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Over the past decade, many researchers have come up with different implementations

of systems for decoding covert or imagined speech from EEG (electroencephalogram).

They differ from each other in several aspects, from data acquisition to machine learning

algorithms, due to which, a comparison between different implementations is often

difficult. This review article puts together all the relevant works published in the last

decade on decoding imagined speech from EEG into a single framework. Every important

aspect of designing such a system, such as selection of words to be imagined, number of

electrodes to be recorded, temporal and spatial filtering, feature extraction and classifier

are reviewed. This helps a researcher to compare the relative merits and demerits

of the different approaches and choose the one that is most optimal. Speech being

the most natural form of communication which human beings acquire even without

formal education, imagined speech is an ideal choice of prompt for evoking brain

activity patterns for a BCI (brain-computer interface) system, although the research on

developing real-time (online) speech imagery based BCI systems is still in its infancy.

Covert speech based BCI can help people with disabilities to improve their quality of

life. It can also be used for covert communication in environments that do not support

vocal communication. This paper also discusses some future directions, which will aid

the deployment of speech imagery based BCI for practical applications, rather than only

for laboratory experiments.

Keywords: imagined speech, brain-computer interfaces (BCI), neurorehabilitation, electroencephalogram (EEG),

speech imagery, covert speech, inner speech

1. INTRODUCTION

We, as human beings, keep talking within us most of the times. We rehearse over and over again
how tomanage a particular difficult situation, what to talk to a prospective customer, how to answer
certain critical questions in an interview, and so on. This speech, unlike the overt speech in a
conversation with another person, is imagined and hence, there is no movement of the articulators.
Thus, imagined speech is a very common, daily phenomenon with every human being. Even when
someone’s muscles are paralyzed and one is not able to move one’s articulators, one can still imagine
speaking or actively think.

Imagined speech, active thought or covert speech is defined as the voluntary imagination of
speaking something without actually moving any of the articulators. The interest in decoding
imagined speech dates back to the days of Hans Berger, the German neurologist who recorded the
first human EEG in the year 1928. It is said that Hans Berger developed EEG as a tool for synthetic
telepathy, which involves imagined speech (Keiper, 2006; Kaplan, 2011). In the year 1967, Dewan
attempted transmitting letters as Morse code using EEG (Dewan, 1967). Speech being the natural
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form of communication for human beings, researchers
across the globe are trying to develop BCI (brain-computer
interface) systems based on speech imagery instead of
motor imagery.

A BCI system translates the distinct electrical activities of
the brain into commands for obtaining different desired results
from an external device. BCI systems can aid patients who have
lost the control over their voluntary muscles in their day-to-day
activities, from controlling the lighting in a room to using
a personal computer (Abdulkader et al., 2015). BCI systems
make use of different electrophysiological and neuroimaging
modalities like electroencephalogram (EEG), electrocorticogram
(ECoG), fMRI (functional magnetic resonance imaging), fNIRS
(functional near-infrared spectroscopy), and intracortical
electroencephalography (ICE) for capturing the electrical
activity of the brain. Refer Hiremath et al. (2015) for a review
on BCI systems using ECoG and ICE. Currently available
BCI systems using EEG depend on motor imagery (Onose
et al., 2012; Kevric and Subasi, 2017), event-related potential
(ERP) (Sellers et al., 2006; Mugler et al., 2010; Xu et al.,
2018b; Fouad et al., 2020) or steady state visually evoked
potentials (SSVEP) (Müller-Putz et al., 2005; Han et al.,
2018; Ojha and Mukul, 2020) for generating consistent and
reliable brain signals that can be accurately identified by the
system. P300-speller based BCI system (Guan et al., 2004; Guy
et al., 2018; Arvaneh et al., 2019; Lu et al., 2019; Al-Nuaimi
et al., 2020) is a quite successful BCI system. Nevertheless,
some of these BCI systems are either constrained by the
limited number of distinct prompts possible and/or by the
difficulty in training someone to use these systems. Using
imagined speech for evoking the brain activity pattern has
several advantages such as provision for larger number of
prompts (which in turn leads to higher degrees of freedom)
than what is possible with motor imagery. In addition to
all the possible applications of a general BCI system based
on motor imagery, a high-performance BCI system based
on speech imagery, in conjunction with a text to speech
(TTS) system, can be used by those with speech disabilities
to communicate with others. It can also be used for covert
communication in environments such as war fields, where overt
vocal communication is difficult (Allison et al., 2007; Bogue,
2010).

This paper reviews the recent literature in the field of decoding
imagined speech from EEG, mainly from the point of view of
the considerations behind the choice of various parameters in
designing and developing an effective system. EEG based systems
have the following advantages compared to systems based on
neuroimaging techniques such as fMRI, fNIRS, and ECoG due
to the following reasons:

• EEG is cheaper and non-invasive (Kayagil et al., 2007;
Zanzotto and Croce, 2010; Illman et al., 2020; Tait et al., 2020).

• EEG has good temporal resolution although ECoG has
higher temporal resolution (Yi et al., 2013; Hecht and Stout,
2015; Ghafoor et al., 2019). However, studies have shown
that volume conduction and increased distance between the
cortical sources and electrodes limit the temporal resolution of
EEG (Law et al., 1993; Burle et al., 2015).

• One issue with using EEG is that the setup time is very high,
especially for high density EEG systems. This problem can be
alleviated by identifying the EEG channels that significantly
influence the performance of the system and creating custom
EEG electrode caps with only these electrodes. The setup and
preparation times can also be reduced by using dry electrodes
instead of gel based electrodes (Sellers et al., 2009; Grozea et al.,
2011; Guger et al., 2012).

Nevertheless, the following factors limit the application of EEG
based BCI systems:

• EEG has lower signal-to-noise ratio (SNR) than the other
modalities. It is almost always corrupted by artifacts such as
muscular artifacts (Eberle et al., 2012; Liu, 2019).

• EEG has limited spectral and spatial resolution (Peled et al.,
2001; Lakshmi et al., 2014).

• Recording EEG for longer duration is challenging since the
conductive gel or the saline solution applied for reducing the
electrode impedance dries up over time, thus increasing the
electrode impedance (Guger et al., 2012; Xu et al., 2018a).

• A trained personnel is required for placing the EEG
electrode cap.

Table 1 compares various electrophysiological and neuroimaging
techniques used for decoding imagined speech from EEG.

1.1. Inclusion/Exclusion Criteria
The primary source for the papers analyzed in this work was
PubMed. Papers were selected for screening if their titles or
abstracts included “imagined speech,” “covert speech,” “silent
speech,” “speech imagery,” or “inner speech.” These keywords
are wide enough to include all the works on imagined speech
indexed in PubMed. This returned 504 results which were further
screened for relevance. We discarded the papers that did not
deal with decoding imagined speech, such as the papers on the
manifestation of imagined speech in those suffering from various
neurological disorders such as schizophrenia (for e.g., Livet and
Salomé, 2020; Mitropoulos, 2020), global aphasia (GA) (for e.g.,
Sierpowska et al., 2020), and autism (for e.g., Mitsuhashi et al.,
2018; Petrolini et al., 2020). It also included five review papers
which are:

1. The review paper by Bocquelet et al. (2016) discusses the
considerations in designing an imagined speech based BCI.
Unlike our work, which focuses on EEG based speech BCI,
the work by Bocquelet et al. is a review on the choice of brain
region, decoding strategies in general, etc., with no particular
reference to any data acquisition system such as fMRI, EEG,
or ECoG.

2. The focused review article by Herff and Schultz (2016)
compares the efficiency of different brain imaging techniques
which can be used for decoding imagined speech from
neural signals. This is significantly different from our paper,
which reviews in-depth the methodological considerations in
designing a system for decoding imagined speech from EEG.

3. The review articles by Martin et al. (2018), Rabbani et al.
(2019), andMiller et al. (2020) deal exclusively with ECoG and
no other modalities.
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TABLE 1 | Comparison of various modalities for decoding imagined speech.

Method Temporal resolution Spatial resolution Type Portability

EEG 0.06 msa,b 25 mm2 (Yamazaki et al., 2013) Non-invasive Portable

MEG 0.1 msc 1 mm (Singh, 2014) Non-invasive Non-portable

ECoG 0.02 msd 4 mm (Muller et al., 2016) Invasive Portable

fMRI 500 ms (Yoo et al., 2018) 0.7 mm (Kashyap et al., 2018) Non-invasive Non-portable

fNIRS 100 ms (Metzger et al., 2017) 100 mm (Lu et al., 2010) Non-invasive Portable

ICE 3 ms (Ayodele et al., 2020) 0.05 mm (Ayodele et al., 2020) Invasive Portable

ahttps://www.ant-neuro.com/products/eego_mylab/specs.
bThe actual temporal and spatial resolution may be lower due to volume conduction effects (Burle et al., 2015).
chttps://www.compumedics.com.au/wp-content/uploads/2016/11/AH425-02-Orion-LifeSpan-MEG-brochure-JUNE-2019.pdf.
dhttps://www.gtec.at/product/gusbamp-research/.

FIGURE 1 | Distribution of the modalities used in the literature on decoding

imagined speech. “Others” include functional magnetic resonance imaging

(fMRI), functional near-infrared spectroscopy (fNIRS), intracortical

electroencephalography (ICE) etc.

After this initial screening, we were left with 48 papers that
deal with decoding imagined speech. The distribution of the
modalities used for decoding imagined speech in these papers is
given in Figure 1. These modalities include EEG, ECoG (Herff
et al., 2015, 2016), fMRI (Yoo et al., 2004; Abe et al., 2011),
fNIRS (Herff et al., 2012; Kamavuako et al., 2018; Sereshkeh
et al., 2018), MEG (Destoky et al., 2019; Dash et al., 2020), ICE
(Brumberg et al., 2011; Kennedy et al., 2017; Wilson et al., 2020)
etc. Clearly, EEG is the most popular modality used for decoding
imagined speech with 18 articles using it for capturing the neural
changes during imagined speech. Among these 18 articles, the
article by Imani et al. (2017) was not included since in the
experimental protocol described in the article, the participants
were not imagining articulating the prompts. In addition to the
17 papers indexed in PubMed, we selected 111 more relevant
papers from other sources including IEEE Xplore and arXiv. A
flowchart detailing the database searches, the number of abstracts
screened and the full texts retrieved is shown in Figure 2. In
addition to the 28 articles selected, several other articles were used
as secondary sources for this paper. For instance, the section on
the frequency band to be targeted for decoding imagined speech
is based on articles on decoding imagined speech using ECoG.

To the best of the knowledge of the authors, there is no
review paper that focuses exclusively on EEG based systems

for decoding imagined speech. The various factors involved in
the development of such a system are shown in Figure 3 and
discussed in detail in this paper in the same order. For the sake
of completeness, we have also included a section on the neural
correlates of imagined speech (section 1.2) and the types of BCI
systems (section 1.3).

Specifically, the following are discussed in this paper:

• Neural correlates of imagined speech.
• Different categories of BCI systems.
• Methodological considerations that should be taken into

account during data acquisition including the choice of
prompts and stimulus delivery.

• Common preprocessing steps followed.
• Common feature extraction techniques and

classification algorithms.
• Considerations in designing a speech imagery based online

BCI system.
• Future directions in the field of BCI systems based on speech

imagery neuro-paradigm.

1.2. Neural Correlates of Imagined Speech
and Relationship with Articulated Speech
The prominent model for neural representation of articulated
speech is the two-streams hypothesis (Hickok and Poeppel, 2007;
Rauschecker and Scott, 2009). According to this, human beings
have two distinct auditory pathways: ventral stream and the
dorsal stream, both passing through the primary auditory cortex.
In the ventral stream, phonemes are processed in the left superior
temporal gyrus (STG) whereas words are processed in the left
anterior STG (DeWitt and Rauschecker, 2012). Further, these
region respond preferentially to speech than to semantically
matched environmental sounds (Thierry et al., 2003). In the
dorsal stream, auditory sensory representations are mapped onto
articulatory motor representations. The information flows from
primary auditory cortex into the pSTG and posterior superior
temporal sulcus (STS). From there, it flows to left Sylvian parietal
temporal (Spt). Further, the information moves to articulatory
network 1 consisting of posterior inferior frontal gyrus (pIFG)
and Brodmann area 44 (BA44) and articulatory network 2
consisting of primary motor cortex (M1) and ventral Brodmann
area 6 (vBA6).
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FIGURE 2 | Flowchart detailing the database searches, the number of abstracts screened, the criteria applied for screening the papers, and the full texts retrieved.

The number of records in each stage is given within parenthesis.

The relationship between the neural correlates of imagined
speech and articulated speech is still a matter of debate. Two
of the early hypotheses of neural correlates of imagined speech
are due to Watson (1913), who argued that the neural correlates
are similar and Vygotsky (1986), who argued that they are
completely different. A large number of studies reported in the
literature to verify these hypotheses are based on the speech

production model proposed by Levelt (1993). The model splits
articulated speech production into several phases such as (1)
lemma retrieval and selection, (2) phonological code retrieval, (3)
syllabification, (4) phonetic encoding and (5) articulation. The
results of the studies based on Levelt’s model are contradictory.
Several studies (Bookheimer et al., 1995; Rosen et al., 2000;
Palmer et al., 2001; Shuster and Lemieux, 2005) have shown that
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FIGURE 3 | Various steps involved in the development of a system for decoding imagined speech from EEG. This paper is organized in the same order as above.

there is more activation in the motor and premotor areas (both
lying in the frontal lobe) during articulated speech whereas some
other studies (Huang et al., 2002; Basho et al., 2007) have shown
that there is more activation in the frontal lobe during imagined
speech. Thus, both Vygotsky’s and Watson’s hypotheses are not
completely true.

Tracing a midline between Vygotsky’s and Watson’s
hypotheses, Oppenheim and Dell (2008) proposed the surface-
impoverished hypothesis. According to this hypothesis, imagined
and articulated speech differ at the phonological level but have

similar neural activation in the lexical level. This hypothesis is
contradicted by several studies which show that the phonological
and lexical features in both imagined and articulated speech
are similar (Abramson and Goldinger, 1997; Brocklehurst and
Corley, 2011; Corley et al., 2011). The current understanding
is that Vygotsky hypothesis and the surface-impoverished
hypothesis are partly true. A very recent study (Stephan et al.,
2020) based on simultaneous application of both EEG and fNIRS
has shown that imagined and articulated speech do differ at the
phonological level (surface-impoverished hypothesis).
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Based on MEG studies, Tian and Poeppel (2013) proposed a
dual stream prediction model (DSPM) for imagined speech. This
model is linked to the two-streams hypothesis. In DSPM too,
two streams of information flow are present, the ventral stream
and the dorsal stream. During speech imagery, articularotry
planning occurs in premotor cortex. Since motor movements
are not intended during speech imagery, the information flow
is terminated at M1 (Tian and Poeppel, 2012). Nevertheless,
a motor efference copy is sent to inferior parietal cortex for
somatosensory estimation (Whitford et al., 2017). The perceptual
efference copy generated at the inferior parietal cortex is sent
to pSTG (posterior superior temporal gyrus) and STS (superior
temporal sulcus). The idea of efference copy in speech imagery
was proposed as a result of magnetoencephalography studies
by Tian and Poeppel (2010). In the MEG recordings, an
activation in the auditory cortex was observed immediately
after speech imagery. Since there is no overt auditory feedback
during speech imagery, the observed activation in the auditory
cortex was explained using the possible existence of an internal
forwarding model deploying efferent copies in the auditory
cortex. According to Tian and Poeppel, the neural signal
generated during articulation preparation is used to predict the
anticipated auditory signal in speech imagery, via a time-locked
auditory efferent copy, which causes the observed activity in the
auditory cortex. In the ventral stream, auditory representation is
sent to pSTG and STS. Along with this auditory representation,
the ventral stream also retrives episodic memory and semantic
frommiddle temporal lobe (MTL) and posteriormiddle temporal
gyrus (pMTG) respectively. A pictorial representation of this
model is given in Figure 4. The primary auditory cortex contains
regions such as pSTG and Heschl’s gyri (transverse temporal
gyri). Lu et al. (2021) have shown that although Heschl’s gyri is
involved in speech perception, the region is not activated during
speech imagery.

Results of many neuroimaging, behavioral and
electrophysiological studies such as Tian et al. (2016, 2018),
Whitford et al. (2017), Lu et al. (2021) also support the
presence of efference copies in imagined speech. Functional MRI
studies by Tian et al. (2016) revealed greater activation in the
frontal-parietal sensorimotor regions, including sensorimotor
cortex, subcentral (BA 43), middle frontal cortex (BA 46) and
parietal operculum (PO) during speech imagery. This observed
activation is similar to the activation pattern corresponding to
articulation preparation (Brendel et al., 2010; Price, 2012). Thus,
the brain activity pattern corresponding to speech imagery is due
to articulation preparation including motor planning and the
activation of the auditory cortex due to efference copies.

1.3. Types of BCI Systems
1.3.1. Online vs. Offline BCI Systems
In offline BCI systems, such as the systems described in Park
et al. (2012), Edelman et al. (2015), Khan and Hong (2017), and
Tayeb et al. (2019) the EEG data acquired from the participant is
not processed in real-time; rather it is processed at a later stage.
This approach is useful only in a research environment but gives
the researchers the freedom to use computationally expensive
algorithms for processing the EEG data. On the other hand, in

an online BCI system, such as the systems described in Lal et al.
(2005), Bin et al. (2009), Hazrati and Erfanian (2010), Gui et al.
(2015), Mondini et al. (2016), Wu (2016), and Khan and Hong
(2017), the EEG data is processed in real-time giving real-time
BCI outputs. This places an upper limit on the computational
complexity of the algorithms used but has significant practical
application; rather, a BCI system is practically useful only if it can
be translated to an online system. Most of the works on decoding
imagined speech employ offline strategies except for the work by
Sereshkeh et al. (2017b) in which EEG is used and the others
whichmake use of functional near-infrared spectroscopy (fNIRS)
(Gallegos-Ayala et al., 2014; Naseer et al., 2014; Sereshkeh et al.,
2018). The systems described in Gallegos-Ayala et al. (2014),
Naseer et al. (2014), Sereshkeh et al. (2017b) have two degrees of
freedom, whereas the system described in Sereshkeh et al. (2018)
has three degrees of freedom.

1.3.2. Exogenous vs. Endogenous BCI Systems
In an exogenous (exo: outside or external, genous: producing)
BCI system, external stimulus is used for generating distinct
neural activation such event-related potentials (ERP) such as
P300 and evoked potentials such as steady state visually evoked
potentials (SSVEP). On the other hand, in an endogenous
(endo: inside or internal, genous: producing) BCI system, the
neural activation is not because of any external stimuli. In an
endogenous BCI, motor imagery, speech imagery etc. can be used
for eliciting the required neural activation. Graz BCI (Müller-
Putz et al., 2016) is an endogenous BCI system whereas Unicorn
speller (Al-Nuaimi et al., 2020) is an exogenous BCI system.

1.3.3. Synchronous vs. Asynchronous BCI Systems
In a synchronous BCI, the EEG capture for analysis is
synchronized with a cue. That is, in case of speech imagery
based BCI system, the time window for imagination is predefined
and any EEG captured outside this window is discarded. In an
asynchronous BCI, the capture of neural activity is not linked
to any cues. Though asynchronous BCI is a more natural mode
of interaction, the BCI system will be more complex since it
has to decide whether the ellictted neural activity is because of
an intentional mental activity from the subject or because of an
unintentional mental activity.

2. DATA ACQUISITION

2.1. Type of EEG Acquisition System
Most of the researchers, including Zhao and Rudzicz (2015),
Min et al. (2016), Nguyen et al. (2017), Koizumi et al. (2018),
and Sereshkeh et al. (2017a) have used a 64-electrode EEG
system with a sampling rate of 1 KHz for acquiring the EEG
data corresponding to imagined speech. In the case of the work
reported by Deng et al. (2010) and Brigham and Kumar (2010),
128-electrode EEG data has been recorded at a sampling rate
of 1 KHz. Wang et al. (2013) and García et al. (2012) have
used lesser number of EEG channels. Wang et al. have used two
different electrode configurations: a 30-electrode system covering
the entire head and a 15-electrode system covering only the
Broca’s and Wernicke’s areas. The signal sampling rate is 250 Hz
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FIGURE 4 | Simplified representation of dual stream prediction model (DSPM) for imagined speech. The dorsal stream is in yellow boxes, whereas the ventral stream

is in blue boxes. The red circle represents the truncation of information at primary motor cortex in the case of speech imagery. pSTG, posterior superior temporal

gyrus; STS, superior temporal sulcus. The primary auditory cortex lies in the superior temporal gyrus and extends into Heschl’s gyri. Though Heschl’s gyri is involved in

speech perception, the region is not activated during speech imagery.

in both the cases. Jahangiri et al. have used a 20-electrode EEG
system with a sampling rate of 500 Hz in Jahangiri et al. (2018)
and a 64-electrode EEG systemwith a sampling rate of 2048Hz in
Jahangiri and Sepulveda (2019), Jahangiri et al. (2019). Watanabe
et al. (2020) have used a 32-electrode EEG systemwith a sampling
rate of 1 KHz. A 64-electrode EEG system has been used in Zhang
et al. (2020) with a sampling rate of 500 Hz.

Though most of the researchers have made use of high-
density EEG systems, the approach of Wang et al. in using only
the channels covering the Broca’s and Wernicke’s areas has the
following advantages:

1. Studies based on common spatial patterns (CSP) and event-
related spectral perturbation (ERSP), reported in Wang et al.
(2014), Nguyen et al. (2017), and Zhao and Rudzicz (2015),
have shown that the most significant EEG channels for
classifying speech imagery are the ones covering the Broca’s
and Wernicke’s areas.

2. When a brain-computer interface (BCI) system is deployed
for practical applications, it is better to have as minimum a
number of EEG channels as possible. This is because EEG
systems with less number of channels are cheaper and can be
more easily setup and maintained than high-density systems.

However, the extent of involvement of Broca’s and Wernicke’s
areas in language processing is still a point of contention (Binder,
2015; Tremblay and Dick, 2016). Modern neuroimaging studies
have shown that in addition to Broca’s and Wernicke’s areas,
other areas in the temporal lobe are also involved in language
processing (Poeppel et al., 2008; Newman et al., 2010). Hence,
though using only the EEG channels covering the Broca’s and
Wernicke’s areas has certain practical advantages, there is a trade-
off in terms of the information captured (Srinivasan et al., 1998).
Also, when independent component analysis (see section 3.4) is
used, higher the number of channels, better is the decomposition,
although there is a ceiling in the quality of decomposition when
the number of channels reaches 64 (Klug and Gramann, 2020).

With respect to commercial grade and research grade EEG
acquisition devices, more than 20% of the studies reviewed in
this article make use of commercial grade devices, characterized

FIGURE 5 | Graph showing the number of electrodes used for data

acquisition in various works on decoding imagined speech from EEG. X and

Y-axes represent the number of electrodes and articles, respectively.

by low EEG density and/or low sampling rate. Though there can
be a detrimental effect in the quality of the EEG signal acquired,
commercial grade systems are closer to a practical BCI system in
terms of cost of the device. Additionally, devices such as ENOBIO
(Ruffini et al., 2007) and Emotiv (Duvinage et al., 2012) used by
Jahangiri et al. (2018) and García et al. (2012) respectively offer a
setup time of less than 5 min.

The configurations of the EEG systems used in the articles
analyzed in this work are given in Figures 5, 6. Clearly, 64-
electrode EEG system with the sampling rate of 1 KHz is
the most popular configuration of the EEG systems used for
data acquisition.

A comparison of the types of EEG systems, sampling rate,
decoding strategy and the maximum number of degrees of
freedom of various studies reviews in this work is given in
Table 2.

2.2. Mode of Stimulus Delivery
Three methods have been primarily followed by researchers to
cue the participant as to what the prompt is and when to start
imagining speaking the prompt. These are (1) auditory (Brigham
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FIGURE 6 | Graph showing the sampling rates used for data acquisition by

the various works in the literature on decoding imagined speech from EEG.

X-axis gives the sampling rates and Y-axis gives the number of articles using

each specific sampling frequency.

and Kumar, 2010; Deng et al., 2010; Min et al., 2016; Koizumi
et al., 2018); (2) visual (Wang et al., 2014; Sereshkeh et al.,
2017a; Jahangiri et al., 2018; Koizumi et al., 2018); and (3) a
combination of auditory and visual cues (Zhao and Rudzicz,
2015; Coretto et al., 2017; Nguyen et al., 2017; Watanabe et al.,
2020). Although somatosensory cues have been used for motor
imagery (Panachakel et al., 2020b), no such work has been
reported for speech imagery.

Since both Broca’s and Wernicke’s areas are involved in
imagined speech (Hesslow, 2002), it is difficult to remove the
signature of the auditory cue from the EEG signal recorded
during speech imagery. It has been shown that visual cues
elicit responses in the occipital lobe (Nguyen et al., 2017).
Since the occipital lobe is involved neither in production nor
comprehension of speech, discarding the EEG channels over
the occipital lobe eliminates the interference of the visual cue
on the EEG recorded during imagined speech. Hence, the use
of visual cues obviates the preprocessing steps for removing
auditory cues. Although studies (Ikeda et al., 2012) have shown
that the excitation of the primary motor cortex is higher when
auditory and visual cues are used, the practical benefit of such a
system, especially in the field of rehabilitation is limited. This is
also true for the use of somatosensory stimuli in motor imagery
as in Panachakel et al. (2020b).

2.3. Repeated Imagination During a Trial
In most of the works, the participant is supposed to imagine
speaking the prompt only once. However, in a few works such
as Brigham and Kumar (2010), Deng et al. (2010), Nguyen
et al. (2017), Koizumi et al. (2018), the participants are asked
to imagine speaking the prompt multiple times in the same
trial. In all these works, auditory clicks are provided during each
trial to make the participants have a sense of rhythm at which
the prompt should be imagined. Nguyen et al. have used this
periodicity in imagination to identify the channels that have the

most information corresponding to the cortical activity of speech
imagery. They have computed the autocorrelation functions of
all the EEG channels and applied discrete Fourier transform
(DFT) on the computed autocorrelation functions. The channels
were graded based on the proximity of the highest peak of the
frequency spectrum to the frequency at which the auditory cues
were provided. It was observed that the channels covering Broca’s
area, Wernicke’s area and motor cortex had the highest peaks in
the frequency spectrum closer to the frequency of the auditory
cues. Hence, multiple imagination can be used to check the
quality of the acquired data, as carried out by Nguyen et al.

Unlike the approach by Nguyen et al. and Brigham et al., Deng
et al.’s approach required the participants to imagine the prompts
in three different rhythms. They have shown that in addition
to the imagined prompt, the rhythm at which the prompt is
imagined can also be decoded from the recorded EEG signal.

In our own experiments reported in Panachakel et al.
(2020b), we have observed that the EEG signatures become more
prominent across multiple imaginations in the same trial but
deteriorate across multiple trials in the same recording session.

Figure 7 shows the typical experimental setup followed by
most of the researchers.

2.4. Choice of Prompts
2.4.1. Syllables Only
Min et al. (2016) have used the vowel sounds /a/, /e/, /i/,
/o/, and /u/ as the prompts. These sounds are acoustically
stationary, emotionally neutral and easy to imagine uttering.
Nevertheless, it is shown in Nguyen et al. (2017) that prompts
with higher complexity (more number of syllables) yield higher
classification results in decoding imagined speech [more details
about Nguyen et al. (2017) are given in the following sections].
They have also shown that distinct prompts with different
levels of complexity (such as one monosyllabic word and one
quadrisyllabic word) yield further improvement in the accuracy.
The dataset developed by Brigham and Kumar (2010) has only
two prompts /ba/ and /ku/. The reason for the choice of these
prompts is the difference in their phonological categories:

1. /ku/ has a back vowel, whereas /ba/ has a front vowel
2. /ba/ has a bilabial stop, whereas /ku/ has a gutteral stop.

Deng et al. (2010) also used the syllabic prompts /ba/ and /ku/.
Contrary to the approach by Brigham et al., the participants in
Deng et al.’s work were instructed to imagine the prompts in
three different rhythms in different trials. The cue for rhythmwas
given using auditory clicks. They have shown that it is possible
to decode the rhythm from the imagined EEG, even when the
algorithm failed to decode the imagined syllable.

In the works by Jahangiri et al. (2018, 2019) and Jahangiri
and Sepulveda (2019), four syllables, namely /ba/, /fo/, /le/, and
/ry/ were chosen as the prompts. These syllables were chosen
since they were phonetically dissimilar. It is shown by Cummings
et al. (2016) that phonetically dissimilar prompts create distinct
neural activities. In Jahangiri and Sepulveda (2019), the prompt
to be imagined is cued using auditory cues whereas in Jahangiri
et al. (2019) and Jahangiri et al. (2018), visual cues are used. In
Jahangiri et al. (2018) the participants are cued by showing arrows
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TABLE 2 | Comparison of the types of EEG systems, sampling rate, decoding strategy and maximum number of degrees of freedom of various studies reviewed in this

work.

Sl.

No.

Type of

EEG system
Sampling rate Resampled frequency Decoding strategy

Maximum number of

degrees of freedom reported

1 Jahangiri et al. (2019) Research 2 KHz 256 Hz Offline 4

2 Wang et al. (2013) Research 250 Hz N/A Offline 2

3 Jahangiri et al. (2018) Commercial 500 Hz 256 Hz Offline 4

4 Tøttrup et al. (2019) Commercial 500 Hz N/A Offline
6

(including two motor imagery)

5 Saha et al. (2019b) Research 1 KHz N/A Offline 2

6 Koizumi et al. (2018) Research 1 KHz N/A Offline
12

(including six visual imagery)

7 Sereshkeh et al. (2017a) Research 1 KHz N/A Offline 2

8 Deng et al. (2010) Research 1 KHz N/A Offline 6

9 Zhang et al. (2020) Research 500 Hz N/A Offline 4

10 Cooney et al. (2020) Commercial 1 KHz N/A Offline 6

11 Chengaiyan et al. (2020) Commercial 256 Hz N/A Offline 5

12 Brigham and Kumar (2010) Research 1 KHz N/A Offline 2

13 Cooney et al. (2018) Research 1 KHz N/A Offline 11

14 Pawar and Dhage (2020) Research 1 KHz N/A Offline 4

15 Nguyen et al. (2017) Research 1 KHz 256 Hz Offline 3

16 Sereshkeh et al. (2017b) Research 1 KHz N/A Online 2

17 Watanabe et al. (2020) Research 1 KHz N/A Offline 3

18 Jahangiri and Sepulveda (2017) Research 2 KHz 256 Hz Offline 4

19 Jahangiri and Sepulveda (2019) Research 2 KHz 256 Hz Offline 4

20 García et al. (2012) Commercial 128 Hz N/A Offline 5

21 Min et al. (2016) Research 1 KHz 250 Hz Offline 2

22 Saha and Fels (2019) Research 1 KHz 256 Hz Offline 3

23 Saha et al. (2019a) Research 1 KHz N/A Offline 2

24 Panachakel et al. (2020a) Research 1 KHz 256 Hz Offline 2

25 Panachakel et al. (2019) Research 1 KHz N/A Offline 11

26 García-Salinas et al. (2019) Commercial 128 Hz N/A Offline 5

27 Cooney et al. (2019) Commercial 1 KHz 128 Hz Offline 5

28 Balaji et al. (2017) Research 250 Hz N/A Offline 4

FIGURE 7 | A typical experimental setup used for recording EEG during speech imagery. The subject wears an EEG electrode cap. A monitor cues the subject on the

prompt that must be imagined speaking. An optional chin rest prevents artifacts due to unintentional head movements. Figure adapted with permission from Prof.

Supratim Ray, Centre for Neuroscience, Indian Institute of Science, Bangalore.
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in four different directions, where each direction corresponds to
a specific phonemic structure the subject needs to imagine. For
example, left arrow corresponds to the prompt /le/ whereas right
arrow corresponds to the prompt /ry/. In Jahangiri et al. (2019),
the prompt to be imagined is cued using the game “whack-a-
mole.” The subject needs to imagine the location of the hole from
where the mole appeared in the game and the recorded EEG is
used for decoding the imagined word.

In Watanabe et al. (2020), three prompts are used, all formed
using the syllable /ba/. Each prompt consisted of three /ba/ and
two /ba:/, uniform duration of 1800 ms and uniform pitch height
of 200 Hz.

2.4.2. Words Only
In the protocol followed by Sereshkeh et al. (2017a), the
participants were to imagine the response (yes/no) to several
perceptual, non-emotive binary questions like “Is the word
in uppercase letters? WORD.” These two English words were
chosen due to the following reasons:

1. Their relevance in BCI applications for patients who cannot
communicate in any other way.

2. /y/ and /n/ differ in the place and manner of articulation.
Zhao and Rudzicz (2015) have shown that these differences
in the place and manner of articulation are captured by the
EEG signals.

3. The vowels /e/ and /o/ originate in different areas of the tongue
and hence might have differentiable EEG signatures (Mugler
et al., 2014).

In the work by Balaji et al. (2017), bilingual prompts were
used. Specifically, “yes” and “no” in English and “Haan” and
“Na” in Hindi (meaning “yes” and “no” respectively) were used.
Similar to Sereshkeh et al. (2017a), the experimental protocol
required the participants to imagine the response to several
binary questions, either in English or Hindi. They have reported
an accuracy of 85.2% when decision was decoded from the
recorded EEG and an accuracy of 92.18% when the language was
decoded, clearly indicating that bilingual prompts have higher
potential for being suitable prompts for imagined speech.

In the work by García et al. (2012), five Spanish words
were used as the prompts. The words were “arriba,” “abajo,”
“izquierda,” “derecha,” and “seleccionar.” The equivalent English
words are “up,” “down,” “left,” “right,” and “select,” respectively.
In the work by Koizumi et al. (2018) six Japanese words (“ue,”
“shita,” “hidari,” “migi,” “mae,” and “ushiro”) were used as the
prompts, meaning “up,” “down,” “left,” “right,” “forward,” and
“backward,” in English. These words were chosen because the
words correspond to instructions a user might use for controlling
a computer cursor or a wheelchair. In a very recent work by
Pawar andDhage (2020), a similar set of prompts was used. Pawar
and Dhage used the prompts “left,” “right,” “up,” and “down.”
This choice of prompts is not only motivated by the usefulness of
these prompts in practical applications but also because of their
diverse manner and places of articulation.

In Chengaiyan et al. (2020), 50 consonant-vowel-consonant
words were used as the prompts. All the five vowels were
considered and for each vowel, 10 words were used. One of

the aims of the study was to classify vowels and these words
were chosen since each word has only one vowel. This choice of
prompts extends the study by several other authors in classifying
vowels using imagined speech EEG.

2.4.3. Both Words and Syllables
The two prominent datasets having both syllable and word
prompts are the datasets developed by Zhao and Rudzicz (2015)
and Coretto et al. (2017). The dataset by Zhao et al. consists
of seven monosyllabic propmts, namely /iy/, /uw/, /piy/, /tiy/,
/diy/, /m/, /n/, and four words “pat,” “pot,” “knew,” and “gnaw.”
Here, “pat” & “pot” and “knew” & “gnaw” are phonetically-
similar pairs. These prompts were chosen to have the same
number of nasals, plosives, and vowels, as well as voiced and
unvoiced phonemes.

Similar to the dataset by García et al. (2012), the dataset by
Coretto et al. also consisted of six Spanish words which are
“arriba,” “abajo,” “derecha,” “izquierda,” “adelante,” and “atr‘as.”
The equivalent English words are “up,” “down,” “right,” “left,”
“forward,” and “backward,” respectively. In addition to these six
prompts, the vowels /a/, /e/, /i/, /o/, and /u/ were also used
as prompts.

Nguyen et al. (2017) collected imagined speech data using
four different types of prompts, namely short words, long words,
short-long words, and vowels. The three vowels used as prompts
were /a/, /i/, and /u/. The shorts words used were “in,” “up,”
and “out,” all of which are monosyllabic. The long words used
are “independent” and “cooperate”, both having four syllables
with none of the four syllables common between them. Nguyen
et al. performed one more experiment in which the prompts were
“in” (monosyllabic) and “cooperate” (quadrisyllabic). The aim
of the experiment was to find out whether the difference in the
length of the prompt had any effect on the decoding of imagined
speech. As mentioned in section 2.4.1, the authors have reported
an improvement in accuracy when prompts of different lengths
are used.

2.4.4. Lexical Tones
In some languages (known as tonal languages), pitch is used to
differentiate lexical or grammatical meaning (Myers, 2004). One
such tonal language is Mandarin where the minimal tone set
consists of five tones. Out of these five lexical tones, four tones
(flat, rising, falling-rising, and falling) are used with the syllable
/ba/ in Zhang et al. (2020). This is the only work in decoding
imagined speech where lexial tones are used as prompts.

Five commonly used prompts and their significance are given
in Table 3. We have only listed the common prompts used in
multiple articles. Prompts which are not used in multiple articles
are not listed.

3. PREPROCESSING

3.1. Resampling
Prior to preprocessing, some researchers employ a downsampler
to resample the EEG data to a lower sampling rate. This is carried
out in order to reduce the computational complexity involved in
processing the data. Depending on how the features are extracted,
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TABLE 3 | Five common prompts used in decoding imagined speech and their

significance.

Sl. No. Prompt Significance

1 /ba/, /fo/, /le/ and /ry/ Differences in place and manner of articulation.

2 “up”, “down”, “left” and

“right”

Useful in controlling a computer mouse.

3 “yes” and “no”
Differences in place and manner of articulation,

useful in responding to binary questions.

4 /a/, /e/, /i/, /o/ and /u/
Acoustic stationarity,

differences in place and manner of articulation.

5 “in” and “cooperate” Difference in complexity.

Prompts which are not common in the literature are not tabulated here.

this can also help ameliorate the problems associated with high
dimensional feature vectors commonly referred to as the “curse
of dimentionality.” Brigham and Kumar (2010), Nguyen et al.
(2017), and Min et al. (2016) resampled the data from 1 KHz to
256 Hz during preprocessing making the data more manageable.

3.2. Temporal Filtering
In the task of classification of motor imagery, researchers
mostly agree on the frequency band to be targeted for the best
performance but in the case of imagined speech, this consensus
is absent. Quite often, the frequency band is decided based on
the type of the artifacts present in the recorded signal and how
they are removed. Most of the works consider the frequency band
from 8 to 20 Hz. In addition to this band, frequency band from 2
to 50 Hz is also used in several works. In all the articles reviewed
in this work, only seven works use the frequency band above 80
Hz and out of these seven, only five works (Jahangiri et al., 2018,
2019; Koizumi et al., 2018; Jahangiri and Sepulveda, 2019; Pawar
and Dhage, 2020) use frequency band from 80 to 100 Hz.

Jahangiri et al. have used the entire frequency range up to
128 Hz except for the narrow band from 49.2 to 50.8 Hz to
remove the line noise whereas Koizumi et al. (2018) have used
the frequency range from 1 to 120 Hz and have reported a higher
classification accuracy when features extracted from the high
gamma band (60–120Hz) are used. Pawar andDhage (2020) have
used the frequency range from 0.5 to 128 Hz. Jahangiri et al. have
supported the use of this band based on the high gamma activity
observed in electrocorticography (ECoG) data recorded during
imagined speech tasks (Greenlee et al., 2011; Llorens et al., 2011)
and have reported higher activity in the band 70 to 128 Hz during
imagination of the prompts.

However, there are also studies in the literature (Whitham
et al., 2007; Muthukumaraswamy, 2013) which have shown that
the high gamma activity observed in EEG signals may be due
to muscular artifacts. Moreover, it has been shown by Whitham
et al. (2008) that imagination induces muscular artifacts in the
EEG recorded from normal subjects. Thus, more focused studies
are required as shown by Boytsova et al. (2016) to understand the
reliability of high-gamma band activity observed in EEG, where
muscular activities are suppressed using muscle relaxants. In fact,
Koizumi et al. (2018) themselves have speculated in their work
that the higher accuracy with the use of high gamma band might

be due to EMG artifacts. It may be noted that the contention
is only on the high-gamma activity observed in EEG and not
in ECoG. A graphical comparison of the frequency bands used
in the various works in the literature is given in Figure 8. The
reduced use of gamma band compared to the lower frequency
bands is probably on account of the uncertainty of the gamma
band in EEG. The other important factor is that the EEG power
spectrum follows a 1/f power law, which means that the power
in the gamma band reduces with increasing frequency, thus
decreasing the signal-to-noise ratio. From the work by Synigal
et al. (2020), it is clear that it is the envelope of the EEG gamma
power, and not the EEG itself that is well-correlated with the
speech signal. Thus, this indicates that the gamma bandmay have
issues of low signal-to-noise ratio.

Section 4.4 compares the performance of the systems
proposed by Koizumi et al. (2018) and Pawar and Dhage (2020)
based on Cohen’s kappa value.

3.3. Spatial Filtering
Most works do not employ any spatial filtering in the
preprocessing. The only exceptions are the works by Zhao
and Rudzicz (2015) and Cooney et al. (2018), who used a
narrow Laplacian filter. A Laplacian filter uses finite difference
to approximate the second derivative. In the case of a highly
localized Laplacian filter, the mean of the activities of the four
nearest channels is subtracted from the central channel [refer
McFarland et al. (1997) for more details on Laplacian filters used
in EEG processing]. Spatial filtering is generally avoided in the
preprocessing since Laplacian filter is a high pass filter, whichmay
reduce the amount of useful information in the signal (Saha et al.,
2019b).

3.4. Channel/Epoch Rejection
EEG signals are almost always corrupted by electrical potentials
generated by ocular and facial muscles. Since the amplitude of
EEG is very small (in the order of µV) compared to the EMG
generated by the muscles (in the order of mV), it is important
to remove these artifacts from the EEG signal. It is difficult
to remove these artifacts and methods based on heuristics are
often combined with signal processing algorithms such as BSS
(blind source separation) and employed for this purpose. ICA
(independent component analysis) is the most common BSS
algorithm used for preprocessing EEG and hence it is discussed
in some detail in this section.

Let X be a matrix containing the set of M samples each of N
observed signals (individual EEG channels in our case). In other
words each of the N signals {x1(t), x2(t), . . . , xN(t)} is arranged
as one of the columns of X and each column has M samples of
the corresponding channel. Thus, the dimension of X is M × N.
To put into the perspective of EEG signal processing, suppose
EEG signal is acquired using a 64-channel EEG system with
common average referencing at the sampling rate of 1,024 Hz for
a duration of 10s, then the dimension of X used for storing this
EEG will be 10240 × 64. These N observed signals are generated
from a set of K source vectors (where K ≤ N) as given below:

X = SA (1)
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FIGURE 8 | Comparison of the popularity of frequency bands used in works on decoding imagined speech from EEG. Darker shades of black represent more popular

frequency bands. Common EEG frequency bands are given in different colors.

where S is a M × K matrix containing the source signals that
generated the observed signals in X and A is called the mixing
matrix of dimension K × N. This linear model is consistent
with the physics of EEG (Parra et al., 2005). Specifically, the i-th
column of X is obtained as

Xi = Sai (2)

where ai denotes the ith column of A. Our goal is to find
the unmixing matrix, W = A−1 so that we can obtain the
sources which generated the observed signals. Onemotivation for
finding the sources is for denoising or removing noise from the
observed signal. Noise is a relative term used to refer to any signal
that is undesirable in the given context. For instance, if we are
trying to decode imagined speech from EEG, information about
eye blinks is not useful and electrical activity generated by the
extraocular muscles is considered as a noise signal although in
the context of a BCI system that relies on eye blinks, this signal
carries information. ICA is the most commonly used method
for removing these artifacts (Jiang et al., 2019). ICA essentially
tries to identify the source of the eye blink and this source is
suppressed to remove eye blink artifacts from the recorded EEG
signal. Once we find out W, the unmixing or demixing matrix,
the sources can be obtained from the observed signals by using
the following relation:

S = XW (3)

Clearly, it is impossible to find a unique W using only X and
hence we employ some measures that the sources should satisfy.
The measure or cost is selected in such a way that the sources

are statistically independent of each other. This intuitively makes
sense, since the sources responsible for generating the EEG
signals corresponding to imagined speech are independent of
the extraocular muscles that generate the electrical activity
corresponding to eye blinks.

Since finding W is a difficult inverse problem, iterative
algorithms are used for findingW such that a particular cost such
as kurtosis, negentropy, mutual information, or log likelihood is
extremized (Comon, 1994; Bell and Sejnowski, 1995; Girolami
and Fyfe, 1996; Touretzky et al., 1996; Hyvärinen and Oja,
1997). Unwanted sources can be identified by visual inspection
or automatically (Delorme et al., 2001; Joyce et al., 2004; Bian
et al., 2006; Li et al., 2006; Zhou and Gotman, 2009) and
denoised EEG can be reconstructed. The performance of various
ICA algorithms in removing artifacts from EEG are compared
in Frølich and Dowding (2018) and several BSS algorithm
including 20 ICA algorithms are given in Delorme et al. (2007).
Methodological considerations in using ICA can be found in
Klug and Gramann (2020). High-pass filtering with a cut-off
frequency in the range of 1–2 Hz is an important preprocessing
step in using ICA (Winkler et al., 2015).

Brigham andKumar (2010) employed both heuristics and ICA
for removing artifacts. EEG electrodes near eyes, temple and neck
were removed since they were more prone to artifacts. Also, all
epochs having the absolute values of signal components above 30
µV were removed since they are mostly due to EMG artifacts.
After this, ICA was applied on the preprocessed signal to obtain
the independent components. Hurst exponent (Vorobyov and
Cichocki, 2002) was then used to identify unwanted components.
Independent components having Hurst exponent values in the
range of 0.56− 0.69 were discarded.
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Sereshkeh et al. (2017a,b) used ICA and ADJUST algorithm
for removing artifacts. ADJUST (Automatic EEG artifact
detection based on the joint use of spatial and temporal
features) (Mognon et al., 2011) is a fully automatic algorithm
based on spatial and temporal features for identifying and
removing independent components with artifacts. The algorithm
automatically tunes its parameters to the data for computing
artifact-specific spatial and temporal features required for
classifying the independent components.

Deng et al. (2010), Jahangiri et al. (2019, 2018), and Jahangiri
and Sepulveda (2019) have used SOBI (second-order blind
identification) for artifact removal. SOBI has the advantage
of being one of the fastest ICA algorithms (Sahonero and
Calderon, 2017), although it may still be difficult to use it for
real-time applications.

Nguyen et al. (2017) used an adaptive filtering based algorithm
for removing artifacts (He et al., 2004). Unlike the ICA-based
approaches, the adaptive filtering based approach can be used for
real-time processing of multichannel EEG signal, due to its lower
computational cost.

3.5. Selection of a Subset of Channels for
Analysis
As described in section 2.1, the number of EEG channels acquired
varies among the different works published in the literature.
There are studies that make use of only 15 channels and there
are others that use as high as 128 EEG channels. Similar to
downsampling the acquired EEG signal in time domain prior to
processing, a few researchers have also downsampled the signal
in spatial domain; that is, only a subset of the acquired EEG
channels are used for further processing. This section discusses
the various approaches in selecting a subset of EEG channels.

García et al. (2012) manually selected only four out of the 14
EEG channels, which were F7, FC5, T7 and P7, based on their
proximity to Geschwind-Wernicke’s model areas (Geschwind,
1972). It may be noted that researchers have shown that
Geschwind-Wernicke’s model is not an accurate representation
of language processing in human brain (Pillay et al., 2014;
Binder, 2015; Tremblay and Dick, 2016), as already mentioned
in section 2.1.

In the work by Myers (2004), 64-channel EEG was recorded
but from these 64-channels, only channels involved in Broca’s,
Wernicke’s, and sensorimotor areas (i.e., FC3, F5, CP3, P5, C3,
and C4) were used for optimal time range and frequency band
of the EEG signal that should be used for feature extraction
and classification.

Similar to García et al. (2012), EEG channels are manually
chosen in Panachakel et al. (2019). Specifically, the following 11
EEG channels are chosen based on the significance of the cortical
region they cover in language processing (Marslen-Wilson and
Tyler, 2007; Alderson-Day et al., 2015):

1. “C4”: postcentral gyrus
2. “FC3”: premotor cortex
3. “FC1”: premotor cortex
4. “F5”: inferior frontal gyrus, Broca’s area
5. “C3”: postcentral gyrus

6. “F7”: Broca’s area
7. “FT7”: inferior temporal gyrus
8. “CZ”: postcentral gyrus
9. “P3”: superior parietal lobule
10. “T7”: middle temporal gyrus, secondary auditory cortex
11. “C5”: Wernicke’s area, primary auditory cortex

This choice of channels was also supported by the common
spatial patterns (CSP) analysis on the imagined speech vs. rest
state EEG data given in Nguyen et al. (2017). CSP is a linear
transformation that maximizes the variance of the EEG signals
from one class while minimizing the variance of the signals
from another class (Sharon et al., 2019). Mathematically, CSP
extremizes the following objective function:

J(w) =
wTX1X

T
1 w

wTX2X
T
2 w

=
wTC1w

wTC2w
(4)

where T denotes matrix transpose, matrix Xi contains the EEG
signals of class i, with data samples as columns and channels
as rows, w is the spatial filter and Ci is the spatial covariance
matrix of class i. The EEG signals are usually band-pass filtered
into a frequency band of interest whose variance between classes
is extremized by the spatial patterns. The spatial filters can be
seen as EEG source distribution vector (Wang et al., 2006).
The channels corresponding to higher coefficients in the spatial
filters may be the channels more correlated with the sources
corresponding to the classes (Wang et al., 2006).

In Panachakel et al. (2020a), CSP was employed for
determining the number of EEG channels to be considered. Nine
EEG channels corresponding to the largest coefficients in w were
chosen for feature extraction. It is also shown in Panachakel et al.
(2020a) that nine was the optimal number of channels for the
specific machine learning model presented in the paper since
considering more or less than nine channels deteriorated the
performance of the system. This approach has the advantage of
adaptively learning the optimal channels to be considered which
may change across different recording sessions based on the
placement of EEG electrodes and different participants.

4. FEATURE EXTRACTION AND
CLASSIFICATION

Most of the initial works on decoding imagined speech from
EEG relied on features separately extracted from individual
channels rather than simultaneously extracting the features from
multichannel EEG data. Simultaneously extracting features from
multichannel EEG helps in capturing the information transfer
betweenmultiple cortical regions and is resilient to slight changes
in the placement of EEG electrodes across multiple subjects or
across multiple recording sessions. Both statistical and wavelet
domain features are popularly used for decoding imagined
speech from EEG.

Frontiers in Neuroscience | www.frontiersin.org 13 April 2021 | Volume 15 | Article 642251

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Panachakel and Ramakrishnan Decoding Imagined Speech: A Review

4.1. Feature Extraction From Individual
Channels
Statistical features such as mean, median, variance, skewness, and
kurtosis and their first and second derivatives were extracted in
Zhao and Rudzicz (2015). This resulted in a feature vector of
dimension 1, 197 per channel, which were initially concatenated
together. Since there were 55 channels excluding the reference
and EOG channels, this resulted in a feature vector of dimension
65, 835. To reduce the dimension of the feature vector, feature
selection was performed based on the Pearson correlations with
the given classes for each task independently. This resulted in
a feature vector of dimension less than 100. The authors tried
support vector machines (SVMs) with either radial basis function
(RBF) or quadratic kernel and deep belief networks (DBNs) and
SVM with RBF kernel gave better performance.

Min et al. (2016) used a subset of the features used in Zhao and
Rudzicz (2015). Specifically, a trial was divided into 30 windows
and for each window, mean, variance, standard deviation, and
skewness were calculated. To reduce the dimension of the
feature vector, sparse regression model based on Lasso was
used for feature selection (Tibshirani, 1996) and ELM (extreme
learningmachine), ELM-L (extreme learningmachine with linear
function), ELM-R (extreme learning machine with radial basis
function), SVM-R (support vector machine with radial basis
function), and LDA (linear discriminant analysis) were used for
classification. In the study, ELMs performed better than SVM
and LDA.

García et al. (2012), Sereshkeh et al. (2017a), Jahangiri et al.
(2019, 2018), Jahangiri and Sepulveda (2019), Pawar and Dhage
(2020), and Panachakel et al. (2020a) used wavelet transform for
extracting features. Specifically, Garcia et al. used Daubechies 2
(db2) wavelets, Jahangiri et al. have used Gabor wavelets and
Sereshkeh et al., Pawar and Dhage and Panachakel et al used
db4 wavelets as the mother wavelets. Use of wavelet transform is
supported by its ability to localize information in both frequency
and time domains (Subasi, 2005). Garcia et al. performed six
levels of wavelet decomposition and used detail coefficients D2-
D6 and approximation coefficient A6 as the features. The choice
of the coefficients was based on the sampling rate (256 Hz)
and the frequency of interest (4 to 25 Hz). Sereshkeh et al.
performed 4 levels of wavelet decomposition using db4 wavelets.
Instead of using the coefficients as such, as in the case of García
et al. (2012), the standard deviation and root mean square of
the approximation coefficients were used as features. Similar to
Sereshkeh et al., Panachakel et al. also used 4 levels of wavelet
decomposition using db4 wavelets but used root-mean-square
(RMS), variance, and entropy of each approximation coefficient
as features. Garcia et al. used SVM, random forest (RF), and
naïve Bayes (NB) as the classifiers whereas Sereshkeh et al.
used regularized neural networks. Garcia et al. reported higher
accuracy with RF as the classifier. Panachakel et al. used a deep
neural network with three hidden layers as the classifier.

In another work by Panachakel et al. (2019), a combination of
time and wavelet domain features was employed. Corresponding
to each trial, EEG signal of 3-s duration was decomposed
into 7 levels using db4 wavelet and five statistical features,

namely, root mean square, variance, kurtosis, skewness, and
fifth order moment were extracted from the last three detail
coefficients and from the last approximation coefficient. The
same five statistical features were extracted from the 3-s time
domain EEG signal and these features were concatenated with
the features extracted from the wavelet coefficients to obtain
the final feature vector. Similar to Panachakel et al. (2020a),
a deep neural network with two hidden layers was used as
the classifier.

Similar to Keirn and Aunon (1990) and Brigham and Kumar
(2010) have used the coefficients of a sixth order autoregressive
(AR) model as the features with 3-nearest neighbor classifier.
The model coefficients were computed using the Burg method
(Mac Kay, 1987). Order six was chosen since they observed that
AR model of order six gave the best classification accuracy in
their experiments.

In Cooney et al. (2018), experimented with three sets of
features; the first set consisted of statistical measures such as
mean, median, and standard deviation; the second set consisted
of measures such as Hurst exponent and fractal dimension
computed using (Psorakis et al., 2010); and the third set consisted
of 13 Mel-frequency cepstral coefficients (MFCCs), a feature
widely used in the domain of speech processing (Muda et al.,
2010). PCA was used to reduce the dimension of the feature
vector. SVM and decision tree were used as classifiers. The best
accuracy is reported with MFCC as the feature vector and SVM
as the classifier.

Though Hilbert–Huang transformation (HHT) (Huang et al.,
1998; Huang, 2014) is a popular tool for feature extraction in
classifying emotion from EEG (Uzun et al., 2012; Vanitha and
Krishnan, 2017; Phadikar et al., 2019; Chen et al., 2020), the only
work that makes use of HHT for classifying imagined speech is
the work by Deng et al. (2010). Hilbert spectrum was extracted
from the four primary SOBI (second-order blind identification)
components and multiclass linear discriminant analysis (LDA)
was used as the classifier.

Koizumi et al. (2018) extracted band powers from each
channel. Band powers of 12 uniform frequency bands of 10 Hz
from 0 to 120 Hz were computed from power spectral density
(PSD) estimated using Welch periodogram method (Welch,
1967). Powers of all the bands were added to result in a feature
vector whose each element corresponded to a specific EEG
channel. SVM with quadratic polynomial kernel function was
used for classification. In the work byMyers (2004), CSPwas used
as the feature extraction tool and autoregressive SVMwas used as
the classifier.

In Chengaiyan et al. (2020), brain connectivity features such
as coherence (Thatcher et al., 2004), partial directed coherence
(PDC) (Sameshima and Baccalá, 1999), direct transfer function
(DTF) (Kaminski and Blinowska, 1991), and transfer entropy
(Schreiber, 2000) were computed for each band of the EEG
signal. The EEG frequency bands considered were delta, theta,
alpha, beta and gamma. Two separate classifiers were built, one
using recurrent neural networks (RNN) and the other, deep belief
network (DBN). They reported a higher classification accuracy
with DBN than with RNN.
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4.2. Simultaneous Feature Extraction From
Multiple Channels
4.2.1. Using Channel Cross-Covariance (CCV)

Matrices
In Nguyen et al. (2017), two distinct sets of features were
employed, based on the tangent vectors of channel cross-
covariance (CCV) matrices in Riemannian manifold. Using CCV
matrix is preferred over the raw EEG signal because CCV
matrices better capture the statistical relationship between the
channels. Use of Riemannian manifold is motivated by the fact
that since covariance matrix is symmetric positive definite (SPD),
it lies in Riemannian manifold (Nguyen and Artemiadis, 2018).
For a matrix in Riemannian manifold, the Euclidean distance
is not an accurate descriptor; rather, the distance between the
tangent vectors is. Also, tangent vectors are computationally
more efficient than other metrics such as KL divergence (Nguyen
and Artemiadis, 2018). Two approaches are presented in the
paper for obtaining the covariance matrix; the first approach
makes use of the raw EEG signal in the temporal domain
whereas the second approach makes use of both the raw EEG
and the wavelet coefficients of each channel extracted using
the Morlet wavelet. Multi class RVM (mRVM) (Damoulas and
Girolami, 2008; Psorakis et al., 2010) was used as the classifier.
mRVMs are preferred over other conventional classifiers such as
SVMs because mRVMs are inherently multiclass whereas SVMs
are binary classifiers which are extended for multiclass using
approaches like one-vs-all. Also, mRVMs can give the probability
value of the prediction to be correct whereas raw SVMs can
give only the predictions based on the position of the test vector
with reference to the hyperplane. Nyugen et al. have reported
higher accuracy when temporal and wavelet domain features are
combined for the classification task.

In Saha and Fels (2019), Saha et al. (2019b), have used CCV
matrices as the representation of the neural activity during speech
imagery, similar to Nyugen’s approach in Nguyen et al. (2017). In
both works, the deep networks consist of different levels which
are trained hierarchically. In Saha and Fels (2019), the first level
consists of six-layered 1D-convolutional networks stacking two
convolutional and two fully connected hidden layers and a six-
layered recurrent neural network. The output of the 5th layer
of the two previous networks are concatenated and fed to two
deep autoencoders (DAE) and the latent vector representation of
DAE is fed to a fully connected network for final classification. In
Saha et al. (2019b), instead of the 1D-convolutional networks in
layer 1, a four-layered 2D CNN stacking two convolutional and
two fully connected hidden layers is used and instead of the fully
connected network in the last layer, extreme gradient boosting
(XGBoost) (Chen et al., 2015) is used for the final classification.

4.2.2. Without Using Channel Cross-Covariance

(CCV) Matrices
In a very recent work by Cooney et al. (2020), imagined speech
is classified using three different CNN architectures that take the
temporal domain EEG signals as the input. The aim of the work
was to study the influence of hyperparameter optimization in
decoding imagined speech. The three CNN architectures used

are: (1) shallow ConvNet (Schirrmeister et al., 2017), (2) deep
ConvNet (Schirrmeister et al., 2017), and (3) EEGNet (Lawhern
et al., 2018). The hyperparameters considered in the study are
activation function, learning rate, number of training epochs,
and the loss function. Four each of activation functions, namely
squaring non-linearity (Schirrmeister et al., 2017), exponential
linear units (ELU) (Clevert et al., 2015), rectified linear unit
(ReLU) (Agarap, 2018), and leaky ReLU (Maas et al., 2013),
learning rate (0.001, 0.01, 0.1, and 1.0), number of training epochs
(20, 40, 60, and 80) and two loss functions, namely negative
log-likelihood (NLL) and cross-entropy (CE) were evaluated.
They reported that leaky ReLU resulted in the best accuracy
among all the four activation functions compared in the case of
ConvNet whereas ELU performed better in the case of EEGNet.
Also, smaller learning rates (0.001–0.1) were ideal for ConvNet
whereas EEGNet performed best with a learning rate of 1.
With respect to the number of training epochs, 20 epochs were
sufficient for EEGNet whereas higher number of epochs were
necessary for ConvNet. Both NLL and CE performed equally
well and there was no statistically significant difference in the
performance of the network between the two loss functions.

4.3. Transfer Learning Approaches
Transfer learning (TL) is used in García-Salinas et al. (2019)
and Cooney et al. (2019) for improving the performance of
the classifier. TL is a machine learning approach in which the
performance of a classifier in the target domain is improved by
incorporating the knowledge learnt from a different domain (Pan
and Yang, 2009; He and Wu, 2017; García-Salinas et al., 2019).
Specifically in García-Salinas et al. (2019), feature representation
transfer is used for representing a new imagined word using
the codewords learnt using a set of four other imagined words.
The codewords were generated using k-means clustering similar
to the approach discussed in Plinge et al. (2014) and Lazebnik
and Raginsky (2008). These codewords were represented using
histograms and aNaive Bayes classifier was used for classification.
The accuracy of the classifier trained using all the five imagined
words was comparable to the accuracy obtained by applying
TL. This method is essentially an intra-subject transfer learning
in which the knowledge is transferred for classifying a word
which was not in the initial set of prompts. In Cooney et al.
(2019), two TL paradigms are proposed which aim at inter-
subject transfer learning. Specifically, TL is applied for improving
the performance of the classifier on a new subject (target subject)
using the knowledge learnt from a set of different subjects (source
subjects). Similar to García-Salinas et al. (2019), the two TL
paradigms come under the class of multi-task transfer learning
(Evgeniou and Pontil, 2004). A deep CNN architecture, similar
to the one proposed in Schirrmeister et al. (2017), is used in
this work. Initially, the network is trained using the data from
a selected set of subjects. These subjects are chosen based on
the Pearson correlation coefficient of the subject’s data with the
target subject’s data. This training is common for both the TL
paradigms. In the first TL paradigm, a part of the target’s data
is used for fine-tuning the first two layers of the network which
correspond to the input temporal and spatial convolution layers.
In the second TL paradigm, the two layers prior to the output
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layer are fine-tuned using the data from the target subject. An
improvement in accuracy over the non-TL approach is reported
for both the TL paradigms.

4.4. Comparison of Performance of
Different Approaches
It is difficult to compare the accuracies reported in different
papers due the differences in the data acquisition protocol
including the differences in the number of EEG channels, number
and nature of imagined speech prompts. Even for the works
using the same dataset, a true comparison is impossible since
the evaluation strategy (number of folds in cross-validation,
classification of individual subjects vs. pooling the data from
the entire set of subjects for classification, using a subset of
the available prompts in the dataset) varies across these studies.
Nevertheless, a comparison of the accuracies reported in several
works reviewed in this manuscript are given in Table 4. Also,
works that deal with classifying phonological categories, rather
than actual imagined prompts are included in the tabular
column. Figure 9 shows the frequency of use of various machine
learning techniques for decoding imagined speech. Only around
32% of the works reviewed in this workmake use of deep learning
techniques whereas the remaining make use of traditional
machine learning techniques.

Below, we analyze the performance of the systems based on
the types of prompts used, namely:

1. Directional prompts
2. Polar prompts
3. Vowel prompts

Since the number of classes under these prompts are different,
we used Cohen’s kappa (κ) value as the metric for comparing the
systems. Cohen’s kappa value is defined as:

κ : =
pcl − pch

100− pch
(5)

where pcl and pch are the system and chance level accuracies,
respectively, both in percentage.

The value of κ theoretically lies in the range [−1, 1]. Values
closer to−1 indicate that the system is performing badly, whereas
a value closer to 1 indicates that the system is very good. A value
of 0 indicates that the classifier is only as good as random guess
whereas a value less than 0 indicates that the performance of the
classifier is inferior to random guess.

4.4.1. Directional Prompts
Directional prompts include words that can be used for
controlling devices such as wheelchairs and user interfaces
like computer pointing devices. Five studies reviewed in this
article makes use of directional prompts. In both García et al.
(2012), García-Salinas et al. (2019), five Spanish words, “arriba”,
“abajo”, “izquierda”, “derecha”, and “seleccionar” are used as
the prompts. These words mean up, down, left,‘right and select,
respectively. The prompts used in Pawar and Dhage (2020) are
“left”, “right”, “up”, and “down”. In Koizumi et al. (2018), six
Japanese words “ue”, “shita”, “hidari”, “migi”, and “mae” are

used as the prompts. They mean up, down, left, right, forward
and backward, respectively. Similar to García et al. (2012) and
García-Salinas et al. (2019), Cooney et al. (2020) have also used
Spanish words. The six Spanish words used by Cooney et al.
(2020) are “arriba”, “abajo”, “derecha”, “izquierda”, “adelante”,
and “atrás” which mean up, down, left, right, backward, and
forward. García et al. (2012), García-Salinas et al. (2019) made
use of the same dataset acquired using -channel Emotiv EPOC
commercial grade EEG acquisition system sampled at 128 Hz.
The EEG data for Pawar and Dhage (2020) is acquired using 64-
channel Neuroscan synamps 2 research grade EEG acquisition
system sampled at 1,000 Hz. Koizumi et al. (2018) used a 65-
channel EEG-1200, Nihon Kohden Corporation research grade
EEG acquisition system sampled at 1,000 Hz whereas Cooney
et al. (2020) used the dataset acquired using 18-channel Grass
8-18-36 commercial grade EEG acquisition system sampled at
1,024 Hz. The κ values of these systems are given in Table 5

(sl. no. 1 - 5). Clearly, Koizumi et al. (2018) has the best
performance in terms of κ value and Cooney et al. (2020) has
the worst performance. This cannot be attributed to the system
type (commercial grade/research grade) because García-Salinas
et al. (2019), who also made use of a commercial grade system
like Cooney et al. (2020), have obtainedmuch better performance
than Cooney et al. (2020). Also, the data sampling rate may not
have affected the accuracy. One key difference between Koizumi
et al. (2018) and other works is the use of gamma band. Since both
Pawar and Dhage (2020) and Koizumi et al. (2018) have used the
gamma band, the higher performance of Koizumi et al. (2018)
cannot be attributed to the use of gamma band alone.

4.4.2. Polar Prompts
Polar prompts are the responses to binary questions or polar
questions. Three studies reviewed in this article have made use
of answers to binary questions as the prompts. As described in
section 2.4.2, the participants were cued using binary questions.
Both Sereshkeh et al. (2017a) and Sereshkeh et al. (2017b) used
a 64-channel BrainAmp research grade EEG acquisition system
with a sampling rate of 1 KHz for acquiring the EEG data. On
the other hand, Balaji et al. (2017) used a 32-channel research
grade (Electrical Geodesics, Inc.). EEG acquisition system with
a sampling rate of 250 Hz. Unlike Sereshkeh et al. (2017a)
and Sereshkeh et al. (2017b), in Balaji et al. (2017) the binary
questions were posed in two languages, namely Hindi and
English. Also, Sereshkeh et al. (2017b) is the only work that uses
an online strategy for decoding imagined speech from EEG.

The following conclusions can be made from the results
presented in Balaji et al. (2017):

• Though all the participants were native Hindi speakers
who learned English only as their second language, the
classification accuracy is better when the binary questions are
posed in English rather than in Hindi. This is contrary to what
one might expect.

• When the responses to all the questions (both Hindi and
English) are pooled together and used for classification, only
rarely does the classifier make a cross-language prediction

Frontiers in Neuroscience | www.frontiersin.org 16 April 2021 | Volume 15 | Article 642251

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


P
a
n
a
c
h
a
ke

la
n
d
R
a
m
a
krish

n
a
n

D
e
c
o
d
in
g
Im

a
g
in
e
d
S
p
e
e
c
h
:
A
R
e
vie

w

TABLE 4 | Comparison of the accuracies reported in several works (reviewed in this manuscript) on decoding imagined speech from EEG.

Sl.

No.
Prompts

Best features

(if applicable)

Best classifier

(if applicable)

Accuracy

reported

(%)

Remarks

1 García et al. (2012) “arriba”, “abajo”, “izquierda”, “derecha”, “seleccionar” Discrete wavelet transform RF 43.6± 2.4% -

2 Brigham and Kumar (2010) “/ba/”, “/ku/” Autoregressive model coefficients NN 68.8± 14.4% -

3 Min et al. (2016) “/a/”, “/e/”, “/i/”, “/o/”, “/u/” Mean, variance, standard deviation, and skewness ELM-R 87.0± 11.4%

Pairwise classification of

all the five prompts and

rest of subject S2

4 Sereshkeh et al. (2017a) “yes”, “no” Discrete wavelet transform RNN 75.7± 9.6%
Classification of

imagined speech v/s rest

5 Nguyen et al. (2017)
“/a/”, “/i/”, “/u/”; “in”, “out”, “up”;

“independent”, “cooperate”
Tangent vectors in Riemannian manifold mRVM 80.0± 7.3%

Classification of words

"in" and "cooperate"

6 Panachakel et al. (2020a) “in", “cooperate" Temporal and Discrete wavelet transform DNN 72.0± 8.5%
Classification of words

"in" and "cooperate"

7 Panachakel et al. (2019)
“/iy/”, “/ uw/”, “/ piy/”, “/tiy/”, “/diy/”, “/m/”, “/n/”;

“pat”, “pot”, “knew”, and “gnaw”
Discrete wavelet transform DNN 57.1± 15.2% -

8 Cooney et al. (2018)
“/iy/”, “/ uw/”, “/ piy/”, “/tiy/”, “/diy/”, “/m/”, “/n/”;

“pat”, “pot”, “knew”, and “gnaw”
MFCC, statistical features etc. SVM 22.7± 5.2% -

9 Saha and Fels (2019)
“/a/”, “/i/”, “/u/”; “in”, “out”, “up”;

“independent”, “cooperate”
Channel cross-covariance (CCV) CNN+RNN+DAE 79.9± 6.9%

Classification of words

"independent" and

"cooperate"

10 García-Salinas et al. (2019) “arriba”, “abajo”, “izquierda”, “derecha”, “seleccionar” Bag of Features and trasnfer learning Naive Bayes 61.4± 12.4%

Representation of

“abajo” learnt using

transfer learning

11 Cooney et al. (2019) “/a/”, “/e/”, “/i/”, “/o/,” “/u/ ” CNN 35.7± 3.0% Uses transfer learning

12 Tøttrup et al. (2019) “go”, “stop” and “Viborg” Spectral and temporal features RF 67.0± 9.0% -

13 Balaji et al. (2017) “Haan”, “Na” and “Yes” and “No” Spectral power ANN 73.4%
Subject-wise accuracy

is not reported

14 Jahangiri et al. (2019) “/ba/”, “/fo/”, “/le/” and ‘/‘ry/” Discrete Gabor transform LDA 82.5± 4.1%

15 Pawar and Dhage (2020) “left”, “right”, “up” and “down” Discrete wavelet transform ELM-G 47.9± 6.9%

16 Jahangiri et al. (2018) “/ba/”, “/fo/”, “/le/” and ‘/‘ry/” Discrete Gabor transform LDA 82.5± 24.1%

17 Saha et al. (2019b)
“/iy/”, “/ uw/”, “/ piy/”, “/tiy/”, “/diy/”, “/m/”, “/n/”;

“pat”, “pot”, “knew”, and “gnaw”
Channel cross-covariance (CCV) CNN+ LSTM 77.5± 4.2%

Classification of

phonological categories

18 Koizumi et al. (2018) “ue”, “shita”, “hidari”, “migi”, “mae”, “ushiro” Spectral power SVM 81.3%
Subject-wise accuracy

is not reported

19 Deng et al. (2010) Constructed using “/ba/” and “/ku” Hilbert spectrum LDA 58.1± 8.0% Classification of rhythm

(Continued)
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FIGURE 9 | Comparison of popular machine learning algorithms used for

decoding imagined speech from EEG. The x-axis gives the number of articles

using each algorithm.

error. This might be because of the distinct language-specific
sites present in the brain of bilinguals (Lucas et al., 2004).

Based on Cohen’s κ values given in Table 5 (sl. no. 6 - 8), the
system proposed by Balaji et al. (2017) performs better than those
proposed by Sereshkeh et al. (2017a) and Sereshkeh et al. (2017b).
This cannot be considered as the consequence of the classifier
used since the classifiers used by Sereshkeh et al. (2017a) and
Balaji et al. (2017) are very similar.

Further studies are required to explain these counter-intuitive
observations, much in the line of various studies reported
in the literature on the neural differences between bilinguals
and monolinguals (Marian and Shook, 2012; Hammer, 2017;
Gangopadhyay et al., 2018).

4.4.3. Vowel Prompts
Four studies reviewed in this study have used vowel imagery in
their paradigm. Min et al. (2016) and Cooney et al. (2020) have
used the entire set of vowels as their prompts whereas Nguyen
et al. (2017) and Saha and Fels (2019) have used only three
vowels: /a/, /i/, and /u/. Min et al. (2016) have used a 64-channel,
research grade Electrical Geodesics, Inc. EEG acquisition system
whereas Nguyen et al. (2017) have used a 64-channel, research
grade BrainProducts ActiCHamp EEG acquisition system, both
sampled at 1000 Hz. Both Min et al. (2016) and Nguyen et al.
(2017) have downsampled the acquired data, to 250 Hz and 256
Hz, respectively. Saha and Fels (2019) have used the EEG dataset
created by Nguyen et al. (2017). On the other hand, Cooney et al.
(2020) have used an 18-channel, commercial grade EEG amplifier
(Grass 8-18-36) for acquiring the data at 1024 Hz. This was later
downsampled to 128 Hz.

Based on Cohen’s κ values given in Table 5 (sl. no. 9 - 10), the
system proposed by Saha and Fels (2019) performs better than
those proposed by Min et al. (2016), Nguyen et al. (2017), and
Cooney et al. (2020). Since Nguyen et al. (2017) and Saha and Fels
(2019) have used the same EEG dataset, the improvement can be
attributed to the superior classification technique used by Saha
and Fels (2019). Nguyen et al. (2017), Saha and Fels (2019) and
Cooney et al. (2020) have also tested their approach on the EEG
data acquired when the participants were imagining articulating
short words (Cooney et al. (2020): “arriba”, “abajo”, “derecha”,
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TABLE 5 | Comparison of κ values of different works using (a) directional prompts (shaded in gray), (b) polar prompts (shaded in pink) and (c) vowel prompts (shaded in

cyan).

Sl.

No.
Classes Classifier

Accuracy

Achieved

(%)

Chance

Accuracy

(%)

k Value Remarks

1 García et al. (2012)
“arriba”, “abajo”, “izquierda”,

“derecha”, “seleccionar”
RF 43.6 20 0.3 -

2 García-Salinas et al. (2019)
“arriba”, “abajo”, “izquierda”,

“derecha”, “seleccionar”
Naive Bayes 61.4 20 0.5 -

3 Pawar and Dhage (2020) “left”, “right”, “up” and “down” ELM-G 47.9 25 0.3 Uses gamma band

4 Koizumi et al. (2018)
“ue”, “shita”, “hidari”,

“migi”, “mae”, “ushiro”
SVM 81.3 16.7 0.8 Uses gamma band

5 Cooney et al. (2020)
“arriba”, “abajo”, “derecha”,

“izquierda”, “adelante”, “atrás’
CNN 25 16.7 0.1 -

6 Sereshkeh et al. (2017a)
Decision “yes”

vs. “no”
RNN 63.2 57.8 0.1 -

7 Balaji et al. (2017)
Decision “yes”

vs. “no”
ANN 85.2 50 0.7 Uses bilingual prompts

8 Sereshkeh et al. (2017b)
Decision “yes”

vs. “no”
SVM 69.3 60 0.2 Employs online decoding

9 Min et al. (2016)
Pairwise combinations of

/a/, /e/, /i/, /o/, /u/ and mute
ELM-R 68.5 50 0.4

Accuracy is the mean of

all the pairwise classification

accuracies across all the subjects

10 Nguyen et al. (2017) /a/, /i/ and /u/ mRVM 49.0 33.3 0.2 -

11 Saha and Fels (2019) /a/, /i/ and /u/ CNN+RcNN+DAE 74.3 33.3 0.6 -

12 Cooney et al. (2020) /a/, /e/, /i/, /o/, and /u/ CNN 30.3 20 0.1 -

RF, Random forest; ELM-G, Extreme learning machine (Gaussian kernel); SVM, Support vector machine; CNN, Convolutional neural networks; RNN, Regularized neural network; ANN,

Artificial neural network; ELM-R, Extreme learning machine (radial basis function); mRVM, multiclass relevance vector machine; RcNN, Recurrent neural network; DAE, Deep autoencoder.

“izquierda”, “adelante”, and “atrás”; Nguyen et al. (2017) and Saha
and Fels (2019): “in”, “out”, and “up”). For both Nguyen et al.
(2017) and Saha and Fels (2019), there is amarginal improvement
in the κ values when short words are used instead of vowels
whereas for Cooney et al. (2020), there is a marginal reduction.
Therefore, we cannot concretely claim any advantage for short
words over vowels when used as prompts for imagined speech.

5. CONSIDERATIONS IN DESIGNING A
SPEECH IMAGERY BASED ONLINE BCI
SYSTEM

A speech imagery based BCI system essentially comes under the
category of an endogenous BCI system where speech imagery is
used for generating the neural activation, although cues might
be used for generating the speech imagery (Nguyen et al.,
2017). Deploying an EEG based endogenous BCI system for
practical applications is farmore difficult that using an EEG based
exogenous system due to the following reasons:

1. Evoked potentials and event-related potentials used in an
exogenous system have higher signal-to-noise ratio.

2. More number of EEG channels are required in an endogenous
BCI system than an exogenous BCI system. Considering the
longer preparation time required in a wet EEG electrode
system and the difficulties in cleaning the scalp area after

EEG acquisition, the requirement of more number of channels
leads to the use of dry electrodes. Although recent studies have
shown comparable signal qualities in wet and dry electrodes
(Lopez-Gordo et al., 2014; Hinrichs et al., 2020), EEG recorded
using dry electrodes are more prone to artifacts (Leach et al.,
2020).

In addition, there are more challenges when the system needs to
be online, which are enumerated below:

1. Most of the systems reviewed in this article are synchronous
BCI systems which provide a less natural mode of
communication than an asynchronous BCI system. The
EEG signal generated for a synchronous BCI is less corrupted
by artifacts since the subject could avoid eye blinks, eye
movements etc. during the period when the actual EEG to
be analyzed is captured. In an asynchronous BCI system, the
system needs to mitigate the effects of these artifacts leading
to a more complex architecture of the system. Also, the effect
of attention toward the prompts is not well-understood. That
is, the observed neural activation might be because of the cues
rather than due to the imagination. It is worth noting that the
“no vs. rest” system proposed in Sereshkeh et al. (2017b) can
be made to work in an asynchronous mode.

2. The upper bound on the computational complexity of the
algorithms used in the system may limit the efficiency of the
system in removing artifacts, extracting features with high
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discriminability etc. This makes the design of a system with
high accuracy more difficult. For instance, many formulations
of the popular tool for artifact removal has high computational
cost and requires high amounts of data for convergence.
This problem can be addressed by using algorithms that
detect and remove artifacts in real-time such as ADJUST
(Automatic EEG artifact detection based on the joint use of
spatial and temporal features) (Mognon et al., 2011) used
by Nguyen et al. (2017), or other algorithms like online
recursive ICA algorithm (ORICA) (Hsu et al., 2015) and
hybrid ICA-ANC (independent component analysis-adaptive
noise cancellation) (Jafarifarmand et al., 2017).

3. In the case of a system with only two degrees of freedom,
repeated imagination of the prompt may not lead to any
undesirable BCI outputs but this is not the case for a system
with higher number of degrees of freedom.

6. CONCLUSION AND FUTURE
DIRECTIONS

In spite of focused research spanning over a decade, we still do
not have a system that can decode imagined speech from EEG
with sufficient accuracy for a practical system. The algorithms
that offer reasonable accuracy either have a very limited set of
vocabulary or perform poorly for unseen subjects (whose data
has not been seen by the system during its training phase). Based
on the review of recent works in the literature, the following
recommendations are made:

• Type of EEG acquisition system: Most of the works in the
literature are based on the data acquired using EEG systems
with 64 channels. Though there is an improvement in the
accuracy when high-density EEG system is used, considering
the practical difficulties in deploying a BCI system with high-
density EEG system, it may not be feasible to have such a
BCI for any practical purposes. Also, the efficiency of ICA
algorithm plateaus near 64 channels and hence having more
than 64 EEG channels may not help in artifact removal also. As
noted in section 2, there is a trade-off between the accuracy of
the system and the ease with which the system can be deployed.
Also, as noted in section 3.1, most of the works downsample
the acquired EEG data to 256 Hz and hence it is not required
to have EEG acquisition systems of high sampling rates.

• Preferred mode of stimulus delivery: Though auditory cues
have commonly been used in the literature, we recommend
that it is best avoided since it is difficult to remove the signature
of the auditory cue from the EEG signal recorded during
speech imagery. We recommend the use of visual cues since
the occipital lobe is not involved in speech production or
comprehension and hence the neural signals elicited in the
occipital lobe can easily be removed. Out of the 28 papers
reviewed in this article, only one of the article deals with
online decoding of imagined speech. Though many works use
auditory cues, it needs to be investigated what exactly is giving
rise to the neural response, whether it is the auditory cues or
the imagination of the cued prompts. As mentioned in section
1.2, many regions in the auditory cortex are activated during

speech imagery due to efference copies. A system trained on
the distinct neural activities due to cues or the attention toward
it may not be of any practical significance.

• Repeated imagination of prompts: It is observed that
repeated imagination improves the discriminability of the
neural signals elicited during speech imagery. Also, recordings
with repeated imagination can be used to identify the set of
EEG channels most informative for our purpose. Nevertheless,
it is difficult to have a practical online BCI system that
works on repeated imagination, especially when the number
of degrees of freedom are high. Hence, although repeated
imagination of prompts has benefits in a laboratory setting, it
is difficult to extend these systems for practical application.

• Choice of prompts: It has been shown in the literature that
a set of prompts with different lengths and complexity yields
better classification accuracy. It has also been shown that
bilingual prompts improve the classification performance. In
an ideal situation, speech imagery has the possibility of having
many prompts and hence many degrees of freedom. However,
this aspect becomes relevant only when the systems achieve
a level of performance adequate for deployment in a real life,
online BCI system.

• Preprocessing: The most common preprocessing step in the
literature is temporal filtering. Most of the researchers have
band-pass filtered the EEG signal in the range 2 to 50 Hz.
In addition, a notch filter is used by most of the researchers
to remove the powerline hum. If ICA is used, a high pass
filter with a cut-off frequency in the range 1 to 2 Hz is highly
recommended. If gamma band is also included in feature
extraction, algorithms for removing EMG artifacts should be
used. As noted by Saha et al. (2019b), it is better to avoid spatial
filtering in the preprocessing pipeline. Most of the popular
ICA algorithms currently available are not suited for real-time
applications and hence other algorithms like those used by
Nguyen et al. (2017) should be used.

• Features and classifiers used: Most of the works that make
use of traditional machine learning techniques such as
ANN, ELM, and SVM extract features from each channel
independently. In the case of works that use deep-learning
techniques, features are usually extracted from channel cross-
covariance (CCV) matrices. Use of CCV matrices is preferred
since they better capture the information transfer between
different brain regions. Although researchers in other fields
such as speech recognition and computer vision have almost
completely moved to deep-learning, researchers working on
decoding imagined speech from EEG still make use of
conventional machine learning techniques primarily due to
the limitation in the amount of data available for training
the classifiers.

The following research directions have been identified:

1. Identifying a better set of prompts which have highly
discriminable EEG signatures. Identifying this set requires
the efforts of neurobiologists and linguists. For example,
one could experiment with a set of words, each of which
contains phonemes as distinct from other words as possible, in
terms of place and manner of articulation. Further, the effect

Frontiers in Neuroscience | www.frontiersin.org 20 April 2021 | Volume 15 | Article 642251

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Panachakel and Ramakrishnan Decoding Imagined Speech: A Review

TABLE 6 | Details of the three most popular publicly available speech imagery EEG datasets.

Creators Prompts
No. of EEG

Channels

Sampling

rate

No. of

subjects
URL

Shunan Zhao and Frank Rudzicz

(Zhao and Rudzicz, 2015)

Phonemic/syllabic prompts (/iy/, / uw/,

/ piy/, /tiy/, /diy/, /m/, / n/)

and words (pat, pot, knew, and gnaw)

64 1 KHz 14 http://www.cs.toronto.edu/~complingweb/

data/karaOne/karaOne.html

German A. Pressel Corettoa,

Ivan E. Gareisa, and H. Leonardo Rufiner

(Coretto et al., 2017)

Vowels (/a/, /e/, /i/, /o/, /u/)

and words (“arriba”, “abajo”, “derecha”,

“izquierda”, “adelante”, “atras”)

6 1 KHz 15 http://fich.unl.edu.ar/sinc/downloads/

imagined_speech

Chuong H Nguyen, George K Karavas

and Panagiotis Artemiadis

(Nguyen et al., 2017)

Vowels (/a/, /i/, /u/)

and words (“in”, “out” and “up”,

“cooperate”, “independent”)

64 1 KHz 15 https://www.dropbox.com/s/01k9c75j0x3jfb9/

Dataset.zip?dl=0

of the language of the imagined prompt on the signatures
of the EEG has not been explored much except in the
work by Balaji et al. (2017). For instance, in the case of
bilingual subjects, we could possibly use words from different
languages and see if it improves the signal-to-noise ratio of
the obtained responses. Also, more work needs to be carried
out on employing prompts of different rhythms and tones.
Although prompts have phonetic and/or lexical difference,
prompts with varying length, bilingual prompts etc. have been
used by several researchers, it is not well-understood which
characteristic of the prompt is causing the distinct neural
activities. Further studies are required to understand the effect
of these differences.

2. Although EEG has very high temporal resolution compared
to imaging techniques such as fMRI, EEG is highly corrupted
by noise. Developing proper signal processing algorithms to
improve the SNR of EEG recorded during speech imagery
can help in improving the accuracy of systems for decoding
imagined speech. The relative advantages of non-auditory
cues also need to be clearly established.

3. There is high variability between the EEG signals acquired
from different participants. Even in the case of EEG signal
acquired from the same participant, there is high inter-
trial variability (García-Salinas et al., 2019). Techniques to
normalize the EEG acquired from different subjects and also
from different trials of the same subject can help in reducing
the calibration time of the system. This improves the ease with
which the system can be deployed for practical applications.
This is similar to the work by Sharon et al. (2019) where
subject adaptation is used for improving the accuracy in
motor imagery.

4. Identifying better features and better machine learning
algorithms can help reduce the data requirement during the
training and calibration phases. This will also result in better
classification accuracy, improving the practical significance of

the system. Also. algorithms used to classify motor imagery
may not be suitable for speech imagery since the laterality
present in motor imagery (for eg. left hand imagery and right
hand imagery, which have contralateral brain activation) is not
there in speech imagery. Thus, further research in the field of
feature extraction techniques is necessary.

5. The effect of sampling rate and frequency band has not been
studied yet in the case of speech imagery. Information on the
ideal sampling rate and frequency band can help in designing
better BCI systems.

6. Almost all of the current studies are based on healthy subjects.
Further studies are required to understand how well these
systems perform on patients with brain damage.

To help budding researchers to kick-start their research in
decoding imagined speech from EEG, the details of the three
most popular publicly available datasets having EEG acquired
during imagined speech are listed in Table 6.
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