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Under fast viewing conditions, the visual system extracts salient and simplified
representations of complex visual scenes. Saccadic eye movements optimize such
visual analysis through the dynamic sampling of the most informative and salient regions
in the scene. However, a general definition of saliency, as well as its role for natural active
vision, is still a matter for discussion. Following the general idea that visual saliency
may be based on the amount of local information, a recent constrained maximum-
entropy model of early vision, applied to natural images, extracts a set of local optimal
information-carriers, as candidate salient features. These optimal features proved to be
more informative than others in fast vision, when embedded in simplified sketches of
natural images. In the present study, for the first time, these features were presented
in isolation, to investigate whether they can be visually more salient than other non-
optimal features, even in the absence of any meaningful global arrangement (contour,
line, etc.). In four psychophysics experiments, fast discriminability of a compound of
optimal features (target) in comparison with a similar compound of non-optimal features
(distractor) was measured as a function of their number and contrast. Results showed
that the saliency predictions from the constrained maximum-entropy model are well
verified in the data, even when the optimal features are presented in smaller numbers
or at lower contrast. In the eye movements experiment, the target and the distractor
compounds were presented in the periphery at different angles. Participants were asked
to perform a simple choice-saccade task. Results showed that saccades can select
informative optimal features spatially interleaved with non-optimal features even at the
shortest latencies. Saccades’ choice accuracy and landing position precision improved
with SNR. In conclusion, the optimal features predicted by the reference model, turn
out to be more salient than others, despite the lack of any clues coming from a global
meaningful structure, suggesting that they get preferential treatment during fast image
analysis. Also, peripheral fast visual processing of these informative local features is
able to guide gaze orientation. We speculate that active vision is efficiently adapted to
maximize information in natural visual scenes.

Keywords: fast vision, information maximization, visual saliency, information-optimal local features, saccadic
orientation
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INTRODUCTION

The visual system needs to analyze the visual scene efficiently in
a short time—in the order of 10 ms, as fast image recognition is
crucial for survival (Hare, 1973). A huge amount of information
from the external world is potentially available, at any moment,
to the visual system, thus the latter needs to quickly extract the
most relevant elements to allow for an efficient adaptive behavior.
A considerable amount of energy is indeed required to create an
accurate representation of the visual scene in the shortest possible
time (Attwell and Laughlin, 2001; Lennie, 2003; Echeverri, 2006).
For this reason, the visual system is likely to operate a strong
data reduction at an early stage of processing (Attneave, 1954;
Barlow, 1961; Olshausen and Field, 1996), by creating a compact
summary of the relevant features (Marr, 1982; Morgan, 2011).

While the existence of this early visual summary is rarely
put into question, the principles driving the saliency of features,
and the relative weight of local (Li, 2002; Zhang et al., 2012)
and global cues in this process (Oliva and Schyns, 1997; Itti
et al,, 1998; Oliva, 2005), are still subject to intense debate.
The saliency of a visual stimulus depends on several physical
properties (typically luminance, color, orientation of isoluminant
contours—edges) and it scales with the degree of dissimilarity
of each property (e.g., luminance) with regard to the statistics
of that property in the surround (e.g., the stimulus luminance
vs. the background luminance, or the stimulus orientation
compared to the orientation of the neighboring elements—see
for instance Treisman, 1985; Nothdurft, 1993a,b). However, a
stimulus’ saliency can often also be appreciated with isolated
stimuli. Furthermore, the saliency related to each individual
visual property of a single stimulus is typically combined into a
global percept of stimulus saliency and different stimuli, defined
by different conspicuous properties (e.g., a red square among
green square and a tilted line among horizontal lines) can
be compared and eventually empirically matched in terms of
saliency (Nothdurft, 2000).

Several models have been proposed to quantitatively estimate
the two-dimensional saliency distribution in a visual scene (the
bottom-up saliency map). When considering more ecological
conditions for vision, like during visual search with complex
natural scenes, estimating the saliency of each part of the scene
becomes much more difficult. Higher-level factors, such as object
segmentation, semantic processing, and behavioral goals, do
actually contribute, together with the physical properties, to
define the relative conspicuity of the scene’s regions (for a review,
see Fecteau and Munoz, 2006; Itti and Borji, 2013). Models of
eye guidance have tried to predict where people fixate in visual
scenes and to relate these locations to visual saliency. Some
studies have suggested that eye movements are mainly driven
by regions with maximal feature contrast (Itti and Koch, 2000,
2001; Itti and Baldi, 2009; Garcia-Diaz et al., 2012). Concurrently,
in presence of multiple features, objects, and information cues,
the pattern of ocular fixations in a complex natural scene is
often used as the operational definition of the saliency map
of the scene (Itti and Borji, 2013). Finally, the specific task
at hand does also play an important role and for instance, it
has been shown that eye movements statistics in humans are

consistent with an optimal search strategy that gather maximal
information across the scene to successfully achieve the task
(Bruce and Tsotsos, 2005; Najemnik and Geisler, 2005, 2008;
Garcia-Diaz et al., 2012).

The idea that the saliency of visual features is based on
the amount of information (Shannon, 1948) they carry about
the visual scene has been more recently proposed by Del
Viva and colleagues (Del Viva et al, 2013). According to
their model, in order to compress information and provide
a saliency map of the visual scene, the visual system, at an
early stage, acts as a filter that selects only a very limited
number of visual features for further processing stages. The
features selected are those that produce in output the largest
amount of entropy, allowed by the given computing limitations—
bandwidth and storage occupancy—of this early stage filter
(constrained maximum-entropy model). Adopting the principle
of maximum entropy as a measure of optimization, together
with the imposed strict limitations to the computing resources
of the system, allows to completely determine the choice of
the features from the statistical distribution of the input data.
The authors propose that only these optimal features, that are
optimal carriers of information, are considered to be salient
in fast vision. For economic reasons, and because the intent
was to target early vision structures that have small receptive
fields, the model was implemented by using very small features.
Interestingly, the structure of the optimal features obtained by
applying this constrained maximum-entropy model to a set
of natural images (Olmos and Kingdom, 2004; Figure 1A),
closely resembles the spatial structure of the well-known bar
and edge-like receptive fields (Hubel and Wiesel, 1965) found
in primary visual cortices (Figure 1B). This similarity implies
that these specific visual receptive fields represent the optimal
way to transmit information in early vision. On the other hand,
features that do not fulfill the constrained maximum-entropy
optimization criterion (non-optimal) happen to have either a
uniform luminance structure (features with large bandwidth
occupation) or a “noisy” alternation of black and white pixels
(features with large storage occupation; see Figure 1E; Del Viva
etal., 2013). Sketches, obtained by retaining only optimal features
in black and white renditions of natural images (Figure 1C),
and presented very briefly to human observers to ensure
probing the early stages of visual analysis (Thorpe et al,
1996), allow very accurate discrimination. The discrimination
of these sketches is comparable to that of their gray-scale
original versions, although retaining only a small fraction of
the original information (about 5-10%) (Del Viva et al., 2013).
This shows that in fast vision it is sufficient to see very
few details to discriminate images, provided that these few
features are “the right ones.” In the sketches, optimal features
turn out to be arranged along objects’ contours (edges and
lines) rather than being scattered throughout the image, and
the spatial structure of the features belonging to a particular
contour corresponds to the nature and orientation of the
contour (Figure 1C). That is, a vertical contour is composed
of small local vertical edges (or lines). These authors showed
also that, if non-optimal features are instead retained in the
same black and white images, for example those with the
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FIGURE 1 | Extraction of optimal and non-optimal features and examples of sketches. (A) Original versions of natural images (Olmos and Kingdom, 2004) were first
digitized into black and white. (B) Set of 50 3 x 3-pixels optimal features extracted by applying to black and white images the constrained maximum entropy model
(Del Viva et al., 2013). (C) Sketch obtained by filtering the image with features in (B). All the optimal features are positioned along image contours, as shown in the
inset. (D) Sketch obtained by replacing in (C) the optimal features with non-optimal features (Del Viva et al., 2016). The spatial structure of the features along the
contours does not correspond to the orientation of the contour, as shown in the inset. (E) A set of 50 3 x 3-pixels non-optimal features with the lowest probability in
the statistical distribution of all possible 3 x 3-pixel black and white features. (F) Sketch obtained by filtering the digitized image with the 50 features in (E).

e

lowest probability of occurrence (Figure 1E), the corresponding
sketches are unrecognizable (Figure 1F). When using the
latter, human discrimination performance drops dramatically
(Del Viva et al., 2013).

The discrimination power provided by sketches based on
optimal features could be due either to the specific local features
used in the sketch or to their global spatial arrangement
in the images. The contribution of individual local optimal
features, located along with objects’ contours (global features),
has been studied by replacing them with other features that are
non-optimal carriers of information, keeping their localization
along the contours unchanged (Figure 1D). That is, according
to the example provided above, small local vertical edges
(lines) in a vertical contour were replaced with different non-
optimal local features, for example, the ones in Figure 1E.
The disruption of these optimal local cues causes a decrease of
image recognizability, despite its global structure being preserved
(Del Viva et al., 2016).

Here we ask whether the optimal features identified in past
experiments (Del Viva et al., 2013) are perceived as salient
even when presented in isolation, outside the context of the
global image structure to which they belong. We address this
question through saliency discrimination between optimal and
non-optimal features, by explicitly asking to the participants to
choose the stimulus which stands out or grabs automatically
their attention, through either a hand-button press, or a saccadic
orienting response. This way of measuring saliency is not based
on an automatic response, unlike in the majority of studies

(e.g., Zhaoping and May, 2007; Donk and van Zoest, 2008),
but it requires an explicit behavioral choice, as previously used,
for example when preference does not depend on the intensity
of a single low-level property of the stimulus—e.g., contrast,
luminance, color (e.g., Nothdurft, 1993a; Nothdurft, 2000). This
is the case of our stimuli, that do not differ for the low-level
properties usually defining visual saliency, but for the internal
spatial arrangement of black-and-white pixels (Figures 1B,E).
These differences derive from a process of constrained-entropy
maximization of the statistics of visual scenes, required by
early input data reduction (Del Viva et al, 2013). Thus, the
saliency preference for isolated optimal feature, even though
asked explicitly, is not obvious.

Specifically, we conducted four psychophysics and one eye-
movement experiment to determine the degree of saliency
given by optimal features, compared to non-optimal features.
In Experiment 1, to assess the minimal number of optimal
features able to trigger a saliency discrimination, the preference
for optimal vs. non-optimal features was measured as a function
of their number. Experiment 2 was designed to assess how many
optimal features surrounded by a group of non-optimal features
(“signal-to-noise ratio,” SNR) are necessary to consider them
more salient. This is a more ecological condition than that in
Experiment 1 because in natural images optimal features (edges
and lines) are always surrounded by others that do not define
object contours and are therefore considered as noise, according
to our model. Visual saliency is strongly dependent on luminance
contrast (Treisman, 1985), whose analysis involves early visual
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processing starting from the retina. It is therefore particularly
important to study its effect in determining saliency in fast vision.
We studied the effect of contrast in Experiments 3 and 4. In
Experiment 3, the preference for optimal vs. non-optimal features
was measured as a function of the contrast of both, to measure
the lowest contrast needed to still choose the optimal features
as the more salient. In Experiment 4, the preference for the
optimal features was measured as a function of their contrast
relative to non-optimal features, to measure the minimal contrast
optimal features must have to be considered as salient as non-
optimal features. We can consider this value as the contrast
equivalent to the saliency given by the spatial structure of optimal
features. Finally, the preference for optimal features as a function
of their number relative to non-optimal features (SNR), was
also measured with saccadic eye movements. In this work, eye
movements are not used as an operational definition of saliency
(e.g., Itti and Borji, 2013), but as an alternative modality to the
psychophysics response. We argue that the dynamic and metric
properties of gaze-orienting responses might provide additional
insight on the saliency-based capture exerted by optimal features.

MATERIALS AND METHODS

Psychophysics Experiments

Observers

The condition with one feature in Experiment 1 was tested
on 20 observers (13 women, mean age = 27 =+ 2 years). Five
other different observers (3 women, mean age = 23 + 3 years)
participated in the other conditions of Experiment 1, and
Experiments 2, 3, and 4. All observers had normal or corrected
to normal visual acuity and no history of visual or neurological
disorders. Observers were unaware of the aim of the experiments
(except for one author, in all experiments) and gave written
informed consent before the experiments. All experimental
procedures were approved by the local ethics committee
(Comitato Etico Pediatrico Regionale—Azienda Ospedaliero-
Universitaria Meyer—Firenze FI) and were compliant with the
Declaration of Helsinki.

Apparatus and Set-Up

All stimuli were programmed on an ACER computer running
Windows 7 with Matlab 2016b, using the Psychophysics Toolbox
extensions (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007), and
displayed on a gamma-corrected CRT Silicon Graphics monitor
with 1,280 x 960 pixels resolution at 120 Hz refresh rate. The
whole display (38.5 x 29.5 cm) subtended 38.5 x 29.5° of
visual angle at a viewing distance of 57 cm. All experiments
were carried out in a dark room, with no lighting other than
the display screen. Ad hoc software in Mathematica (Wolfram
Inc.) was used for the extraction of stimuli, curve fitting, and
statistical analysis. Participants’ manual responses were provided
on a standard Dell keyboard.

Stimuli
Stimuli were two compounds of a certain number of small
features, subtending 1.5 deg of visual angle at 57 cm distance

(1.56 x 1.56 cm) and located horizontally at 3 deg eccentricity,
right and left of the center of the screen. Each compound
comprised several 3 x 3 pixels features, subtending 0.12 deg
at 57 cm distance (0.12 x 0.12 cm) each. They were randomly
selected with replacement (at each trial) from a set of 50 black
and white optimal features selected according to the constrained
maximum-entropy model, already used to build the sketches in
previous experiments (Del Viva et al., 2013), and from a set of 50
black and white non-optimal features, with the lowest probability
of occurrence in the statistical distribution of all possible 3 x 3
pixel black and white features (Figures 1B,E). The latter also
were a subset of the non-optimal features, already used to build
the sketches in previous experiments, specifically those fulfilling
a maximum entropy but not a constrained-maximum entropy
criterion (Del Viva et al,, 2013). We chose these non-optimal
features as a control for saliency because the difference between
optimal and non-optimal features is given only by their internal
black-and-white pixel arrangement, and they do not differ, on
average, in luminance. Non-optimal features contain on average
more of the higher spatial frequencies but there is a significant
overlap of spatial frequency content between optimal and non-
optimal features (Del Viva et al., 2013). More importantly, the
spatial frequency spectrum of all our features lies entirely above
the frequency of maximum human sensitivity. Our range of
spatial frequencies is between 9 and 27 cycles/deg, while the
maximum sensitivity lies at about 7 cycles/deg in our illumination
conditions (Lamming, 1991). The positions of the features within
each compound were assigned randomly at each trial and were
set such that the distance between neighboring features had to be
about 3 pixels in each direction. Random selection and random
position of features in the stimulus ensured that saliency was
provided only by individual features rather than by their global
arrangement. The left/right position of each compound was also
varied randomly from trial to trial. Luminance white: 35 cd/m?;
luminance black: 1 cd/m?; luminance gray background: 12 cd/m?.

Procedure

In all experiments, participants were asked to choose which of
the two compounds presented on each side of the screen was the
most salient, in a 2AFC procedure. Participants were sitting in a
dark room at 57 cm distance from the monitor. Each trial started
with the presentation of a gray display for 800 ms, during which
subjects were asked to fixate a cross in the center of the screen.
The compound stimuli were then shown for 26 ms on a gray
background. After the stimulus presentation, subjects indicated
the more salient compound by pressing a computer key. There
was no time limit for the response (Figure 2A). All data for each
subject were collected in one single session of about 1 h, divided
into four blocks (one block/experiment).

In Experiment 1 the preference for a compound of optimal
features (target) with respect to a compound of non-optimal
features (distractor) was measured as a function of the number
of features presented. The luminance contrast was 100% in all
trials. Considering these features are very small and are presented
for a very short time, the minimal number of optimal features
that triggers a consistent preference based on saliency becomes
very important. For this reason, in a preliminary phase, a single
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A ixati Target vs distractor

Choice task

varying number of features varying SNR

The target-distractor compounds position in the trials is randomized.

FIGURE 2 | Psychophysics experiments procedure and conditions. (A) Schematic representation of one trial. During stimulus presentation two compounds, target
(deemed salient), and distractor (not salient), were presented randomly left/right. The two black circles (not visible in the real display) represent the location of target
and distractor, shown below in (B-E) for each experimental condition. In (B-E), the target is always on the right. (B) Examples of stimuli for Experiment 1. Upper
panel: target with 1 optimal feature vs. distractor with 1 non-optimal feature. Lower panel: target with 7 optimal features vs. distractor with 7 non-optimal features.
(C) Examples of stimuli for Experiment 2. Upper panel: target with 1 optimal feature plus 9 non-optimal features (SNR = 10%) vs. distractor with 10 non-optimal
features. Lower panel: target with 6 optimal features plus 4 non-optimal features (SNR = 60%) vs. distractor with 10 non-optimal features. Red arrows indicate
optimal features. (D) Examples of stimuli for Experiment 3. Upper panel: target with 10 optimal features vs. distractor with 10 non-optimal features (contrast of

both = 50%). Lower panel: target with 10 optimal features vs. distractor with 10 non-optimal features (contrast of both = 20%). (E) Examples of stimuli for
Experiment 4. Upper panel: target with 10 optimal features (contrast = 80%) vs. distractor with 10 non-optimal features (contrast = 100%). Lower panel: target with
10 optimal features (contrast = 65%) vs. distractor with 10 non-optimal features (contrast = 100%). Compounds and features are oversized for illustration purposes.

varying contrast varying contrast of target

feature was presented on each side, to check for the possible
presence of an effect even in this limit condition. A total of
200 trials/observers were run. 20 observers participated just
in this measurement. Then, five different observers completed
the experiment to assess the number of features that produce
maximal saliency discrimination. Three, five, seven, and ten
features in each compound were presented to these five
observers. Target and distractor always had the same number
of features, varying from trial to trial according to a constant-
stimuli procedure. A total of 1,200 trials per observer were
run (Figure 2B).

In Experiment 2 the saliency-based preferential choice was
measured as a function of the relative number of optimal
vs. non-optimal features in the same compound. The target
included a total of 10 optimal and non-optimal features in
variable proportions (variable signal to noise ratio, SNR). The
distractor included 10 non-optimal features. The luminance
contrast (100%) and the total number of features in each
compound (10) were kept constant in all trials. The SNR was
either 0.1, or 0.4, or 0.6 or 1 (corresponding to 1, 4, 6, or
10 optimal features in the target compound), and this number

was set randomly from trial to trial according to a constant
stimuli procedure. A total of 1,200 trials per observer were
run (Figure 2C).

In Experiment 3, the strength of the saliency-based
preferential choice was measured as a function of the contrast
of both optimal features (target compound) and non-optimal
features (distractor compound). In this experiment, the number
of features in the two compounds was kept constant at 10.
Contrast for both target and distractor was set at 0.15, 0.2,
0.25, 0.3, 0.5 and the value was set randomly from trial to trial
according to a constant stimuli procedure. Subjects were asked
to press a computer key to indicate the more salient compound.
A total of 500 trials per observer were run (Figure 2D).

In Experiment 4, the preference for optimal features (target
compound) was measured as a function of their contrast relative
to the contrast of non-optimal features (distractor compound).
That is, in half of the trials, the contrast of the target was varied
while the contrast of the distractor was kept constant at 100%.
The contrast of the target for which the observers could not tell
anymore which compound was more salient can be considered
as 1-the contrast value equivalent to the saliency of our features.
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In the other half of the trials, the contrast of the target was kept
constant at 100% while the contrast of the distractor was varied.
These “catch trials” were used to avoid contrast cues that could
bias the observers’ choice. All these trials were randomized. The
number of features in the two compounds was the same (10) in
all trials. Contrast values in the varying compound were 0.65,
0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1, set randomly from trial to trial
according to a constant stimuli procedure. A total of 800 trials per
observer were run (Figure 2E).

In Experiments 3 and 4, for every condition and subject, a
2-parameters (position and slope) Maximum Likelihood fit was
performed off-line with data obtained in all sessions, based on
an ERF (sigmoid) psychometric function. Psychometric functions
run from 0.5 to 1 in Experiment 3 and thresholds were defined
as the target contrast yielding 75% correct discrimination. In
Experiment 4, psychometric functions run from 0 to 1, and
thresholds were defined as the target contrast yielding 50%
correct discrimination. The goodness of fit was determined from
the difference in log-Likelihood between the fit, and an ideal fit
describing all points exactly. This is used to obtain a p-value
under the chi-square approximation (Wilks’ theorem).

Eye Movements Experiment

Participants

Seven observers (3 women, mean age = 30.1 £ 8 years)
participated in the eye movements task and the psychophysical
control experiment. Five of them were completely naive to
the goal of the experiment. All observers had normal or
corrected to normal visual acuity and no history of visual
or neurological disorders. All experimental procedures were
approved by the local ethics committee (Comité d’éthique d’Aix-
Marseille Université, ref: 2014-12-3-05) and were compliant with
the Declaration of Helsinki.

Apparatus and Set-Up

All stimuli were programmed on a MacPro computer running
OS 10.6.8 with Matlab 2016b, using the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007), and the Eyelink
Toolbox extensions (Cornelissen et al., 2002), and displayed on
a Samsung SyncMaster 2,233 LED-monitor with 1,680 x 1,050
pixels resolution at 120 Hz refresh rate. The whole display
(47.2 x 29.5 cm) subtended about 47 x 29° of visual angle at a
viewing distance of 57.3 cm. All experiments were carried out in
a dark room, with no lighting other than the display screen. Eye
movements were recorded using an Eyelink 1,000 video-based
eye tracker (sampling rate 1 kHz). The viewing was binocular,
but only the right eye was tracked. A chin and forehead rest
stabilized the head.

Stimuli

Stimuli were two compounds of 10 features each. The target
compound comprised a variable amount of optimal features (1,
4, 6, or 10) and non-optimal features, the distractor comprised
only non-optimal features, analogously to the psychophysics
Experiment 2. For the eye movements experiment, the target and
distractor compound-pair could appear randomly at 5 different
locations, with target and distractor arranged symmetrically with

respect to the vertical meridian and their respective position
(right or left) randomly switched across trials (Figure 3). If we
consider the compound on the right-hand side, its position was
defined by an angle of 0°, &= 45°, or £ 70° with respect to the
horizontal midline (Figure 3B). In the following, we will refer
to these angles to indicate the position of the compound pair.
Angles were randomly alternated in the presentation sequence
to maximally reduce motor preparation for the saccade and to
assess possible spatial anisotropies of the optimal features-based
saliency. Both compounds were displayed at a larger eccentricity
(5°) than the one used in the psychophysical experiments (3°),
in order to elicit goal-directed saccades, clearly aiming outside
the perifoveal region (Figure 3B). To compensate for the larger
eccentricity, all the stimuli were slightly larger than in Experiment
2. Compounds subtended 1.8 x 1.8 deg (nearly 1.8 x 1.8 cm) and
individual features about 10 x 10 min of arc (0.17 x 0.17 cm) at
57.3 cm viewing distance. Each feature was defined by a 6 x 6
white and black pixels patch. Positions of features within each
compound were randomly assigned at each trial, ensuring a
distance of about 6 pixels in each direction between neighboring
features. White pixels had a luminance of 82 cd/m?%; black
pixels: < 2 cd/m?; and the luminance of the gray background was
about 42 cd/m?.

Procedure

After a fixation period of random duration between 500 and
800 ms, the target-distractor pair was presented for 26 ms (three
frames). Then, two placeholders were displayed for 800 ms
at the compound-pair location. The placeholders ensured that
observers could program a relatively accurate visually guided
saccade even once the compounds have disappeared. Observers
were asked to move their gaze toward the location where they
saw the “most salient stimulus,” in a 2AFC choice-saccade task
(Figure 3A). To assess the rapid and possibly most automatic
response to optimal features, only the first visually guided
saccade was considered in each trial. 800 trials were collected for
each subject.

Since experimental conditions are different from the
psychophysics Experiment 2, as a control, we repeated the
psychophysical measurements with these observers, stimuli, and
setup. As in the psychophysics Experiment 2, the saliency-based
preferential choice for the optimal features was measured as a
function of their number relative to the total number of features
(optimal and non-optimal, always equal to 10) in the same
compound (SNR). In this control experiment, only the condition
where the target and distractor were presented on the horizontal
axis was tested and a total of 400 trials/observer were run.

Eye Movements Data Analysis

Ad hoc software in Matlab and Mathematica (Wolfram Inc.)
was used for extraction of oculomotor parameters and statistical
analysis. Recorded horizontal and vertical gaze positions were
low-pass filtered using a Butterworth (acausal) filter of order 2
with a 30-Hz cutoff frequency and then numerically differentiated
to obtain velocity measurements. We used an automatic conjoint
acceleration and velocity threshold method to detect saccades
(see for instance Damasse et al, 2018), and we visually
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Fixation

500-800 ms

FIGURE 3 | Eye movements experiment procedure. (A) Schematic representation of one trial. After a random-duration fixation period, one compound comprising a
variable proportion (SNR) of optimal features (target), and a compound with non-optimal features (distractor), were presented to the right or left, at different angles,
for 26 ms. Then, two placeholders were shown at the target and distractor locations for 800 ms. In this example, target SNR = 60%. For an enlargement showing
the configuration of the actual compounds see Figure 2C. (B) Target and distractor compounds could be presented randomly at one of 5 different locations

(0°, &+ 45°, £+ 70°) as defined in the text, illustrated by different colors, at 5 deg eccentricity. Red: angle + 70°; blue: angle + 45°; green: angle 0°; violet: angle —45°;

orange: angle —70°.

800 ms

Choice saccade task

inspected all oculomotor traces to exclude aberrant trials. We
excluded from the analysis saccades with latencies below 140 ms,
considered anticipatory and not guided by visual information
in this type of choice-saccade tasks (e.g., Walker et al., 1997),
and very late saccades, above 500 ms (less than 6% of the
first detected saccades overall). Visual inspection of individual
latency histograms confirmed that saccades with latency below
140 ms and above 500 ms did not belong to the principal
mode of the distribution. When a small anticipatory saccade
was detected (amplitude below 3 deg), the second saccade was
used instead for the analysis (less than 2% of total). For each
saccade, we estimated latency, amplitude, endpoint position, and
the distance between the eye position endpoint and the center
of the target (or distractor) compound. Saccades ending within
1.5 deg of either target or distractor were classified as “valid,
and, respectively, labeled “To-target” (correct) or “To-distractor”
(erroneous). All the other saccades, landing farther than 1.5 deg
from the compound, were considered as invalid, and labeled
“Quasi-Target” or “Quasi-Distractor” when they brought the gaze
in the same hemifield of the target or the distractor, respectively.
The choice of the 1.5° distance criterion was motivated, on one
hand, by the requirement that the validity-surrounds would not
overlap between the two compounds in the 70° (uppermost) and
—70° (lowermost position) conditions. On the other hand, this
criterion distance is reasonable for a target-compound with a side
of approximately the same size.

RESULTS

Psychophysics Experiments

Results of Experiment 1 show that all observers found
the target compound to be much more salient than the
distractor. Even a single tiny optimal feature was chosen with

probability = 0.71 £ 0.01 over its alternative by 20 observers
(Figure 4). Probability of choosing the target as more salient
increases with the number of features presented up to 10 features,
where probability saturates for all subjects. This number was used
in all the following experiments.

Results of Experiment 2 show that even when optimal features
are intermixed with non-optimal features in the same compound,
observers still indicate this compound as more salient than the
alternative. The probability increases with SNR. A compound
with a single optimal feature surrounded by nine non-optimal
features is sufficient to lead observers to consider this stimulus as

0.9 - e
o

0.5

Probability towards optimal features
o
g
1

0'4 T T T T T T T T T |
1 2 3 4 5 6 7 8 9 10

Number of features

FIGURE 4 | Experiment 1: Probability of selecting the target as a function of
the number of features. Colored symbols represent data from 5 individual
observers. Black symbols represent data from 20 different individual
observers, tested in this condition only. Errors of individual dots are binomial
standard deviations. The dashed line indicates the guessing level for this task
(0.5 probability).
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more salient than the other with probability = 0.64 £ 0.02 (z = 6,
p < 0.001) (Figure 5).

Results of Experiment 3 show that the lowest contrast needed
to still choose the optimal features as the more salient is
0.23 £ 0.0006. This is the weighted average of the thresholds from
maximum likelihood fits of individual data (Figure 6).

Results Experiment 4 show that when the contrast of non-
optimal features is lowered, all observers always deemed the
compound of optimal features (kept at 100% contrast) the
most salient one. Conversely, when the contrast of non-optimal
features was kept at 100% and that of optimal features was
lowered, they still considered them as more salient, but with
a decreasing probability as the contrast decreased. The average
contrast value for which the contrast of optimal features balances
the saliency of the non-optimal features is 0.63 £ 0.004 (weighted
average of individual thresholds) (Figure 7).

Eye Movements Experiment
Figure 8 shows probabilities for the first correct saccade and
psychophysical choice of the same observers, as a function

of the relative number of optimal vs. non-optimal features
in the compound (SNR), when the target and distractor
compounds were presented on the horizontal axis (0/180°). Both
psychophysical and eye movements data confirm the results of
Experiment 2, although with a smaller set of data and at a slightly
larger eccentricity (5° instead of 3°).

That is, even when in the same compound optimal features
are intermixed with non-optimal features, observers consider this
compound as more salient than the other comprising only non-
optimal features, and they do so with a probability that increases
with SNR. A compound with just one optimal feature surrounded
by nine non-optimal features is sufficient to lead observers to
consider this stimulus as more salient than the other one with
probability 0.65 £ 0.02 for psychophysics (z = 3.66, p < 0.001),
and to orient the gaze toward it with probability 0.65 £ 0.03 for
saccadic choice (z = 1.75, p < 0.05).

When all directions tested are considered (—70°, —45°, 0°,
45°, 70°), the average probability for the choice saccade to
land in the vicinity of the target compound also increases with
SNR (Figure 9A). The average performance depends on angles:

FIGURE 5 | Experiment 2: Probability of selecting the target as a function of SNR.
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best fit. Individual thresholds are given by contrast values corresponding to 75% level performance and are, respectively, 0.21 £+ 0.007, 0.35 + 0.88, 0.30 £ 0.02,
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compared to angle 0°, performance is lower for the upper
quadrant, both for + 45° (z = —2.19, p < 0.05) and + 70° angles
(z=—5.20, p < 0.001). The performance for the lower quadrant
does not differ from 0°, either for —45° (z = 0.09, p > 0.5) and
—70° angles (z = —1.20, p > 0.05).

We evaluated the mean latency of saccades that were correctly
oriented toward the salient compound, as a function of the SNR
and for each different angle of presentation. Figure 9B shows
a strong difference of the saccadic latency across angles, with
latencies being much shorter for eye movements directed toward
the upper hemifield and in particular to the uppermost target-
distractor compound location (angle 4+ 70°). A mixed-effects
linear regression analysis of mean saccade latency (with SNR,
angle, and choice-accuracy-to-Target vs. to-Distractor saccades-
as fixed-effects, and the same factors per subject as random-
effects) revealed that only the angle but neither SNR nor choice-
accuracy did significantly influence latency (mean regression
slope = —0.46; standard error = 0.08; t = —5.63; p < 0.01).

Figure 10 shows the landing point of all saccades of all subjects
for the lowest (Figure 10A) and highest (Figure 10B) stimulus
saliency conditions. To better visualize saccadic accuracy and
precision, data have been flipped and pooled as though the
target compounds were always on the right hemifield and
the distractor compounds were always on the left hemifield.
Saccades are categorized as valid, “to-Target” (correct), or “to-
Distractor” (erroneous), when they land at a distance lower than
1.5°, respectively, from the target or distractor (filled circles
in Figure 10).

To analyze the precision of landing positions for valid
saccades, we calculated the absolute distance of landing position
of correct and erroneous saccades from the compounds. At
SNR 0.1, the mean absolute distance (£ SEM) from the target
compound of correct saccades was not significantly different from

the distance of erroneous saccades from the distractor compound
[respectively 0.74 £ 0.03° and 0.76 £ 0.03°; Paired Samples 1-
tailed ¢-test, £(g) = 0.93, p > 0.05]. At SNR 1, the distance from
the target of correct saccades was instead significantly smaller
than the distance of erroneous saccades from the distractor
[respectively, 0.59 % 0.05° and 0.99° £ 0.09°% ti) = 4.19,
p < 0.01]. At SNR 1 correct saccades landed closer to the target
than at SNR 0.1 [t = —4.22, p < 0.01], whereas erroneous
saccades at SNR 1 landed further away from the distractor than
at SNR 0.1 [t(s) = 2.4, p < 0.05]. To investigate whether these
differences could be explained by an “attraction” exerted by
optimal features, we also analyzed the landing position along
the horizontal axis, that is the presence of left-right biases in
the saccades directions. Landing errors of correct and erroneous
saccades were computed as the difference between the horizontal
component of the estimated eye position at the end of the
saccade and the position of the center of the nearby target or
distractor compound. According to our convention (see caption
of Figure 10), for to-Target saccades, a landing error compatible
with zero corresponds to a saccade landing precisely on the
target center; a negative landing error corresponds to a saccade
landing closer to the screen vertical midline with respect to
the target center (thus in the direction of the distractor on the
horizontal axis), whereas a positive landing error corresponds to
a saccade landing further away from the screen vertical midline
(beyond the target on the horizontal axis). The opposite relation
holds for to-Distractor saccades. At SNR = 0.1 (Figure 10A)
the mean landing error for saccades to-Target (—0.09° &+ 0.002)
is significantly different from 0 [One Sample 2-tailed ¢-test,
t(6) = —4.80, p < 0.01]. The mean landing error for saccades to-
Distractor (0.19° % 0.07) is significantly different from 0 as well
[t(6) = 5.06, p < 0.1]. Thus, with low-saliency compounds, both
to-Target, and to-Distractor saccades land nearer to the screen
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vertical midline. However, the absolute value of the landing
error of to-Distractor saccades is larger than that of to-Target
saccades [Paired Samples 1-tailed t-test, t(s) = 3.004, p < 0.05],
suggesting that to-Distractor saccades are less precise than to-
Target saccades and that they tend to land shorter from the
distractor and relatively closer to the salient compound on the
opposite side. At SNR = 1 (Figure 10B) the mean landing error
for to-Target saccades (—0.03° % 0.1) is not significantly different
from 0 [t) = —0.67, p > 0.5], whereas the mean landing error
for to-Distractor saccades (0.28° = 0.1) is significantly different
from 0 [t(s) = 3.89, p < 0.01], again significantly greater than that
of to-Target saccades [t(¢) = 3.63, p < 0.01]. Thus, when the target
compound is very salient, to-Target saccades are precise and

land very close to the compound center, whereas to-Distractor
saccades are less precise and tend to fall short of the distractor,
revealing a bias for the saccade landing position toward the
salient compound. In addition, when SNR increases from 0.1 to
1, the landing error for saccades to-Distractor move further away
from the distractor compound and relatively closer to the target
compound [ts) = —2.39, p < 0.05], whereas to-Target saccades
land closer and closer to the center of the target compound
[t(6) = —2.21, p < 0.05], indicating that the bias observed in the
landing errors is affected by the feature saliency. When analyzed
independently for different angles, the precision of valid to-Target
saccades does also provide different results. The mean landing
error (£ SEM) for the 70° angle is quite large: —0.48° % 0.05 at
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SNR =0.1 and —0.46° 4= 0.04 at SNR = 1. In contrast, saccades are
much more precise at 0° angle, with a landing error compatible
with 0° within our uncertainty (—0.03° £ 0.04 at SNR 0.1;
0.01° £ 0.04 at SNR 1).

To assess the attraction of optimal features independently
on the criterion we choose for validity, we also analyzed the
behavior of invalid saccades landing farther than 1.5° from
either target (“Quasi-Target”) or distractor (“Quasi-Distractor”),
for the two extreme SNR values, 0.1 and 1 (empty circles in
Figure 10). First, in order to measure saccade accuracy, the
ratios of “Quasi-Target”/“to-Target” and “Quasi-Distractor”/“to-
Distractor” saccades were compared. When considering all
saccades independently of the angle, the “Quasi-Distractor”/“to-
Distractor” ratio is larger than “Quasi-Target”/“to-Target,” both
for the lowest (Binomial test, 18% vs. 11%, p = 0.004) and
highest (18% vs. 9%, p = 0.0004) SNR values. This result
suggests that when saccades are directed on the side of the
distractor, the probability to meet the 1.5%criterion from the goal
is lower, compared to saccades directed on the side of the salient
compound. When different angles are considered separately, the
landing position at 0° is the most accurate, with a low ratio of
“Quasi-Target”/“to-Target” (3% at SNR = 0.1 and 1% at SNR = 1),
becoming progressively less accurate moving further away from
0° (see Table 1). Then the horizontal landing position with
respect to the vertical midline of the screen of these invalid
saccades was analyzed, to detect possible biases due to saliency.
At SNR = 0.1 (Figure 10A), the absolute horizontal landing
position of “Quasi-Target” and “Quasi-Distractor” saccades are
statistically compatible [t) = 0.32, p > 0.5]. In contrast, at
SNR =1 (Figure 10B) Quasi-Distractor saccades land away from
their goal and closer to the center of the screen compared to
Quasi-Target saccades [t() = 2.06, p < 0.05]. In addition, when
SNR increases from 0.1 to 1, there is a significant shift of the mean
landing position of Quasi-Distractor saccades [t) = —2.55,
p < 0.05] away from the Distractor in the direction of the Target,
and a significant shift of Quasi-Target saccades in the direction of
the target [t() = —3.62, p < 0.05]. Therefore, similarly to valid

saccades, invalid saccades tend also to be relatively biased away
from the distractor and further toward the salient compound
when saliency increases, pointing to the general validity of these
effects, regardless of the specific criterion for saccade validity.
Finally, we analyzed whether the integration of visual
information across time influences the selection of salient
features for saccade orientation. If this were true, we would expect
the choice performance to vary as a function of saccade latency.
A general principle of perceptual decision-making models is that
the percentage of correct choices is an increasing function of the
response reaction time (Ratcliff and McKoon, 2008). Figure 11
shows, for the two angles that most differ for performance and
latency (0° and 70°) and the two extreme SNR values (0.1 and
1), the pooled probability for a saccade to land at the target
compound depending on its latency. Latencies were divided into
“fast” and “slow” depending on whether they were below or above
the individual median latency, respectively. Our results highlight
some variability across angles and SNR values. When the target-
distractor compound pair is hardly discriminable (SNR = 0.1)
and is displayed in the upper hemifield (70° angle), longer-
latency saccades lead to a better performance compared to short-
latency ones (Z-test, z = —2.4 p = 0.0081). The opposite is
true at 0° angle, with a significant decrease of performance for
longer-latency saccades (z = 2.12, p = 0.017), pointing in this case
to a disadvantage for target selection performance with prolonged
integration of visual information in time. See the “Discussion”

TABLE 1 | Ratios of “Quasi-Target"/“to-Target” and “Quasi-Distractor”/“to-
Distractor” saccades.

SNR 0.1 SNR 1
Angle —70° —45° 0° +45° 4+70° —-70° —45° 0° +45° +70°
Quasi- 12.9% 10.5% 3.3% 7.8% 22.6% 11.9% 6.8% 1.5% 11.0% 15.8%
Target
Quasi-  26.7% 19.6% 4.3% 18.0% 22.2% 23.5% 17.4% 5.0% 22.5% 23.0%
Distractor
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section for a possible explanation for this surprising result. With
highly salient target compounds (SNR = 1) saccade latency does
not have a systematic effect on the choice performance at either
0° or 70° angle, in agreement with the idea that feature-based
selection is a fast mechanism that does not benefit from a long
temporal integration.

DISCUSSION

In this work, we found that a specific set of local features,
originally identified based on constrained-entropy maximization
criteria (Del Viva et al., 2013), are selected as more salient than
others even in the absence of any global arrangement, both in
psychophysical and oculomotor tasks. In past works, the role
of those features in early vision had already been shown, but
their involvement in saliency determination is evidenced here
for the first time.

Psychophysical results show that few optimal isolated features
are perceived as more salient than the non-optimal features
by all participants. Their saliency scales with their luminance-
contrast and number when presented alone, and with SNR when
surrounded by non-optimal features. Optimal features are so
prominent that just one of them can trigger a preferential choice,
after having been seen for only 26 ms., both when it is presented
alone and when is surrounded by 9 non-optimal features.
Luminance contrast values are often considered as a reference for
saliency comparisons between stimulus dimensions (Nothdurft,
1993a,b, 2000). Ten optimal features are still preferred when their
luminance-contrast is 65% than that of non-optimal features.
That is, the saliency instantiated by these particular features, is
equivalent to the saliency instantiated by non-optimal features
with a luminance contrast increased by 35%.

The same pattern of results was obtained in the eye
movements experiment. Observer preferentially direct their
saccades to the compound including optimal features (target),
with a probability that increases with the proportion of optimal
features. We did not find evidence, instead, of a systematic
reduction of saccade latency with increasing SNR. This is
somewhat unexpected considering that the most widespread
models of perceptual decisions assume that response latency
is inversely proportional to the rate of accumulation of noisy
sensory information (Ratcliff and McKoon, 2008), which in turn
is directly proportional to the sensory SNR.

When analyzing saliency discrimination performance as a
function of saccadic latency, we observed different effects
depending on the angle of presentation of the target-distractor
compounds pair and on the SNR. We will come back to the
observed anisotropy of oculomotor results later. Overall, under
reasonable conditions of visibility (high SNR), postponing the
response execution (i.e., increasing the time for integration of
sensory evidence) does not seem to help to further improve the
selectivity for salient features. Previous studies have reported
that short-latency saccades were more strongly affected by
salient distractors than slower saccades, suggesting that target
selection based on saliency (instantiated by luminance or
orientation-contrast) could be facilitated for early saccades

(Donk and van Zoest, 2008). A similar fast capture exerted
by salient features could explain, in our study, the relative
independence of discrimination accuracy upon saccadic latency.
More generally, the independence of saccadic latency on SNR
is consistent with a fast bottom-up mechanism for saliency
extraction, like the one proposed by Del Viva and colleagues (Del
Viva et al., 2013), rather than a slower and detailed processing of
sensory information.

Saccadic precision instead depends strongly on SNR: the
higher the SNR the more precise the saccades directed to
the target. Saccades directed to the distractor are instead
less precise and further biased in the direction of the target
with increasing SNR. This attraction bias toward the salient
compound is independent on the validity criterion of saccades
chosen in this study.

All together, these results point to a rapid orientation
of saccades toward the salient information provided by
optimal features.

Humans can only fixate and extract detailed information from
one small region of space at a time. This makes an efficient
selection of relevant local features critical for visual processing
and optimal behavior. Decades of work in vision science have
argued for such dynamic selection to be based on multiple
saliency maps (Itti et al., 1998; Itti and Koch, 2001; Parkhurst
et al., 2002; Torralba, 2003). The saliency of optimal features is
independent of the global image context, leading to speculate that
they may play an important role within the multi-scale analysis of
saliency performed by the human visual system.

The saliency map is not derived, in our case, from an algorithm
trying to make sense of visual properties determined a priori
(e.g., color, motion, texture) competing at individual image
locations. Our salient features are instead a consequence of both
the early input data reduction, needed by the visual system
due to its limited processing capacity for the costs of neural
activity and structural limits (Attwell and Laughlin, 2001; Lennie,
2003; Echeverri, 2006), and of the frequency with which they
occur in the input. A few of these distinctive features are in
fact more significant than others, despite having similar low-
level properties (luminance, spatial frequency, size), because they
represent a compromise between the information they carry
about the visual scene and the cost for the system to process them.
On the other hand, the alternative non-optimal features used in
the present study are individually the most informative, but do
not meet computational limitations criteria (Del Viva etal., 2013).
Therefore, the computational limitations do much more than
simply limit the performance of the system, they seem to take a
significant role, not only in compression, but also in shaping what
the system selects as salient in the input.

Several past studies have explored the mechanisms of fast
vision at different scales and stimulus durations, finding that
both coarse and fine spatial information are simultaneously
used in fast categorization of images (Oliva and Schyns, 1997;
Schyns and Oliva, 1999). Some models build bottom-up saliency
maps, based on simultaneous processing of different visual
properties at multiple spatial scales that are then somehow
combined into a single saliency-map (Itti and Koch, 2001).
These models do not address the issue of the amount of
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computing power required by each of these parallel processes
that varies greatly across scales and modalities. Our model
instead revolves entirely around the concept of computational
costs. From this viewpoint, the finest usable spatial scale takes
naturally a central role. As a consequence of the properties of
the Fourier transform, the information content is proportional
to the square of spatial frequency, making the finest scale
by large the most computationally demanding part of the
processing. As a consequence, saliency extraction at this scale,
with strong reduction of information, becomes a pressing
necessity, and one expects it to play an important role amongst
all possible maps involved.

There is still a debate on whether this fast bottom-up
extraction of visual saliency map is based mainly on local (Li,
2002) or rather global clues (Oliva and Schyns, 1997; Itti et al.,
1998; Torralba, 2003; Oliva, 2005). The contribution of local
analysis to the global percept of an image has been studied in
a past work, within the framework of the present model, by
replacing in a sketch the optimal features (typically located along
within objects contours), with other features that are non-optimal
carriers of information, keeping their localization in the image
unchanged. The disruption of these optimal local cues causes a
decrease of image recognizability, in spite of its global structure
being preserved (Del Viva et al., 2016). While the existence of
other mechanisms in addition to what is analyzed here has been
proved beyond doubt, this new result allows to establish the
existence of a bottom-up reference frame for the extraction of
saliency that can efficiently drive the process.

Many studies have proposed that bottom-up saliency maps
are represented in early sensory cortices (Zhaoping, 2006, 2019;
Zhaoping and Zhe, 2015) and rely on specific sensory properties.
Priority maps are instead less dependent on the detailed physical
properties of the sensory input, and account for both the global
properties of the scene, the behavioral goals and high cognitive
information (as reviewed in Itti and Koch, 2001; Zelinsky and
Bisley, 2015). They would rather be represented in higher cortical
sensory areas (including parietal and prefrontal areas, Thompson
and Bichot, 2005; Bisley and Goldberg, 2010), as well as in
subcortical regions closer to the motor output, as the Superior
Colliculus for saccade planning (Veale et al., 2017; White et al.,
2017). Both earlier studies, supporting the view of saliency
maps as represented in early visual cortex (Zhaoping, 2006),
and more recent works, suggesting the existence of a priority
map in the superior colliculus (Veale et al., 2017; White et al.,
2017), agree on the fast nature of such representations. The
gaze could then be rapidly oriented toward the maximum-
saliency locations highlighted by these maps (Itti and Koch, 2000,
2001; Najemnik and Geisler, 2005, 2008; Itti and Baldi, 2009;
Garcia-Diaz et al., 2012).

The saliency map extracted by the constrained maximum
entropy algorithm, for efficient compression, must be created
very early in the visual system, and several converging evidence
indicate as the most likely candidate the primary visual cortex.
First of all, optimal features are good approximations, within
the limitations of a 3 x 3 grid, of the structure of some
receptive fields of neurons found in primary visual areas
(Hubel and Wiesel, 1965). Such elongated edge- and bar-shaped

structures haven’t been found in the thalamus and superior
colliculus (Harutiunian Kozak et al.,, 1973; Drager and Hubel,
1975; DeAngelis et al., 1995; Kara et al., 2002; Derrington
and Webb, 2004), although some studies found orientation
selectivity in the superior colliculus (Wang et al., 2010; Gale
and Murphy, 2014; Ahmadlou and Heimel, 2015; Feinberg and
Meister, 2015; De Franceschi and Solomon, 2018). Then optimal
features extraction supports a fine-scale local analysis consistent
with V1 (Hubel and Wiesel, 1962, 1974; Lennie, 1998). V1 is
also the most extended visual area (Lennie, 1998), with larger
energy consumption (Lennie, 2003) and higher input/output
neural ratio with respect to the retina and other extrastriate areas
(Lennie, 1998), making it a good candidate for the information
bottleneck required by our model. Finally, V1 is involved in
very fast visual analysis (Grill-Spector et al., 2000; Kirchner
and Thorpe, 2006). All these observations are consistent with
the idea, previously advanced, that the function of V1 is to
create a “bottom-up saliency map” enabling a “lossy pre-attentive
selection of information,” so that data rate can be further reduced
for detailed processing (Zhaoping, 2006; Zhaoping and May,
2007; Zhaoping, 2019).

The visual system is capable of detecting very quickly
potentially dangerous or very interesting stimuli to activate
emotive or fight-or-flight autonomic responses essential for
survival (Morris et al., 1999). This analysis does not need,
and probably does not use, detailed visual information but
needs fast and reliable processing of relevant elements (LeDoux,
1996; Ohman et al, 2001; Perrinet and Bednar, 2015). This
processing could take advantage of a quick inspection of
different small regions distributed over the image, each providing
enough information about the whole scene. For this reason,
it could use a constrained maximum-entropy approach to
extract a saliency map, that the oculomotor system could
use to drive eye movements toward potentially relevant
locations (Itti and Koch, 2000, 2001; Najemnik and Geisler,
2005, 2008; Itti and Baldi, 2009; Garcia-Diaz et al., 2012;
Schiitz et al., 2012).

Such rapid and optimal selection of information, devoid of
detailed fine-scale color or luminance information (Del Viva
et al.,, 2016), could be sufficient per se to provide salient locations
in first viewed scenes that could be followed, only at those
locations, by a more detailed analysis. This would require a
much larger computational power and may be only possible
if performed more slowly and/or on a reduced part of the
image. Our hypothesis does not exclude other rapid simultaneous
processing of large-scale visual properties, that do not need such
compression (e.g., Gegenfurtner and Rieger, 2000).

As an aside, a clear up-down anisotropy has been found
in oculomotor data, that is arguably connected with stimulus
saliency, but still deserves a brief discussion and future
investigations. Saccades oriented to the upper visual field had a
dramatically reduced latency with respect to the lower visual field,
even more pronounced than in previous studies (e.g., Honda and
Findlay, 1992). The increased latency for horizontal compared
to upward vertical saccades found here might be due to the
bilateral presentation of the target-distractor pair, which is known
to maximize the Remote Distractor Effect on saccades latency
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(Walker et al., 1997; Benson, 2008). These phenomena have
been attributed to purely oculomotor properties, rather than to
visual processing mechanisms (Honda and Findlay, 1992; Walker
et al., 1997), coherently with the relative independence, in our
data, of the latency on SNR. Finally, the lower performance
in the upper hemifield probably reflects the superiority of
perceptual discrimination in the lower visual field (see for
example Talgar and Carrasco, 2002).

To conclude, the results presented in this paper suggest
that saliency may be derived naturally in a system that,
under the pressure of fast visual analysis, operates maximum
information transmission under computational limitation
constraints. They also suggest that these salient features
participate early in the visual reconstruction process that
must be, at least partly, initiated at the local level. We
also speculate that active vision is efficiently adapted to
maximize information in natural visual scenes under specific
processing constraints.

Since our attention automatically shifts to salient targets
(Nothdurft, 2002; Theeuwes, 2010), one of the challenges
for future research will be to investigate whether optimal
features can rapidly and automatically attract the subjects
attention more than others in covert and overt (oculomotor)
tasks, in which “saliency” is implicitly manipulated rather
than explicitly cued, as in the present work. It would be
also interesting to assess the strength of automatic attention
capturing of these local isolated features compared to global
visual elements.
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