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In the newborn rabbit, the light entrainable circadian system is immature and once a
day nursing provides the primary timing cue for entrainment. In advance of the mother’s
arrival, pups display food anticipatory activity (FAA), and metabolic and physiological
parameters are synchronized to this daily event. Central structures in the brain are also
entrained as indicated by expression of Fos and Per1 proteins, GFAP, a glial marker,
and cytochrome oxidase activity. Under fasting conditions, several of these rhythmic
parameters persist in the periphery and brain, including rhythms in the olfactory bulb
(OB). Here we provide an overview of these physiological and neurobiological changes
and focus on three issues, just beginning to be examined in the rabbit. First, we review
evidence supporting roles for the organum vasculosum of lamina terminalis (OVLT) and
median preoptic nucleus (MnPO) in homeostasis of fluid ingestion and the neural basis
of arousal, the latter which also includes the role of the orexigenic system. Second, since
FAA in association with the daily visit of the mother is an example of conditioned learning,
we review evidence for changes in the corticolimbic system and identified nuclei in
the amygdala and extended amygdala as part of the neural substrate responsible for
FAA. Third, we review recent evidence supporting the role of oxytocinergic cells of
the paraventricular hypothalamic nucleus (PVN) as a link to the autonomic system that
underlies physiological events, which occur in preparation for the upcoming next daily
meal. We conclude that the rabbit model has contributed to an overall understanding of
food entrainment.

Keywords: food entrainment, paraventricular nucleus, oxytocin, corticosterone, sympathetic system,
parasympathetic system, reward, median preoptic nucleus

INTRODUCTION

Mammals usually forage and consume food during their period of activity, which is controlled by
the biological clock in the brain, the suprachiasmatic nucleus (SCN), with light serving as their main
entraining signal (Finger et al., 2020). Thus, nocturnal rodents rest during the day but at evening
increase their locomotor activity. However, when food is withheld and provided for a short period
at a fixed time during the day, the normal activity pattern of animals shift from that controlled
by the SCN and animals show now intense locomotor behavior, termed food anticipatory activity
(FAA; Mistlberger, 1994) before food availability. In addition, a number of other physiological and
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neural parameters also are entrained. Early studies proposed
that this phenomenon was controlled by an oscillatory system
entrained by food, named the food-entrainable oscillator
(Stephan, 2002). Now there is general agreement that FAA
is controlled by a diffuse system of central and peripheral
structures (Mistlberger, 2020) but the precise mechanism of
their action it is not well understood. In contrast, rabbit pups
in nature eat once a day for a few minutes. They have been
recognized as a model of FAA, and offer an opportunity to
study food entrainment with little manipulation. Here we first
review what is known about the SCN in rabbit pups, including
its responsiveness to light, as well as review evidence about
peripheral parameters and central structures that are entrained
by periodic food ingestion. Then we focus on three aspects of
food entrainment that have been relatively unexplored in the
rabbit. First, we focus on forebrain areas activated during arousal
at the time of FAA, considering evidence supporting a role
of the median preoptic nucleus (MnPO) in neural control of
FAA and related peripheral events. Second, since periodic food
ingestion implicates a conditioning process we also propose a
neural substrate of motivational conditioning underlying FAA.
Third, finally we address recent evidence in the rabbit pup
regarding a population of oxytocinergic cells in the brain that may
play a central role in coordinating mechanisms between central
and peripheral structures in FAA. Finally, we compare results
in the rabbit with those seen in other species and consider the
usefulness of the rabbit pup for the study of food entrainment in
an evolutionary context.

IMMATURE LIGHT ENTRAINABLE
OSCILLATOR

Altricial mammals, such as the hamster and the rat, at postnatal
day 1 (PD1) possess few or no retinal projections from the
retinohypothalamic tract to the SCN (Speh and Moore, 1993).
The rabbit pup is also altricial and spends all its time in a dark
nest without receiving light. Tract tracing studies using Cholera
toxin B subunit, revealed that, contrary to rodents, the SCN of the
rabbit at PD1 receives a dense innervation of retinal projections
with a predominantly contralateral pattern throughout the entire
SCN (Juárez et al., 2013). A light pulse induces robust expression
of the protein FOS, a marker of neural activity, in the SCN of the
rabbit pup at PD1 although the adult pattern is not reached until
PD19, after opening of the eyelids (Juárez et al., 2013). However,
in this period before reaching the adult capacity to be entrained
by light the neonatal rabbit exhibits a remarkable characteristic,
it presents robust entrainment periodic to food.

FOOD, A STRONG SYNCHRONIZER OF
LOCOMOTOR BEHAVIOR

Rabbit pups are alone in the nest in darkness and spend
most part of the time huddled with little movement (Jilge,
1993), which helps to maintain their core body temperature
(Bautista et al., 2008). In nature (Lloyd and McCowan, 1968)

and in laboratory conditions, the mother nurses her pups
with circadian periodicity and pups show a sharp increase in
locomotor behavior at around 3 h before daily suckling of
milk (Caba and González-Mariscal, 2009; González-Mariscal
et al., 2016). Nursing lasts around 5 min and immediately
after locomotor behavior sharply decreases and thereafter pups
exhibit low activity until expectancy of next nursing bout (Jilge,
1993, 1995; González-Mariscal et al., 2016). This behavioral
pattern persists when pups remain un-nursed for 48 h and
is evident starting around postnatal day 2 (Caba et al., 2008;
Trejo-Muñoz et al., 2012).

PHYSIOLOGICAL, METABOLIC, AND
HORMONAL PARAMETERS
ASSOCIATED WITH FAA

Core body temperature increases 2–3 h prior to nursing which
persists in un-nursed pups (Jilge et al., 2000; Trejo-Muñoz
et al., 2012). Upon nursing stomach weight sharply increases
and induces a sequential use of fuels, first glucose, then liver
glycogen and finally free fatty acids in fasted subjects (Escobar
et al., 2000; Morgado et al., 2008, 2010). We explored the
patterns of the secretion of corticosterone (CORT) and ghrelin
under these conditions. In contrast to rat pups (Levine, 2002),
rabbit pups show a CORT rhythm entrained by nursing, which
persist in un-nursed pups (Rovirosa et al., 2005; Morgado
et al., 2008, 2010). With respect to ghrelin, 12 h after milk
ingestion there is a sharp increase, which coincides with the
emptying of most parts of the stomach (Morgado et al., 2008,
2010). This is interesting as ghrelin increases before meal
ingestion in several species when subjects start to be hungry
(Williams and Cummings, 2005); in addition, there is a premeal
activation of ghrelin in oxyntic cells (LeSauter et al., 2009).
However, ghrelin by itself it is not necessary for FAA in mice
(Gunapala et al., 2011).

RHYTHMS IN OLFACTORY BULB AND
OTHER BRAIN STRUCTURES
ASSOCIATED WITH FAA

The behavioral response of rabbit pups to the nipple’s mammary
pheromone (2-methyl-but-2-enal; 2MB2) is highest during FAA
(Schaal et al., 2003; Coureaud et al., 2004; Montigny et al.,
2006), which suggests that changes also occur in the olfactory
bulb (OB). Indeed, expression of FOS, by immunocytochemistry,
used as neural marker of activity, shows rhythms entrained by
the time of suckling of milk (Nolasco et al., 2012). At this
time both Fos and cytochrome oxidase activity, a marker of
metabolic activity (Wong-Riley, 1989), are highest and persist
in fasted subjects (Nolasco et al., 2012; Olivo et al., 2014).
Also Per1, an indicator of circadian oscillation, shows robust
rhythms in the OB, entrained by nursing (Nolasco et al., 2012;
Montúfar-Chaveznava et al., 2013). In addition, astrocytes in the
OB also show daily changes in the length of radial processes
and in expression of glial fibrillary acidic protein, which are
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associated to nursing time (Vázquez et al., 2020). It is necessary
to explore the role of glia in the circadian rhythmicity in the
OB. In contrast the SCN at this age is immature (Montúfar-
Chaveznava et al., 2013). This suggests that the OB may be of
major importance for the entrainment to daily nursing, and is
also supported by evidence that the OB in adult rodents displays
daily changes in sensitivity to odors (Amir et al., 1999; Granados-
Fuentes et al., 2006), can be entrained by daily meals (Caba
et al., 2014), and contains a circadian clock independent of the
SCN (Granados-Fuentes et al., 2006). However, while bilateral
destruction of the OB in the rabbit disrupts FAA (Navarrete
et al., 2016) it has no or little effect on FAA in adult rats
(Davidson et al., 2001).

Other brain areas have also been implicated in FAA in the
rabbit pup. Similar to the OB, the dorsomedial hypothalamic
nucleus (Caba et al., 2008) and the parabrachial nucleus (Juárez
et al., 2012) are entrained, as indicated by PER1, reaching a peak
4–8 h after nursing, and their oscillations persist during fasting.
In contrast the dorsal vagal complex (Juárez et al., 2012) only
express FOS after nursing. Taken together, these results suggest
that rabbit pups depend on multiple brain structures to entrain
to daily food intake.

ROLE OF THE ORGANUM
VASCULOSUM OF LAMINA
TERMINALIS, THIRST AND AROUSAL

Rabbit pups ingest a large volume of milk at the time of suckling
and do not drink additional fluids for the remaining 24 h. To
better understand this continuous cycle of fluid balance in the
brain we explored the role of the organum vasculosum of lamina
terminalis (OVLT). This organ contains osmoreceptors and
their destruction together with the adjacent MNPO significantly
disrupts thirst and fluid balance (Johnson and Buggy, 1978;
McKinley et al., 1999). In the rabbit pup, we saw a marked
increase of FOS protein expression in the OVLT at 4 h before
nursing (Figure 1) likely reflecting a signal of thirst. In support
of this, pharmacological induction of thirst in rats produces a
large increase of Fos in the OVLT (Thunhorst et al., 1998).
Additionally, we also observed a large postprandial increase of
Fos protein, which is consistent with the large volume of milk
ingested (Figure 1), and 8 h. After nursing Fos reaches its lowest
levels (Figure 1; Moreno et al., 2013) and stomach weight steadily
decreases. At the time of next FAA, the stomach is almost empty
(Morgado et al., 2008, 2010) and Fos increases again in the OVLT.
In contrast, under fasting conditions, Fos levels remain high at all
times (Moreno et al., 2013). In a further study we examined Per1
protein and found a clear rhythm with a peak 8 h after nursing
indicating that this rhythm was entrained by this event; as in the
case of Fos, no rhythm was observed in fasted pups (Figure 1).
Overall, we conclude that the OVLT actively participates in
the osmoregulatory control of milk ingestion and perhaps its
activation before nursing contributes to the expression of FAA
though connections with other brain areas, particularly the
MnPO where thirst signals are integrated and in the cerebral
cortex induce drinking behavior (McKinley et al., 2015).

MEDIAL PREOPTIC AREA AND CORE
BODY TEMPERATURE

At the time of FAA, the core body temperature of rabbit pups
also increases. Neurons in the preoptic area (POA) receive
ascending peripheral thermosensory signals that are integrated in
this nucleus and via projections then regulate the dorsomedial
hypothalamic nucleus to promote thermogenesis (Morrison,
2016). In the rabbit we found an increase of Fos protein in the
POA at the time of nursing coinciding with the increase in core
body temperature at the same time. Lower values were found at
other time points of the cycle (Moreno et al., 2013). However,
no rhythm of Fos was observed in un-nursed pups, and also no
rhythm in Per1 protein was observed in nursed and fasted pups
(Moreno et al., 2014). In contrast the rhythm of body temperature
persists in un-nursed pups (Jilge et al., 2000; Trejo-Muñoz et al.,
2012). Thus the observed effect on Fos at the time of nursing in
the POA seems not to be related to the rhythm of temperature.

ROLE OF THE MEDIAN PREOPTIC
NUCLEUS AND THE OREXINERGIC
SYSTEM IN FAA

Immediately after FAA and milk ingestion, the rabbit pup’s
activity sharply decreases and pups remain huddled with very
little movement for around next 20 h. In considering this change
from a heightened state of alertness to an almost quiescent state
suggestive of sleep, we decided to explore regions in the POA
that integrate information related to the control of the sleep/wake
cycle. We centered our attention in the MnPO, which is an
integrative center in the rostral wall of the third ventricle in the
forebrain that plays a key role in the sleep/wake cycle (Suntsova
et al., 2007; Sakai, 2011; McKinley et al., 2015). In nursed pups
we found an anticipatory increase of Fos at the time of nursing
and low levels before and after that event (Figure 1). A similar
pattern, with a delayed increase 1.5 after nursing, was found in
fasted pups (Moreno et al., 2013). In addition, we explored Per1
protein and found a clear rhythm in both nursed and fasted
pups with higher values at the time and thereafter nursing and
lowest levels 16 h after (Figure 1). Notably, in the same study
we determined possible rhythms of Per1 in the OVLT, MPOA,
and the MnPO and only in this latter structure did the rhythm
persist in un-nursed pups (Moreno et al., 2014). MnPO activation
seen as increases in Fos protein had previously been associated
with sleep or sleep pressure (McKinley et al., 2015). As pups
remains quiescent, perhaps sleeping, after FAA it is possible that
this increase in Fos indicates sleep pressure. However, activation
of this nucleus at the time of nursing could be related also to
FAA. Electrophysiological studies revealed that MnPO contained
similar proportion of neurons that showed increased discharge
during either sleep or waking state (Sakai, 2011). The author of
that study suggested that in contrast to the classical view that the
MnPO plays a role only in sleep, this nucleus might modulate
a differential role between sleep and wake states. This proposal
is consistent with the observed persistence of Per1 rhythms. In
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FIGURE 1 | Activation of Fos- (A,B) and Per1(C)-ir cells in the median preoptic nucleus (MnPO) and in the organum vasculosum of lamina terminalis (OVLT) in
relation to nursing (yellow vertical line). Panel (A) shows the location of the MnPO and OVLT. (B) At the time of nursing Fos increases in both OVLT (red line) and
MnPO (blue) with a further increase 1.5 h after in the MnPO. (C) Per1 increases in both OVLT and MnPO 4–8 after nursing, but this rhythm persists in un-nursed
pups only in the MnPO (dashed blue line). Modified from Moreno et al., 2013, 2014. ac, anterior commissure; OC, optic chiasma.

support of this the MnPO send projections to the orexinergic cells
in the perifornical area of the lateral hypothalamus to modulate
sleep/awake states (Uschakov et al., 2007; Sakai, 2011; McKinley
et al., 2015). These orexinergic cells are active at the time of FAA
in mice (Mieda et al., 2004) in adult rats (Jiménez et al., 2013), and
in the rabbit (Moreno et al., 2013). To our knowledge the MnPO
has not been analyzed in relation to food entrainment in other
species and this is an area worthy of further study.

MOTIVATION AND THE EXTENDED
AMYGDALA IN FAA

In the adult rat, FAA shows features that implicate a process
of conditioned learning (Silver et al., 2011). In order to explore
brain mechanisms associated with conditioned learning of FAA,
we analyzed several nuclei of the amygdala and the extended
amygdala related to alertness and emotional arousal by using
CO histochemistry (Olivo et al., 2017). During the period of
FAA, we found activation in the basolateral, medial and central
nuclei of the amygdala, bed nucleus of the terminalis, lateral
septum, and nucleus accumbens core. This is interesting as
the basolateral amygdala mediates the acquisition of associative
learning and together with other nuclei of the extended amygdala
participates in the emotional processing of stimuli (Davis and
Whalen, 2001; Namburi et al., 2015). Also, in food-restricted
rats, the basolateral amygdala, as well as other regions of the
corticolimbic system, is entrained as indicated by Fos and Per1
proteins (Angeles-Castellanos et al., 2007). After food ingestion
in the rabbit there was an increase in metabolic activity in
the nucleus accumbens shell, caudate, putamen and cortical
amygdala (Olivo et al., 2017), which further support a functional
role in FAA for the circuit of food reward (Morales and Berridge,
2020). Overall, these results indicate a neural substrate for the
conditioned learning in subjects that is induced by the nursing

event and suggests that rabbit pups are motivationally aroused in
expectation of receiving food.

OXYTOCIN AND A CENTRAL AND
PERIPHERAL NETWORK IN FOOD
ENTRAINMENT

After food ingestion there is an oxytocin (OT) release to the
periphery and in several brain regions (Swanson and Kuypers,
1980; Olson et al., 1991; Verbalis et al., 1996; Spetter and
Hallschmid, 2017), and OT projections to the brainstem are
thought to be critical in a circuit underlying feeding and satiety
(rev Swanson and Kuypers, 1980; McCormack et al., 2020). In the
rabbit pup, milk ingestion induces an activation of OT neurons in
both the SON and paraventricular hypothalamic nucleus (PVN)
(Caba et al., 2003; Morgado et al., 2011). Peripheral OT plays
a role in energy intake and expenditure processes including
gastric emptying and distention, carbohydrate and lipid intake,
fat oxidation, insulin secretion and glucose homeostasis (revs.
Spetter and Hallschmid, 2017; McCormack et al., 2020). However,
in the main body of the PVN, specifically in its dorsal and
ventral portion and in its caudal region, we found an activation
of OT cells before milk ingestion in the rabbit (Caba et al.,
2020). In Figure 2, we show this effect in the two subregions
of the main body of the PVN. This result suggests a differential
activation of OT neurons in this nucleus related to preparatory
actions for the upcoming meal. In the rat under food restriction,
and in the rabbit pup before their daily period of milk intake,
there is an increase in corticosterone, free fatty acids and
glucagon indicating a catabolic state, and in parallel there is
a decrease in glycogen and insulin (Díaz-Muñoz et al., 2000;
Escobar et al., 2000; Morgado et al., 2008, 2010). We proposed
(Caba et al., 2020) that the subpopulation of activated neurons
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FIGURE 2 | Activation of oxytocinergic cells in the paraventricular hypothalamic nucleus (PVN) that coincides with food anticipatory activity in rabbit pups. 1, 2:
Photomicrographs showing the location of the dorsal (PVNmd) and ventral (PVNmv) portions of the main body of the PVN (A) and their caudal portion (PVNc) (B).
A-F: Expression of oxytocin (white arrows) and double-labeled oxytocin and Fos (black arrows)-ir cells in the PVNmd (A,C,E) and PVNmv (B,D,F) just before nursing
at 10:00 am (N10:00), 1.5 h after (N11:30) and in fasted subjects at the time of the previous scheduled nursing (F10:00). Note the increase in Fos/OT-ir cells before
nursing (A) that persist in fasted subjects (E) only in the PVNmd. In contrast, the PVNmv only shows an increase in FOS/OT-ir cells after suckling of milk (D). OT,
optic tract. Modified from Caba et al. (2020). Bottom panel. Schematic of non-OT cells (yellow) and interaction of PVN OT (green) pre-autonomic sympathetic (red)
and parasympathetic (blue) neurons that project to the preganglionic sympathetic system (red) in the intermediolateral (IML) column of the spinal cord, or to the
preganglionic parasympathetic system (blue) of the dorsal motor nucleus of the vagus (DMV) in the medulla, that control the neural outflow to peripheral organs.
Adapted from Buijs et al. (2001, 2003).

in the PVN are related to these peripheral effects through
identified preganglionic OT cells from the sympathetic and
parasympathetic system that project from the PVN to the liver,
pancreas, and adrenals (Figure 1, bottom panel; Buijs et al.,
2001, 2003). It seems likely that this activation is associated with
both central and peripheral roles of these cells in the context of
food entrainment. Future studies need to explore the differential
activation of these OT cells and their receptors to projected areas
in order to determine their physiological importance for FAA.

CONCLUSION

Although animals usually forage and eat during their period of
activity, food is usually only available at a specific time either
during the active or rest phase. In this respect, FAA represents
an adaptive strategy in response to a limited, ecological resource.
Although this phenomenon had been studied mainly in a few
species of mammals, it had also been described in bees (rev.
in Antle and Silver, 2009), and under laboratory conditions in
zebrafish Danio rerio and in cavefish Phreatichthys andruzzii
(Cavallari et al., 2011). Cavefish have evolved to live in darkness
and although they express rhythmic clock genes they do not

respond to light/dark cycles. On the other hand, under conditions
of food restriction, cavefish show an increase in locomotor
behavior before food availability indicative of FAA, as well as
robust circadian rhythms of clock genes (Cavallari et al., 2011).
This suggests that the ability for food entrainment is preserved
across diverse taxa. Finally, it is evident that food is more
important for survival than light. The rabbit pup presents an
extraordinary opportunity to study FAA with little manipulation
because this species shows this important evolutionary strategy
only during the first 2 weeks of life before they open their eyes
and start to be entrained by light.
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