.46, p = 0.015], reflecting stronger overall goodness-
of-fit contributions in older than younger adults. We also found a
main effect of feature [F(2,60) = 24.05, p < 0.001], stemming from
stronger tracking of surprisal and audibility than dissimilarity
(both p < 0.001), and a trend of stronger tracking of audibility
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FIGURE 3 | Attentional modulation of feature-specific responses. Each plot depicts the comparison of TRFs averaged across all participants for attended (green)
and ignored (purple) speech for each of the features (panel rows) and ROIs (panel columns). The upper and lower bound of each curve represents ± 1 standard error
(SE) of the mean. Black horizontal bars at the bottom of the plots indicate time intervals over which attended and ignored TRFs differed significantly at the
FDR-corrected level, with α = 0.05.

than surprisal (p = 0.03, with α = 0.017). Finally, we found a main
effect of ROI [F(1,358.7) = 14.12, p < 0.001], reflecting stronger
goodness-of-fit contributions in the frontal than parietal ROI.
Surprisingly, despite clear attentional modulation in both the
overall goodness-of-fit and the TRFs (i.e., Figures 2, 3), the main
effect of attention was non-significant [F(1,41) = 3.01, p = 0.09],
reflecting only a trend of stronger tracking of attended features.

In addition to these main effects, we detected several
significant interactions. There was a significant interaction
between attention and age group [F(1,41) = 5.19, p = 0.028],

reflecting an overall greater difference between attended
and ignored fits in older than younger participants [YA:
F(1,41) = 0.14, p = 0.71; OA: F(1,41) = 8.25, p = 0.006].
A significant interaction between ROI and age group
[F(1, 358.7) = 4.12, p = 0.043] was associated with
stronger contributions to model fits across features at the
frontal compared to the parietal ROI in older adults [YA:
F(1,358.7) = 1.46, p = 0.23; OA: F(1,358.7) = 17.16, p < 0.001].
Finally, we found a significant interaction between feature and
ROI [F(2,358.7) = 5.82, p = 0.003], reflecting stronger differential
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FIGURE 4 | Feature-specific contributions to the model fit for attended (top)
and ignored (bottom) responses. Each panel depicts the box plot of model fit
contributions for each of the three features in the younger (red) and older
(blue) adult groups. Left and right panels represent results for frontal and
parietal ROIs, respectively. Goodness-of-fit contributions for the word-onset
feature were by definition 0 due to the permutation-based approach to
compute these contributions, and are therefore not included in the figure.
Note that some points are depicted with red + signs as outliers in order to
better depict where the bulk of the data points lie within the fit contribution
distributions. However, all data points were utilized in statistical analyses
described in the text.

in tracking between frontal and parietal ROIs for audibility than
for dissimilarity and surprisal [Dissimilarity: F(1,358.7) = 0.05,
p = 0.83; Surprisal: F(1,358.7) = 2.03, p = 0.16; Audibility:
F(1,358.7) = 23.67, p < 0.001]. While our statistical analyses were
ROI-based, for illustrative purposes we also provide topographies
of goodness-of-fit differences between age groups for each of the
features (see Supplementary Figure 2).

Although the goodness-of-fit analyses above indicate that
there are significant differences in processing of attended and
ignored speech between younger and older participants, they
do not provide insight into the timing and amplitude of the

TABLE 1 | LMM ANOVA results.

df F

Age 1, 41.6 6.46*

Feature 2, 60 24.045***

Attend 1, 41 3.01

ROI 1, 358.7 14.115***

Age × Feature 2, 60 0.694

Age × Attend 1, 41 5.186*

Age × ROI 1, 358.7 4.121*

Feature × Attend 2, 358.7 1.155

Feature × ROI 2, 358.7 5.815**

Attend × ROI 1, 358.7 0.022

Age × Feature × Attend 2, 358.7 2.024

Age × Feature × ROI 2, 358.7 0.693

Age × Attend × ROI 1, 358.7 0.593

Feature × Attend × ROI 2, 358.7 0.952

Age × Feature × Attend × ROI 2, 358.7 0.775

Significant F-statistic values are bold, with levels of significance: *p < 0.05,
**p < 0.01, ***p < 0.001.

underlying neural responses. To explore if our data contain
evidence of age-related differences in neural responses, we
statistically compared TRF amplitudes between the two age
groups at each time point in the 0–780 ms range. Because
these analyses involved hundreds of point-by-point comparisons
between groups, we applied FDR correction, and focused on
comparisons at the level of individual features, rather than
utilizing more complex interaction metrics. As such, these
analyses were relatively rudimentary, and should be considered
as exploratory in nature. As an alternative, and potentially
more sensitive approach to detecting group differences, we
also compared group TRFs across the entire scalp using
cluster-based permutation analyses (Maris and Oostenveld,
2007). Note that in their implementation here, these latter
analyses test for group differences without statistical claims
about the timing or spatial localization of these differences
(Sassenhagen and Draschkow, 2019).

Figure 5 depicts the differences in responses to the attended
speech between younger (red lines) and older (blue lines)
participants, separately for each feature (plot rows) and ROI
(plot columns). Across the features, we did not detect any
significantly different time points at the FDR-corrected level,
although there was a trend for OA to show higher-amplitude
TRFs, as indicated by greater TRF deflections from 0 for the OA
than YA. This trend was most pronounced for audibility at the
frontal ROI between ∼250 and 500 ms, where TRF values for a
range of time points differed between groups at the uncorrected
level (not pictured). Supplementary cluster-based permutation
analyses detected significantly stronger response to audibility by
OA (p = 0.005, with α = 0.006) with the cluster underlying
this difference including central electrodes around at the ∼300–
450 ms latency (see Supplementary Figure 3).

Between-group comparison of TRFs for ignored speech are
shown in Figure 6. Unlike responses to attended speech, most
features, with the exception of frontal TRFs for surprisal and
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FIGURE 5 | Between-group comparison of TRFs for attended speech. Each plot depicts a comparison of TRFs between younger (red curves) and older (blue
curves) participants, for different features (panel rows) and ROIs (panel columns). Note that the TRF amplitudes did not differ significantly between groups at the
FDR-corrected level at any time point for any of the features (but see Supplementary Figure 3).

audibility, showed largely flat response patterns that did not
differ between the groups. As with attended speech, the frontal
audibility TRF showed the most pronounced trend towards a
group difference at around the ∼500 ms latency, with the OA
TRF showing a greater negative deflection compared to YA.
Cluster-based permutation test detected a significantly more
negative response for audibility in the OA group (p = 0.006,
α = 0.006), with the cluster underlying this difference including
fronto-central electrodes between ∼400 and 550 ms (see
Supplementary Figure 4).

To complement the exploratory point-by-point and cluster-
based analyses, we also conducted between-groups analyses
specifically targeted at comparing responses in the time range
of the N400 response. To this end, we compared each feature’s
average TRF amplitudes in the 300–500 ms range. Because
previous work found little to no evidence of N400 for ignored
speech, these comparisons were only done for attended speech.
This analysis revealed that YA had significantly weaker frontal
response to audibility than OA [z = –2.96, p = 0.003, α = 0.006,
given the total number of eight comparisons), consistent with the
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FIGURE 6 | Between-group comparison of TRFs for ignored speech. Subplot arrangement and statistical comparisons are as in Figure 5. Note that the TRF
amplitudes did not differ significantly between groups at the FDR-corrected level at any time point for any of the features (but see Supplementary Figure 4).

trends seen in Figure 5. No other feature approached significant
difference in either ROI.

Neuro-Behavioral Correlations
We next sought to examine how our electrophysiological
measures related to behavioral responses during the experiment,
and the SSQm scores obtained prior to this experiment. To this
end, we conducted a number of exploratory analyses, including
correlations between behavioral measures and the overall model
goodness-of-fit, feature-specific model contributions, and the
average TRF amplitudes in the 300–500 ms time range. Given

the number of these analyses, and our limited sample size,
we focused our analyses on full participant samples, rather
than age group comparisons. Because of the less stringent
multiple comparisons correction procedure (only correcting by
the number of statistical tests within each analysis), significant
effects in this section should be interpreted as trends rather than
robust statistical effects.

Figure 7 depicts the relationship between the proportion
of correct responses on comprehension questions during the
experiment, and the overall model goodness-of-fit in the frontal
(left panel) and parietal (right panel) ROIs. Red and blue symbols
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FIGURE 7 | Scatterplots showing the relationship between the full model
goodness-of-fit and the proportion of correct responses on the
comprehension questions. Symbols represent data from individual
participants pooled across the two age groups, YA (red symbols) and OA
(blue symbols). Pearson’s correlation coefficients and the corresponding
uncorrected p-values, with α = 0.025, are shown for frontal (left plot) and
parietal (right plot) ROIs. Due to the exploratory nature of this analysis,
relationships present in the data should be interpreted as trends.

depict data from YA and OA participants, respectively. While we
observed no relationship in frontal regions (r = 0.06, p = 0.71),
there was a non-significant positive association trend between
the two measures (r = 0.31, p = 0.048, Bonferroni-corrected
α = 0.025) in the parietal ROI. A similar pattern of results was
observed when proportion of high-confidence responses for the
comprehension questions was used instead of the performance
itself. Relationships between the proportion of correct responses
and feature-specific contributions to the model fit are depicted
in Figure 8. We observed a trend for a positive association
for word audibility in the parietal ROI (r = 0.43, p = 0.006,
α = 0.008). Although dissimilarity showed a negative trend in
both ROIs, this result was driven by the single outlier data point
from the OA group.

Next, we explored the possible relationship between the
comprehension scores (proportion correct) and the average TRF
amplitude in the 300–500 ms time range, when N400 effects
generally appear parietally. These analyses, shown in Figure 9,
revealed a trend towards a positive relationship for surprisal
in frontal (r = 0.49, p = 0.001) and a negative relationship in
parietal (r = –0.42, p = 0.007, α = 0.006) regions. Although
this analysis focused broadly on the time range of N400, the
frontal trend was associated with positive, rather than negative
deflections in the TRF.

Correlation analyses examining the relationship between
subjective SIN perception difficulties, captured by the SSQm
scores, and the full model goodness-of-fit metric (Figure 10)
revealed trends toward a negative relationship in both the frontal
(r = –0.29, p = 0.07) and parietal ROIs (r = –0.31, p = 0.05,
α = 0.025). However, analyses of relationships with feature-
specific TRF amplitudes and model contributions revealed no
feature for which these trends were apparent.

Finally, because a portion of the participants had mild
hearing loss at high frequencies (which was compensated for
by amplifying speech in the corresponding frequency ranges;
see section “Materials and Methods”), we examined if and

FIGURE 8 | Scatterplots of comprehension scores and feature-specific model
contributions. Different rows of panels refer to different features and different
columns correspond to the two ROIs. Red and blue symbols represent data
from YA and OA groups, respectively. Pearson’s correlations and the
corresponding uncorrected p-values, with α = 0.008, are shown in the upper
portion of each panel. Due to the exploratory nature of this analysis,
relationships present in the data should be interpreted as trends.

how high-frequency (2–8 kHz) hearing thresholds in these
participants related to the overall model fits (Figure 11).
Although we found no relationship between the average hearing
thresholds over the 2–8 kHz range and model goodness-of-fit for
attended speech (Frontal ROI: r = 0.06, p = 0.82; Parietal ROI:
r = –0.07, p = 0.76), there was a significant negative correlation
for ignored speech frontally (r = –0.61, p = 0.007) and a negative
trend parietally (r = –0.56, p = 0.016, α = 0.013). At the level
of feature-specific contributions to the model fit, we observed
a trend of a negative correlation with dissimilarity (r = –0.49,
p = 0.04, α = 0.008). However, because this feature had overall
near-zero fit contributions, this trend was likely spurious.

DISCUSSION

Existing objective (laboratory and clinical) measures of speech
perception have shown surprisingly poor correlations with
self-reported difficulties with speech recognition in noise that
arise from aging and/or hearing impairment (Phatak et al., 2018;
Smith et al., 2019). In the present study, we measured
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FIGURE 9 | Scatterplots of comprehension scores and mean TRF amplitudes
between 300 and 500 ms. Figure layout and color-coding of data points is as
in Figure 8. The depicted p-values are uncorrected, with α = 0.006. Due to
the exploratory nature of this analysis, relationships present in the data should
be interpreted as trends.

EEG responses to continuous two-talker speech mixtures in
younger (< 40 y.o.) and older (> 40 y.o.) participants to
investigate changes in neural responses to masked speech with
increasing age. Participants’ cortical responses were predicted by
modeling TRFs for four speech features: word onsets, semantic
dissimilarity, lexical surprisal, and word-level audibility. We also
collected behavioral measures, including participants’ subjective
ratings of their difficulties with SIN understanding (modified
SSQ), and comprehension scores for attended speech during the
experiment and the associated confidence ratings.

Two of the features, surprisal and audibility, emerged
as the model’s main contributors to the variance in the
EEG data, suggesting that these features captured stimulus
characteristics actively tracked by our participants’ auditory
systems. The contributions were particularly evident for attended

FIGURE 10 | Scatterplots of SSQm scores and overall model goodness-of-fit
for frontal (left panel) and parietal (right panel) ROIs. Note that a higher
score on SSQm questionnaire reflects a greater difficulty with understanding
speech in noise. The depicted p-values are uncorrected, with α = 0.025. Due
to the exploratory nature of this analysis, relationships present in the data
should be interpreted as trends.

FIGURE 11 | Scatterplots of average high-frequency hearing thresholds
(2–8 kHz) in participants with hearing loss and overall model goodness-of-fit
as a function of attention (panel rows) and ROI (panel columns). The
depicted p-values are uncorrected, with α = 0.013. Due to the exploratory
nature of this analysis, relationships present in the data should be interpreted
as trends.

speech (Figure 4). In addition to robust tracking of word-
level features, we found that participants’ performance on the
comprehension task (Figure 7) and the associated confidence
ratings showed a trend towards a positive correlation with
the overall model goodness-of-fit for the attended speech.
This suggests that successful tracking of word-level features is
associated with improved speech comprehension. Due to the
exploratory nature of our neuro-behavioral analyses, we were
unable to establish robust statistical links between performance
and model contributions, or TRF magnitudes, for any one
of the model features. However, we did find trends towards
an association between performance and audibility model fit
contributions in the parietal ROI, and between performance
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and surprisal TRF amplitudes in both ROIs. Speculatively, these
trends suggest that improved comprehension may be related
to at least two cognitive processes. First, the association with
audibility suggests that improved performance may stem from
more effective weighing of word-level information by word
reliability, as reflected by the word SNR. Second, the association
with surprisal suggests that high performance may be related
to increased sensitivity to lexical and/or semantic associations
between different segments of speech.

Consistent with previous work on neural representations
of two-talker speech (Ding and Simon, 2012a; Mesgarani and
Chang, 2012; Broderick et al., 2018; O’Sullivan et al., 2019) we
found that neural responses to a speech mixture preferentially
reflect attended speech, while representations of distractor speech
are comparatively suppressed. This attentional modulation was
more apparent in TRFs than model-fit contributions.

Comparisons of EEG responses between age groups revealed
that OAs exhibited on average greater differences in feature-
specific model-fit contributions between attended and ignored
speech than YAs. This age effect was driven primarily by stronger
fits for attended speech in the frontal ROI (see Figure 4).
Although to a weaker degree, these differences were mirrored
in attended TRFs, in that OAs showed generally stronger TRF
deflections from 0 compared to YAs (Figure 5). However,
these TRF differences did not reach statistical significance when
controlling for false discovery rate, and we only detected group
differences for audibility (both attended and ignored) using
cluster-based permutation methods. The discrepancy between
goodness-of-fit and TRF metrics may have stemmed from
nuisance factors such as inter-subject variability in cortical
geometry, and/or inadequate sample size.

It is notable that the comprehension scores of OAs tended to
be higher than that of YAs, despite greater prevalence of hearing
loss (16 out of 18 participants in the OA group had some degree
of HI). This finding complicates the interpretation of age-related
differences in neural responses. It may be the case that OAs in our
participant sample were either more engaged, or exerted greater
effort in the task, which in turn led to stronger speech tracking
in their EEG data, as well as marginally better performance. As
such, an important direction for future work will be to examine
how cognitive factors such as task engagement and effort relate to
electrophysiological measures of speech processing.

Relationship to Existing Work on
Age-Effects on Electrophysiological
Measures of Speech Processing
Several studies have examined effects of age (Presacco et al., 2016;
Decruy et al., 2019; Zan et al., 2020) and hearing loss (Millman
et al., 2017; Decruy et al., 2020) on continuous speech processing
in the context of envelope tracking. Generally, these studies
have demonstrated that older adults and those with hearing
loss exhibit exaggerated cortical tracking of speech envelope
both in quiet and in the presence of a competing speaker. Our
analyses show a similar pattern of amplified feature tracking in
the aging population, albeit for word-level features. Responses to
the audibility feature, in particular, may reflect similar underlying

processes as those involved in envelope processing. However,
audibility in our study was defined as the word-by-word ratio
between the acoustic energy in the two speech waveforms, rather
than the absolute amplitude of each speech signal, making
direct comparisons of the two measures difficult. Distinct from
envelope TRFs, the audibility TRF in our study contained
prolonged deflections from 0 in the 300–500 ms latency range,
suggesting that our measure may tap into additional higher-
level processes (notably, word-onset TRFs only contained robust
response at latencies prior to ∼250 ms). Although high-level
features such as lexical surprisal are seemingly unrelated to lower-
level features such as speech envelope, it is possible that predictive
processes may interact with lower-level stimulus encoding via
feedback processes, as has been demonstrated for dissimilarity
(Broderick et al., 2019).

While measures of envelope tracking have provided important
insights into speech processing, they are largely uninformative
about the nature of higher-level processes involved in speech
perception. In recent years, an increasing number of studies have
investigated the relationship of electrophysiologically measured
cortical responses to phoneme- and word-level representations
related to lexical processing (e.g., Brodbeck et al., 2018), as
well as syntactic and semantic (Broderick et al., 2018; Heilbron
et al., 2019; Weissbart et al., 2019; Donhauser and Baillet, 2020)
processing. Nevertheless, relatively little is known about how
these representations change as a function of age, particularly
in challenging listening conditions. Recently, Broderick et al.
(2021) compared representations of semantic dissimilarity and
5-gram lexical surprisal derived from responses to clean speech
in younger and older adults. They showed that although younger
adults exhibited robust responses to each feature, older adults
only showed strong responses to lexical surprisal (albeit with a
delayed peak response), with a nearly absent response to semantic
dissimilarity. These results were interpreted as potentially
reflecting lesser reliance of older adults on semantic predictive
process due to age-related cognitive decline. Consistent with this,
older participants with greater semantic verbal fluency, a measure
related to the ability to engage in semantic prediction, showed
greater contribution of semantic dissimilarity to the model of
cortical responses to speech.

Because our experimental design involved listening to a more
challenging, two-speaker mixture, direct comparisons of our
results with those of Broderick et al. (2021) are not possible.
Nevertheless, there are marked differences between the patterns
of results observed in their study compared to ours. In particular,
we observed overall stronger feature tracking in older than
younger adults, particularly at the frontal ROI. However, the
general pattern of relative strength of tracking across features did
not differ between groups.

In Broderick et al. (2021), the greatest age-related differences
were shown for semantic dissimilarity, whereas our goodness-
of-fit results showed relatively weak contributions from this
feature (compared to surprisal and word audibility) that did not
differ significantly between the younger and older age groups.
Additionally, we did not observe robust dissimilarity-related
N400 response in either group, in contrast to the significant
parietal N400 in the TRF for dissimilarity in older but not
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younger adults reported by Broderick et al. (2021). Although this
discrepancy is puzzling given the use of nearly identical methods
for computing dissimilarity, one contributing factor to this may
have been that our study used different referencing procedures
(common average vs. mastoid reference in Broderick et al., 2021),
which could affect the amplitudes and topography of the N400
responses. Nevertheless, because we did observe robust parietal
N400-like responses for surprisal and audibility, it seems unlikely
that the referencing strategy prevented the observation of the
N400 response for dissimilarity. Another possible reason for the
discrepancy is that our regressors included feature values for
both content and function words, while Broderick et al. (2021)
only analyzed responses to content words. However, re-analysis
of our data utilizing just content word regressors (not shown
here) resulted in TRFs and model fit patterns that were highly
similar to all-word regressors, albeit slightly noisier. Therefore, it
may be that the utility of dissimilarity is limited if other features,
which better capture neural responses that would otherwise be
attributed to dissimilarity, are included in the model.

Another important difference between the two studies
pertains to the role of surprisal in the models fitted to the
data. Specifically, unlike the relatively simple 5-gram surprisal
used by Broderick et al. (2021), the surprisal features utilized in
our study were computed using an advanced natural language
model (GPT-2; Radford et al., 2019) that uses preceding context
of up to several hundred words (i.e., dozens of sentences) in
order to estimate each upcoming word. As such, surprisal in
our study likely captured responses related to higher-level lexical
and/or syntactic predictions. Thus, although responses to these
two surprisal measures cannot be directly compared, the robust
tracking of surprisal by younger and older adults in our study
is consistent with reliance on predictive processes in both of
these populations.

Importantly, the seemingly conflicting pattern of results
between these studies could in fact reflect two distinct
contributors to speech perception difficulties in older adults,
namely decreases in the fidelity of lower level representations,
and cognitive decline. Prevalence of mild high-frequency hearing
loss in our sample of older adults was quite high, making
it likely that decreased fidelity of peripheral representations
had an effect on our results. While Broderick et al. (2021)
did not report audiogram measures for their sample of older
adults, the mean age was considerably greater in their study
(mean ± SD = 63.9 ± 6.7 years vs. 53.5 ± 8.7 years in this
study), making it likely that similar or greater hearing difficulties
may have impacted their participants. However, because of
the age difference in the two samples, the effects of cognitive
decline may have contributed more significantly to the results
of Broderick et al. (2021), and may potentially explain why
measures related to predictive processes showed different effects
in the two studies.

Possible Mechanisms of Age-Related
Amplification of Speech Tracking
The present study represents one of the initial attempts to
characterize and compare responses to high-level features in

two-talker speech mixtures from younger and older adults.
As such, one of our goals was to broadly explore these
responses and their relationship to behavioral measures,
in order to provide a relatively rich reference point for
future work on this topic. However, inclusion of relatively
extensive exploratory analyses came at the cost of lower
power for detecting statistical effects. Additionally our
study design notably did not involve direct experimental
manipulation of any of the speech features, but instead
exploited the natural variation of these features in the
speech materials.

While we are cautious about making mechanistic
interpretations of our results given the above reasoning,
we speculate that there are at least two underlying factors
that may have given rise to the pattern of amplified feature
tracking in the OA group. First, because the OAs showed a
trend of better comprehension performance than the YAs,
it appears plausible that the two groups differed in their
utilization of cognitive resources related to executive function.
More specifically, it may be the case that the older group
engaged in the task more effortfully, leading to both stronger
feature tracking, and marginally increased performance.
Past behavioral work has demonstrated that listening effort,
as quantified using pupillometry, is monotonically related
to spectral resolution of speech (Winn et al., 2015), such
that comprehension of lower-fidelity speech requires greater
listening effort even when performance is at ceiling. Since
mild hearing loss was more prevalent in our OA group, it
may be the case that lower-fidelity in their peripheral speech
representation required exertion of greater effort than that
of the YA group. Indeed, pupillometry data from older
adults with mild hearing loss have demonstrated that this
group exerts greater listening effort than younger normal
hearing population, even in a simple word identification task
(Ayasse et al., 2017).

Another possible factor that may have subserved the age
differences in feature tracking in our study is the degree of
utilization of contextual cues during comprehension. Specifically,
a key compensatory mechanism for the poorer fidelity of
peripheral representation in the aging population may be
increased reliance on the successfully identified segments of
speech to aid inference about speech segments with lower
SNR. Indeed, greater dependence on contextual cues for speech
comprehension has been demonstrated in populations with
compromised representations of speech, including those with
hearing loss (Benichov et al., 2012; Lash et al., 2013) and
cochlear implants (Amichetti et al., 2018; Dingemanse and
Goedegebure, 2019; O’Neill et al., 2019). In the context of our
feature-tracking model, a possible manifestation of heightened
reliance on predictive processes would be increased tracking
of surprisal. Although we did not find evidence that surprisal,
specifically, was tracked differentially by the two age groups
(i.e., there was no interaction between age and feature), the
overall greater model contributions in the OAs is broadly
consistent with the possibility that predictive processes were
more actively engaged in that group. Additionally, because
audibility-related responses showed prolonged peaks at relatively
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late latencies (e.g., see peaks at 250–550 ms in Figure 3),
we speculate that the tracking of this feature may also reflect
utilization of more intelligible speech segments in higher-level
processes, such as prospective prediction and retrospective
disambiguation and/or error-correction (Rönnberg et al., 2019,
2021).

An important caveat with respect to the two factors discussed
above is that the hypothesized increased use of contextual
cues by older adults is unlikely to be independent from
increased listening effort. In fact, listening effort is thought
to reflect the combined effect of an array of cognitive
processes involved in attention and working memory (see review
by Peelle, 2017). As such, increased reliance on predictive
processes may be just one of many manifestations of increased
listening effort.

Higher-Level Speech Feature Tracking as
an Index of Speech in Noise Perception
Difficulties
A key reason for our choice to study responses to lexical and
semantic features is their potentially greater sensitivity to SIN
perception difficulties, compared to responses driven by lower-
level features such as the speech envelope. Because dissimilarity
and surprisal (but not audibility) depend on preceding lexical and
semantic context, in order for language processing mechanisms
to accurately track them, each word within the sequence needs
to be recognized and integrated with the preceding context.
Lower-level SIN processing deficits may thus disproportionately
impact tracking of these features, since missing one word may
potentially distort neural computations of surprisal and lexical
predictions for a large number of subsequent words. Note
that this hypothesis does not discount the critical importance
of lower level processes, such as those related to envelope
processing, for speech comprehension. Instead, it suggests
that the perceptual consequences of peripheral impairment
may be most pronounced at the level of responses to high-
level features.

Our observation of trends suggesting an association
between the amplitude of the surprisal TRF in the N400
latency range and the performance on the comprehension
questions suggests that surprisal may indeed reflect the
extent of SIN perception difficulties. However, due to
the exploratory nature of these analyses, and because
similar trends were not observed for SSQm, it remains
unclear if this neuro-behavioral association is reliable.
A follow-up study explicitly manipulating comprehension
difficulty of speech materials while maintaining lower-level
intelligibility (e.g., by presenting in- vs. out-of-order speech
segments; see Broderick et al., 2020) may help to further
explore this link.

It is notable that the correlations between SSQm or task
performance and feature-specific model contributions were
overall relatively weak in this study. Although this implies
that none of the features utilized in our study can on their
own predict the degree of SIN perception difficulties, it is
possible that such deficits may be better characterized in

terms of a multi-dimensional pattern of feature-specific neural
responses. In other words, it may be the case that in order to
predict the extent of SIN perception difficulties, a combination
of neural measures across multiple lower- and higher-level
speech features needs to be taken into account. Along these
lines, Lesenfants et al. (2019) showed that speech reception
thresholds can be predicted from EEG responses to speech
more accurately using a model that contains both spectrogram
and phonetic features, compared to models containing only
one of the features. Furthermore, because SIN perception
difficulties can have different underlying etiologies, with different
relative contributions from peripheral damage and cognitive
factors, it may be the case that distinct patterns of feature-
specific responses characterize different underlying causes
of SIN deficits.

Limitations
Although our work provides evidence of age-related differences
in cortical tracking of word-level features, a notable limitation
of our method is that it does not establish the source of
this difference. Specifically, it is unclear from our data if the
distinct patterns of feature-tracking were a result of higher-
order linguistic mechanisms receiving inputs with differing
fidelities from lower-level processes, or they reflected age-
related changes in the higher-order mechanisms themselves,
or some combination of the two. Furthermore, differential
engagement in cognitive resources (e.g., due to differential
effort) may also have contributed to the observed differences,
even in the absence of actual changes in the underlying
mechanisms. Thus, an important goal for future work is to
characterize speech representations more thoroughly at multiple
levels of the processing hierarchy in order to elucidate the
mechanisms implicated in the differences in speech processing.
Furthermore, the measurement of speech representations at
multiple stages of the language processing hierarchy may
be critical for explaining individual differences in speech
perception performance, and subjective measures such as
the SSQm.

Although the goal of the present study was to look for evidence
of age-related changes in speech processing, it is notable that
the distribution of ages in our older group did not extend into
particularly old ages (e.g., only 5/21 of OA participants were
older than 60 years). This may have contributed to the relatively
small difference between groups in our data, and our inability to
detect robust differences in the TRFs. Additionally, it is unclear
how results from our OA sample would generalize to even older
populations. While inclusion of older (65+ y.o.) participants is
complicated by hearing loss that may be difficult to compensate
for via amplification (e.g., due to hardware limitations and safety
concerns), it is important for future work to better represent
these participants in the OA sample. Additionally, the present
study treated age as a categorical variable due to concerns that
individual differences unrelated to age would prevent us from
detecting age-related changes in analyses that treat age as a
continuous variable. However, in order to gain more quantitative
insight into how age is related to neural speech processing, it will
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be important to conduct larger-scale studies suited for treating
age as a continuous variable.

The use of artificial neural networks (ANNs) to extract abstract
features related to lexical and semantic content of speech has
become increasingly common in studies of language processing
(Huth et al., 2016; Broderick et al., 2018; Weissbart et al., 2019;
Donhauser and Baillet, 2020). While powerful in characterizing
brain responses to speech, an important limitation in the use of
these features is that it can be difficult to interpret what aspects
of language they actually capture. Specifically, ANNs are usually
trained on a task such as text prediction on the basis of preceding
context, and as such, ANNs may utilize any number of statistical
regularities in the training corpus in order to optimize their
performance. Thus, depending on the ANN architecture, aspects
of language including the syntactic structure, lexical frequency,
semantic relationships, and others may all contribute to the
performance of ANNs. Without knowing the language aspects
learned by ANNs, it is difficult, and may be even impossible,
to parse out the relative contributions of the different variables.
Consequently, when cortical responses are found to track these
features, as is the case in the present study, it may remain unclear
what linguistic processes underlie this tracking. Thus, improving
the interpretability of neural analyses that utilize complex natural
language models remains an important challenge for future work.

CONCLUSION

The present study extends upon the existing body of work
demonstrating the plausibility of measuring cortical tracking of
high-level features related to speech meaning and predictability.
The results show evidence of age-related amplification in
tracking of these features in competing speech streams, albeit
it remains unclear whether these differences stem from changes
in speech processing mechanisms, differences in listening effort,
or some other cognitive factors. Moreover, our exploratory
analyses showed trends of correlations between these measures
and behavioral measures including comprehension performance
and subjective SIN perception difficulty scores, indicating
their potential behavioral relevance. Taken together, our work
demonstrates the utility of modeling cortical responses to
multi-talker speech using complex, word-level features and the
potential for their use to study changes in speech processing due
to aging and hearing loss.
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