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The measurement of retinal sensitivity at different visual field locations–perimetry–is a
fundamental procedure in ophthalmology. The most common technique for this scope,
the Standard Automated Perimetry, suffers from several issues that make it less suitable
to test specific clinical populations: it can be tedious, it requires motor manual feedback,
and requires from the patient high levels of compliance. Previous studies attempted to
create user-friendlier alternatives to Standard Automated Perimetry by employing eye
movements reaction times as a substitute for manual responses while keeping the
fixed-grid stimuli presentation typical of Standard Automated Perimetry. This approach,
however, does not take advantage of the high spatial and temporal resolution enabled
by the use of eye-tracking. In this study, we introduce a novel eye-tracking method
to perform high-resolution perimetry. This method is based on the continuous gaze-
tracking of a stimulus moving along a pseudo-random walk interleaved with saccadic
jumps. We then propose two computational methods to obtain visual field maps from
the continuous gaze-tracking data: the first is based on the spatio-temporal integration
of ocular positional deviations using the threshold free cluster enhancement (TFCE)
algorithm; the second is based on using simulated visual field defects to train a deep
recurrent neural network (RNN). These two methods have complementary qualities:
the TFCE is neurophysiologically plausible and its output significantly correlates with
Standard Automated Perimetry performed with the Humphrey Field Analyzer, while
the RNN accuracy significantly outperformed the TFCE in reconstructing the simulated
scotomas but did not translate as well to the clinical data from glaucoma patients. While
both of these methods require further optimization, they show the potential for a more
patient-friendly alternative to Standard Automated Perimetry.

Keywords: eyetracking algorithms, perimetry, continuous psychophysics, recurrent neural networks, threshold
free cluster enhancement, computational method, eyetracking, glaucoma
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SUMMARY

Perimetry, the mapping of the sensitivity of different visual
field locations, is an essential procedure in ophthalmology.
Unfortunately, Standard Automated Perimetry suffers from some
practical issues: it can be tedious, requires manual feedback,
and a high level of patient compliance. These factors limit
the effectiveness of perimetry in some clinical populations. In
an attempt to remove some of these limitations, alternatives
to Standard Automated Perimetry have been tried based on
tracking eye movements. These new approaches have attempted
to mimic Standard Automated Perimetry, thus presenting
stimuli on a fixed grid, and replacing manual with ocular
responses. While this solves some issues of Standard Automated
Perimetry, these approaches hardly exploit the high spatial
and temporal resolution facilitated by eye-tracking. In this
study, we present two novel computational methods that do
tap into this potential: (1) an analytic method based on the
spatio-temporal integration of positional deviations utilizing
Threshold Free Cluster Enhancement and (2) a method based on
training a recurrent deep artificial neural network. Our methods,
based on continuous gaze tracking, provide a patient-friendly
alternative to Standard Automated Perimetry and deepen our
understanding of the relationship between oculomotor control
and retinal sensitivity.

INTRODUCTION

The assessment of the quality of the visual field (also called
perimetry) is a staple of ophthalmologic evaluation. The presence
of a scotoma, a region of the visual field with reduced sensitivity,
is a very characteristic symptom of diseases and disorders such
as macular degeneration (Tolentino et al., 1994), glaucoma (Heijl
and Bengtsson, 1996), hemianopia (Williams, 1997) and several
forms of retinopathy (Greite et al., 1981; Alexander et al., 2004;
Voipio and Karjalainen, 2009).

The current gold standard in the diagnostic assessment of
the visual field is standard automated perimetry (SAP) (Barton
and Benatar, 2003). The main advantages of SAP are a thorough
evaluation of multiple visual field locations, relatively easy-to-
interpret results that are normalized with respect to an age-
matched population, and its extensive validation in countless
clinical trials and other studies. However, the approach also has
several limitations: the task is complicated for people with limited
cognitive capabilities, demands patient compliance (Szatmáry,
2002), and requires maintaining a stable fixation for prolonged
periods of time. Furthermore, patient performance is affected by
learning (Schultz, 1990; Wild et al., 2006) and fatigue (Johnson
et al., 1988), as well as the expertise of the operator (Montolio
et al., 2012). Together, these constraints limit the effectiveness
of SAP, particularly in clinical and rehabilitation contexts such
as when dealing with children (Walters et al., 2012), the elderly,
and/or cognitively impaired patients (Diniz-Filho et al., 2017;
Gangeddula et al., 2017).

To overcome some of these issues, various groups have
implemented variants of SAP in which eye-tracking substituted
the manual responses required on each trial of SAP. The most
common of these approaches consists of using the saccadic

reaction time to stimuli changing position as a proxy for visual
sensitivity (Kim et al., 1995; Murray et al., 2009; Pel et al., 2013;
Jones et al., 2019; Martínez-González et al., 2020). While this
already simplifies the task, the resulting procedure still retains
the trial- and grid-based approach of SAP. Therefore, the full
potential of the high spatial and temporal resolution facilitated
by eye tracking is not exploited.

Other approaches rely on measuring the pupillary reflex:
in this method, visual sensitivity is measured as a function of
the change in pupil diameter in response to flickering stimuli
presented at different visual field locations (Kardon, 1992;
Maddess et al., 2009; Chibel et al., 2016). This method–although
more objective than SAP–is still prone to issues related to patient
compliance and/or their ability to stably maintain fixation.

For these reasons, we recently proposed a novel eye-
movement-based approach, inspired by the Eye Movement
Cross-correlogram method and its application to measure
visuospatial sensitivity (Mulligan et al., 2013; Bonnen et al., 2015).
Our new method completely removes the trial-based aspect and
fixation requirements of SAP in favor of a continuous assessment
of oculomotor behavior over time (Grillini et al., 2018).

In our approach, the participant continuously tracks with their
gaze a stimulus moving along a pseudo-random walk trajectory.
The simplicity and intuitiveness of this task make it significantly
more practical than other types of perimetry, irrespective of
whether they require a manual or eye-movement response from
the patients (Demaria et al., 2020). Furthermore, our approach
provides a thorough quantification of both the spatio-temporal
and statistical properties of both smooth pursuit and saccadic
eye movements (Grillini et al., 2020), thus having potential
applications in neurology and neuro-ophthalmology as well.

In one of our previous studies (Grillini et al., 2018), we
showed that it is possible to classify a visual field defect (VFD),
exclusively on the basis of the spatio-temporal properties of the
eye-movements made during a short continuous tracking task.
A limitation of our initial approach was that it could only classify
a scotoma as belonging to one of the scotoma shape classes
on which the machine classifier had been trained, and thus not
reconstruct its actual location and shape. The absence of this
type of information hinders a more general application of this
technique in clinical and rehabilitation practice.

To overcome this limitation, here we propose two methods
of analyzing continuous gaze data acquired during a tracking
task that enables reconstructing the visual field including
any VFD present.

Our first method is based on the intuition that, compared
to a healthy participant, a patient with a VFD will make larger
and more prolonged tracking errors (expressed as the distance
between the positions of the eyes and the target) if the stimulus
falls within their scotomatous region. In essence, the method
applies threshold-free cluster enhancement (TFCE) (Smith and
Nichols, 2009) to perform a spatio-temporal integration of a
time series of eye-stimulus positional deviations (the signal). This
results in a weighted integration of the height and extent of
the signal, which in our case represent space (i.e., the positional
deviation) and time (i.e., the duration of the deviation until it is
corrected), respectively. Next, we reconstruct the visual field and
presence of any scotoma, by back-projecting the TFCE values into
visual field space. We will refer to it as the TFCE method.
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The second method is based on training a recurrent deep
artificial neural network. It constitutes a data-driven approach
that learns features from the time-series of gaze location data
collected during the tracking task. This method makes no
explicit hypotheses about the underlying relationship between
eye movements and scotoma characteristics and learns how
the presence of a scotoma influences a participant’s visual
behavior during the tracking task. The algorithm is a seven-
layer recurrent neural network (RNN) whose weights are
optimized to minimize its time-point-wise predictions on a
set of labeled training data (obtained on the basis of gaze-
contingent simulations of scotomas in known locations). Once
trained, the model can accurately predict whether the distance
between the eye and stimulus positions, at a given time point,
is caused by the presence of a scotoma. We reconstruct the
visual field and presence of any scotoma by back-projecting
the RNN predictions into visual field space. We will refer to it
as the RNN method.

Based on a set of simulated gaze-contingent scotoma data
(Grillini et al., 2018), we show that both methods can reconstruct
the shape of the VFDs. While further improvements are desirable,
the methods we present here constitute a crucial stepping-
stone toward the realization of truly easy and effective eye-
movement-based perimetry. Our technique, which we consider
to have many advantages, can complement SAP in both clinical
and rehabilitation practices. Moreover, since our approach
incorporates both perimetry and oculomotor evaluation in a
single test, it will be of potential relevance to ophthalmologists
and neurologists alike.

MATERIALS AND METHODS

The whole experimental procedure is illustrated schematically in
Figure 1.

Participants
We tested 50 healthy adult participants, three patients diagnosed
with Primary Open Angle Glaucoma (POAG) with a visual
field loss previously measured with a Humphrey Field Analyzer
(Zeiss) and two additional healthy controls, age-matched with
the patients. All had normal or corrected-to-normal visual acuity,
verified before data collection with “FrACT” (Bach, 2007). The
study followed the tenets of the Declaration of Helsinki. The
Medical Ethical Committee of the University Medical Center
Groningen and the Ethics Committee of Psychology of the
University of Groningen approved this study. All participants
provided written informed consent before participation.

Apparatus
The experiment was designed and conducted with custom-
made scripts in MATLAB using Psychtoolbox (Brainard, 1997)
and Eyelink Toolbox (Cornelissen et al., 2002). The data were
acquired with an Eyelink 1,000 eye-tracker (SR-Research, Kanata,
ON, Canada) with a sampling frequency of 1 kHz, downsampled
to 240 Hz to match the refresh rate of the stimulus display
monitor Zowie xl2540 (BenQ, Taipei, Taiwan). Before each

experimental session, the eye-tracker was calibrated using the
built-in nine-point calibration procedures. The calibration was
repeated until the average error was below 1.5◦. Additional
details regarding the accuracy, precision, and data loss rate of
the eye-tracking measurements are presented in Supplementary
Figures 1, 2.

Data Acquisition
Stimuli and Conditions
The stimulus comprised a white dot with a diameter of 0.5◦ of
visual angle, displayed at one of two possible contrast levels (5 and
50% from the gray background), moving along a random walk
path with or without random displacements to induce saccades
(the smooth pursuit and saccadic pursuit conditions, respectively).
Additional detail regarding the random walk paths is available in
Supplementary Materials. The point of gaze of the participants
was recorded while they tracked the stimulus with their eyes.
During the experiment, the 50 healthy participants of the training
set were additionally subjected to different kinds of simulated
gaze-contingent VFD s [no loss, central loss, peripheral loss,
and hemifield loss (see Figure 2)]. Each trial, lasting 20 s, was
repeated six times for each condition (2 contrast levels × 2
pursuit modalities) for a total of 24 trials and a total test time
of 480 s. For the visual field reconstruction analysis, all trials are
pooled together.

Gaze-Contingent Simulated Visual Field Loss
The simulations were obtained by superimposing in real-time
(240 Hz, 4 ms delay) a uniform gray area to the current position
of the participant’s gaze. The shape and size of the simulated
VFD were modeled after the typical scotoma resulting from
three common ophthalmologic disorders: age-related macular
degeneration (central loss), late-stage glaucoma (peripheral
loss), and hemianopia (hemifield loss) (Figure 2). A schematic
representation of the three types of simulated VFD used in this
study is shown in Figure 2.

Modeling
Method #1: Spatio-Temporal Integration of Positional
Deviations by Means of Threshold Free Cluster
Enhancement
To simultaneously factor in the magnitude of the spatial
error and its duration, we applied to our data the Threshold
Free Cluster Enhancement (TFCE) (Smith and Nichols, 2009).
This algorithm, originally developed for the analysis of the
hemodynamic response in functional neuroimaging, specifically
helps to avoid the introduction of arbitrary thresholds when
performing multiple-comparison corrections. In our context, we
applied the algorithm to the time-series of positional deviations
D, where each value is the Euclidean distance between the
gaze location and the stimulus position at any given time
point t. The positional deviations as a function of time are
defined in Eq. 1:

D(t) =
√((

px(t) − sx(t)
)2
+
(
py(t) − sy(t)

)2
)

(1)
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FIGURE 1 | Flowchart of the experimental design.

FIGURE 2 | Schematic representation of the simulated visual field defects (VFD) used in this study. From left to right: central loss (scotoma size: 10◦), peripheral loss
(scotoma size: whole screen except for a 10◦ hole), hemifield loss (right half of the screen). During the experiment, the VFD was applied in a gaze-contingent manner:
the center of the VFD is matched in real-time with the point of gaze of the participant, with a latency below 4 ms. This latency roughly corresponds to the inter-frame
interval and ensures proper gaze-contingency.

where p(t) and s(t) are the positions on the screen of the eye and
the stimulus, respectively, divided into their horizontal (x) and
vertical (y) components.

D(t) constitutes the input for the spatio-temporal
integration performed with the TFCE equation, described
in Eq. 2:
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FIGURE 3 | Examples of time series filtered using the threshold free cluster enhancement (TFCE) algorithm with different combinations of parameters. A larger E
weighs more the components of the original signal with a longer temporal extent (e), defined as the time interval where the signal is consistently above a predefined
minimum (h0). Larger H, conversely, weighs more the highest components of the signal in terms of intensity (h). Note that the TFCE values here are normalized
between 0 and 1 for visualization purposes only.

DTFCE (t) =
∫ ht

h=h0

e
(
h
)E hH dh (2)

Where e is the extent (temporal duration) and h is the height
(spatial magnitude) of D(t) at a given point in time t (see
Figure 3 for examples). This integral is implemented as a
discrete sum using a finite step-size dh, [in our implementation
dh = 1/2,500th of the maximum of D(t)]; h0 is the minimum
of D(t) (which is always greater than or equal to 0), and E
and H are the exponents. The resulting DTFCE(t) is a time-
series of positional deviations weighted for their spatio-temporal
integrated characteristics. Figure 3 shows some examples of
using different E and H pairs: higher E values (red signals)
enhance clusters with longer duration and suppress shorter ones;
higher H values (blue signals) enhance the clusters with higher
peaks and suppress the lower ones (Figure 3). We set these
parameters to the recommended values of E = 2 and H = 0.5
(Smith and Nichols, 2009).

To label each value of DTFCE(t) as “healthy” or “visual loss” we
apply the following algorithm.

First, to obtain the frequency distribution of all possible
normative values [i.e., values of DTFCE(t) that should be
considered healthy], DTFCE(t) is initially computed for every
participant of the training dataset in the condition without
simulated visual field loss, and the resulting values are aggregated
with a histogram F. Next, to choose the optimal boundary to
separate “healthy” and “visual loss” values, we set a threshold λn,
such that F(λn) = nth percentile of F. For each value of λn, we
compute B(t;λn) that is the binarized form of DTFCE(t) such that

B (t;λn) = 0, if DTFCE (t) ≤ F (λn) if “healthy” and
B (t;λn) = 1, if DTFCE (t) > F (λn) if “visual loss”.

To choose the optimal λn parameter for the TFCE method,
we compute a 2D Spearman rank correlation between the

reconstructed visual field maps and their respective ground-
truth maps obtained with the known locations of the simulated
scotomas. The ground-truth maps are obtained as described in
section “Visual Field Map Reconstruction”, using as an input the
binarized time-series using the known location of the visual field.

First, we measure the correlation between ground-truth and
TFCE maps of the training set reconstructed using all possible
values of λn = {1, 2, 3, . . . , 100} (i.e., one for each percentile
of the histogram F). Then the average between participants is
computed for each simulated visual loss condition, followed by
the grand average across conditions. The peak of the grand
average corresponds to the optimal value of λn that is used to
reconstruct the maps of the test data. This procedure is repeated
for each fold of the fivefold cross-validation (see section “Fivefold
Cross-Validation”).

Method #2: Recurrent Neural Networks
In this method, we train a recurrent neural network (RNN), as
it is the most suitable known architecture to account for the
temporal properties of the data (Rumelhart et al., 1986).

As training input X, we use the time series of the eye gaze
positions p(t) and the stimulus positions s(t), as well as the
luminance contrast (low contrast = 0; high contrast = 1) and
type of pursuit of the stimulus (smooth pursuit = 0; saccadic
pursuit = 1). As training output Y, we use both the shape of
the VFD (classified as no loss, central loss, peripheral loss, and
hemifield loss) of the participants that generated each training
sequence and, for each time point, whether the stimulus position
lies in a location obstructed by the simulated scotoma.

As shown in Figure 4, the network consists of two streams that
initially process the sequential data [p(t) and s(t)] and categorical
data (high/low stimulus luminance contrast and smooth/saccadic
pursuit) separately. In particular, the sequential stream contains
three bidirectional recurrent GRU layers (Cho et al., 2014) to
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FIGURE 4 | Schematic representation of the architecture of the deep recurrent neural network.

effectively process the temporal dependencies of the sequential
data. The outputs of both streams are then concatenated and
used to jointly train two different softmax classifiers. One is
trained to classify the shape of the VFD (no loss, central loss,
peripheral loss, or hemifield loss), while the second one was trained
to classify the visual field in a point-wise manner (i.e., “does the
stimulus position in visual field space coordinates overlap with
the scotoma?”).

We use the cross-entropy loss to define the cost function of the
model, defined in Eq. 3:

J(θ) = −α

Ms∑
c =1

ys,c log(ps,c) − β

Md∑
c =1

yd,c log(pd,c) (3)

Where M is the number of classes, y is the ground-truth label, and
p is the predicted probability distribution, i.e., the output of each
softmax classifier. Subscript s refers to the point-wise scotoma
classifier and subscript d to the VFD shape classifier. In order to
give priority to optimizing the reconstruction of the visual field,
we set α = 0.75 and β = 0.25. The parameters θ of the model
are learned through mini-batch gradient descent, using RMSprop
(Tieleman and Hinton, 2012), for 15,000 iterations with a batch
size of Bs = 128.

The training batches are formed by first selecting Bs different
sequences from the set of 20-s trials, originally sampled at 240 Hz.
Then, we randomly sampled one sub-sequence of 4.17 s (1,000
time steps) from each sequence and finally down-sample them at
60 Hz (250 time steps). The stimulus contrast level and pursuit
modality of the corresponding sequences are also added to the
training batches.

This deep model can be regarded as a mapping y = f (x;θ),
where y = [pws pwd], pws being the point-wise scotoma
prediction and pwd the VFD shape prediction of a sub-sequence
x. In order to classify the VFD shape of one participant, we are
interested here in pwd.

Since the data acquisition for one participant consists of six
repetitions of 20 s trials for each contrast/pursuit combination,
we average the predicted output probability distributions of
multiple sub-sequences. In particular, we average the predictions
of the K = 6× 2× 2 = 24 downsampled sequences. The predicted
VFD for a participant s is thus defined by Eq. 4:

ŷ = arg max
c

1
K

∑
i:xi∈S

f (xi; θ) (4)

Where K is the number of subsequences in the set of trials S of
participant s.

Methods Evaluation
Fivefold Cross-Validation
To assess the quality of visual field reconstruction using the
TFCE- and RNN-based methods, we carried out a participant-
aware fivefold cross-validation. To do this, we split the data from
the 50 participants into five sets, each containing the data from
40 participants for training and 10 participants for testing. We
ensured that, in each fold, the sets of participants for training and
testing are always disjoint. An example of data partitioning is as
follows:

• Fold 1:

◦ Train: participants [1, 2,. . . , 40]
◦ Test: participants [41, 42,. . . , 50]

• Fold 2:

◦ Train: participants [1, 2,. . . , 30] U [41, 42,. . . , 50]
◦ Test: participants [31, 32,. . . , 40]

• Fold 3:

◦ Train: participants [1, 2,. . . , 20] U [31, 32,. . . , 50]
◦ Test: participants [21, 22,. . . , 30]

• Fold 4:

◦ Train: participants [1, 2,. . . , 10] U [21, 22,. . . , 50]
◦ Test: participants [11, 12,. . . , 20]

• Fold 5:

◦ Train: participants [11, 12,. . . , 50]
◦ Test: participants [1, 2,. . . , 10].

To evaluate the feasibility of our methods in a clinical
setting, we additionally assessed three participants diagnosed
with primary open-angle glaucoma (POAG) and two age-
matched healthy control participants. These participants were not
part of any training set.

Visual Field Map Reconstruction
To reconstruct the visual field maps, the classified time-series
need to be converted into visual field coordinates. Both the
TFCE and the RNN outputs consist of binarized time-series
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FIGURE 5 | Schematic representation of the algorithm pipeline. Starting from the TFCE-filtered time-series in panel (A), a probability distribution F of all possible
normative TFCE values is computed in panel (B). For all percentiles λn of the distribution F, a threshold value F (λn) is defined and used to binarize the TFCE-filtered
signal in panel (C). Each time point of the TFCE-filtered signal has associated with it the spatiotopic coordinates of gaze (px and py ) and the stimulus positions (sx

and sy ), which are converted into retinotopic coordinates Bx and By . The resulting mapped retinotopic coordinates in panel (D) are associated with a target location
T which contains the average of the aggregated B(t) values at that specific location. B(t) is the expected probability that that specific location is affected by a
scotoma. An analogous back-projection algorithm is implemented for the reconstruction of the visual field using the recurrent neural network (RNN), where the
binarized time-series in panel (C) is defined by the output of the model instead of the threshold F (λn).

B(t) where each entry has a value of 0 if it is classified as
not being obstructed by a scotoma and 1 if it is. Each entry
also has associated with it a pair of xy coordinates, where
x is the difference between the horizontal gaze and stimulus
positions at that time point and, analogously, y is the difference
between the vertical gaze and stimulus positions. These are
retinotopic coordinates, meaning that they represent where
the stimulus was with respect to the gaze of the participant.
These coordinates are then binned into an N × M grid,
where each square represents 1◦2 of visual space and N
and M are the dimensions of the visual field tested. Each
square contains the percentage of occurrences that that specific
location has been classified as being obstructed by a scotoma
and gets color-coded accordingly. For visualization purposes,
these retinotopic coordinates can be easily converted into
polar coordinates.

A summary of the pipeline for visual field map reconstruction
from gaze-tracking TFCE-filtered time-series is shown in
Figure 5. The RNN visual field map reconstruction is
analogous, with the binarized values of B(t) being provided
by the outcome of the time-point classifier (Figure 4) rather
than the threshold value F(λn)applied to TFCE-filtered eye-
tracking signals.

Note that the back-projection into visual field space has been
used to reconstruct the ground-truth maps as well. In their case,
the information about the presence or absence of the scotoma is
known a priori, but the reconstruction is still necessary to ensure
a proper spatial comparison between the ground-truth and the

TFCE or RNN maps since the tracking behavior is always different
due to the random nature of the paths.

Evaluation on Simulated Visual Field Defects
After reconstructing the visual field maps, we evaluated the
performance of the TFCE method and RNN “time-point
classifier” by computing a 2D Spearman rank correlation between
the ground-truth maps and the reconstructed maps. This analysis
is done for each fold independently, so that any subject belonging
to the test set is excluded from the training set.

Furthermore, we used the “visual field classifier” of the RNN
to assess the robustness of categorical classification of VFD
s in case of heavy miscalibrations of the eye-tracking setup
(see Supplementary Materials, section “Testing Robustness to
Miscalibration Errors”).

Evaluation on Patients Data
To provide a proof-of-concept of the viability of these methods
in a clinical setting, we asked three patients and two healthy
control participants with various degrees of visual field loss to
perform the visual tracking task. We then compared the maps
obtained with TFCE and RNN to those obtained with SAP using
the Humphrey Field Analyzer (HFA), using the SITA-Standard
algorithm. The HFA was performed monocularly on the eye
affected by POAG in the case of patients and on the dominant
eye in the case of controls. We then compared the mean deviation
(MD) as reported by the HFA (MDHFA) with an MD computed
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FIGURE 6 | Results of the optimization of the λ parameter for each fold of the cross-validation. The optimal percentiles to be used as thresholds between “healthy”
and “impaired” TFCE values are in the range 86th–90th (mean 87.4), corresponding to the peaks of the grand average between all tested conditions.

based on the TFCE- and RNN-reconstructed maps (MDTFCE and
MDRNN, respectively).

Since the stimulus used for the tracking task followed a
random-walk path, we could not ensure complete coverage
of the whole visual field. Therefore, the computation of the
MDTFCE and MDRNN values comprises a correction for visual
field coverage. Our MDs are computed as follows:

MD =

 1
n′
·

n
′∑

i=1

T
(
Bx, By

) · n
′

n
(5)

Simplified as:

MD =
∑n′

i =1 T
(
Bx, By

)
n

(6)

Where n’ is the number of visual field locations sampled, n is the
number of all possible visual field locations and T(Bx, By) is the
probability that a specific location is affected by visual loss (see
Figure 5).

RESULTS

The results of the optimization of the parameter λn based on the
maximum average accuracy of each condition for each fold are
shown in Figure 6, while Figure 7 shows the effect that adjusting
λn has on the visual field map reconstruction of a participant
across all conditions.

The results are very consistent across the fivefolds, with
only the central loss condition showing minimal variability. The

resulting optimal λn is the average threshold determined for each
of the five folds (#1: 89; #2: 86; #3: 86; #4: 90; and #5: 86).

Next, in the test set, we reconstruct maps using both
the TFCE (with the optimized λn) and RNN methods. For
each method separately, we compute the 2D Spearman rank
correlation with the respective ground-truth reconstructed map.
Figure 8 shows examples of reconstructed visual field maps
for all simulated visual loss conditions applied to one random
participant of the test set.

We evaluated the overall performance of both the TFCE and
RNN methods for all conditions tested, applying the fivefold
cross-validation for both methods using the same 40–10 split.
Each fold uses its own optimized λn as shown in Figure 6.

Figure 9 shows the performance for both the TFCE and RNN
methods, quantified with the spatial distribution of False Positives
and False Negatives (Figure 9A), the False Positive Rate/False
Negative Rate (Figure 9B), and with their accuracy, computed
as the 2D Spearman rank correlation between the reconstructed
and ground-truth maps (Figure 9C).

A Kruskal-Wallis test (nonparametric one-way ANOVA)
shows a statistically significant difference between the two
methods for all observed conditions (all p-values < 0.001), where
the RNN method proved to be more accurate than the TFCE in
all but one condition (No Loss). Overall, the RNN method also
showed less variability between participants (see Table 1).

Finally, to evaluate the generalizability of our approaches to a
real clinical context, we compared the TFCE and RNN methods
with the perimetry maps obtained with the Standard Automated
Perimeter HFA, the current gold standard in perimetry. For this
comparison, we tested participants with real VFD s of different
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FIGURE 7 | Example of the effect that adjusting the λ parameter has on a single participant, across all conditions. As the optimal λ (90) is approached, the number
of false positives across all conditions is minimized. Darker colors indicate a higher probability of that point being affected by visual loss (white = 0%, black = 100%).

severity and compared the MDHFA to the MDTFCE and MDRNN
computed as described in paragraph Application of eye-tracking
visual field reconstruction to clinical data in section “Materials
and Methods”. For this comparison, we took as optimal TFCE
λn the average between the optimal values of each fold. This
λn corresponds to the 87.4th percentile of the distribution of all
possible TFCE normative values. The clinical participants have
been treated as a new independent test set, no re-training of the
RNN model has been performed.

Contrary to the simulated scotomas case, the TFCE method
outperformed the RNN in terms of agreement with the MD
values of the HFA, showing a significant rank correlation between
MDTFCE and MDHFA (R2

TFCE = 0.88, pTFCE = 0.0117;R2
RNN =

0.49, pRNN = 0.112).

DISCUSSION

Our main conclusion is that it is possible to reconstruct visual
field maps, including the location of a scotoma, based on
eye-tracking data acquired with a method of continuous gaze
tracking. We consider this a breakthrough proof-of-principle, as
it indicates a pathway toward the design of a high-resolution,
patient-friendly way to perform perimetry. Below, we discuss the
merits (and limitations) of the two methods for visual field map
reconstruction that we presented and tested in this study: (1)

spatio-temporal integration of positional deviations performed
with TFCE and (2) recurrent deep artificial neural network
(RNN). Moreover, we will compare our techniques to other
proposed methods for eye-tracking-based perimetry and discuss
possible further improvements.

Continuous Gaze-Tracking Allows the
Reconstruction of Visual Field Maps
Threshold Free Cluster Enhancement
The spatio-temporal integration of positional deviations
via TFCE allows the reconstruction of visual field maps
without requiring any prior knowledge about VFDs. It is
a method easy to implement, computationally inexpensive,
and biologically-plausible: a loss of sensitivity in the visual
field is associated with lower accuracy and higher delays of
the eye-movements landing in the impaired region. This is
consistent with findings from previous studies involving patients
with central (Van der Stigchel et al., 2013) and peripheral
(Burton et al., 2014) VFDs.

The TFCE method performed quite well in reconstructing
visual field maps with no loss or with peripheral loss (accuracies
of 0.95 and 0.87, respectively), while it fared less optimally in
reconstructing central losses and hemifield losses (accuracies
of 0.31 and 0.74, respectively). A plausible reason for this
discrepancy is the heavy foveal bias that is inherent to continuous
tracking tasks: to accurately track the stimulus the observer
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FIGURE 8 | Reconstructed visual field maps for a single participant. Darker color indicates the higher probability of that point being affected by visual loss
(white = 0%, black = 100%). The TFCE maps, although less accurate than the RNN ones, still allow the recognition of the shape of the underlying scotomas. The
RNN maps, on the other hand, closely resemble the ground-truth maps.

must keep it as close as possible to the centermost part of
their visual field. In the case of occlusion of the fovea, this is
not possible, leading to prolonged errors that never allow the
positional deviations to return to zero (i.e., when the eye is on
the target). In the TFCE algorithm, this results in an erroneous
definition of the baseline (the h0 parameter in Eq. 2) which in turn
leads to an increased error rate toward the center of the visual
field for central loss and hemifield loss conditions (Figures 9A,B).

Furthermore, although this method fares well in detecting a
scotoma in its expected location, it struggles in precisely defining
the edges of the defect (for examples see Figure 8, second and
fourth rows). This can be due to the presence of compensatory
eye movement strategies in the observer or the use of a different
preferred retinal locus in the presence of VFDs, whether real
(Coeckelbergh et al., 2002) or artificial (Cornelissen et al., 2005;
McIlreavy et al., 2012).
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FIGURE 9 | (A) Spatial distributions of false positives and false negatives rates for each condition and for both TFCE and RNN methods. (B) Total error rates
combining false positive rate and false negative rate of TFCE and RNN. (C) Comparison between TFCE and RNN visual field map reconstruction accuracies. The
RNN method shows higher correlations with the ground-truth as well as being more consistent than the TFCE method. Statistically significant differences (p < 0.001)
are found across all tested conditions. Error bars show the 10th and 90th percentiles of each distribution.

Despite these limitations, the maps reconstructed with this
method corresponded well to those reconstructed using SAP
(Figure 10), and their respective MD values significantly
correlated with each other, showing promising potential for
generalizability into clinical use.

Recurrent Neural Network
The reconstruction of visual field maps employing the RNN
method proved to be highly accurate with simulated scotomas,
with an average accuracy across conditions above 0.90. This
method, however, did not show significant correlations with the

TABLE 1 | Variability of the two methods threshold free cluster enhancement
(TFCE) and recurrent neural network (RNN) measured with interquartile ranges
(IQR) of the accuracies of the visual field map reconstructions.

No Central Peripheral Hemifield Average

loss loss loss loss

Accuracy TFCE 0.9455 0.3122 0.8664 0.7435 0.7169

Accuracy RNN 0.9070 0.8066 0.9429 0.9555 0.9030

IQR TFCE 0.0693 0.1651 0.1038 0.1138 0.1141

IQR RNN 0.0693 0.1863 0.0303 0.0268 0.0782

maps of POAG patients obtained using SAP. This could be due to
the way the network was trained.

Using a limited number of predefined scotoma shapes made
the RNN optimal at reconstructing similar scotomas (with an
average accuracy above 0.90), but not as effective in dealing
with new shapes not encountered before. This is also evident
from the spatial distributions of false positives and false negatives
(Figure 9A, lower panel), where the RNN reveals having a
clear internal representation of the four scotoma shapes used in
the training data.

Another aspect that limits the implementation of the RNN in
a clinical setting is that, in its current form, it requires training
data for which the location of the scotoma is known. This
is easily achievable using simulated gaze-contingent scotomas,
but with actual patients, it is impossible to establish their
objective ground-truth. While the comparison to SAP is an
obvious approach as it is the current gold standard, this
method can be unreliable when testing moderate to severe
visual loss (Gardiner et al., 2014), cognitively impaired (Kim
et al., 1995; Murray et al., 2009; Pel et al., 2013; Diniz-
Filho et al., 2017; Jones et al., 2019), or very young patients
(<6 years old) (Tschopp et al., 1998; Patel et al., 2015),
leading to a distorted ground-truth that would not constitute
good training data.
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FIGURE 10 | Perimetric maps of the five patients tested with our continuous tracking test. The TFCE maps are reconstructed using as λn the average of the values
obtained by each fold (see Figure 6). C#1 and C#2 are healthy controls, while G#1, G#2, and G#3 and patients previously diagnosed with Primary Open Angle
Glaucoma. The black circle within the HFA maps represents the portion of the visual field covered by the TFCE and RNN maps. The TFCE method shows a
significant correlation between its Mean Deviation index and the one obtained with the HFA, whereas the RNN method does not (R2

TFCE = 0.88, pTFCE = 0.0117;
R2

RNN = 0.49, pRNN = 0.112).

We must note though that most of these limitations can
potentially be overcome by redesigning the way the training
data is acquired. In section “Current Limitations and Future
Improvements”, we propose possible solutions to the training
issue and other problems.

Clinical Relevance of Continuous
Gaze-Tracking Perimetry
The two computational methods to derive perimetric
information proposed in this study showed mixed outcomes
when compared to the outcome of Standardized Automated
Perimetry (SAP) as done with a Humphrey Field Analyzer
(HFA). While the MD derived from TFCE-reconstructed maps
significantly correlated with the MD obtained from SAP, the MD
derived from the RNN-reconstructed maps did not. However,
the TFCE method showed overall lower accuracy compared
to the RNN in the simulated visual field loss conditions. This
may lead one to question the present approach. However,
when comparing it to SAP, the clinical relevance of continuous
gaze-tracking and its associated computational methods must
be evaluated while considering a number of aspects. The first

aspect to consider is the biological plausibility of the method.
Our TFCE approach assumes a relationship between retinal
sensitivity at a given location and the oculomotor delay toward
said location. This relationship has been confirmed in patients
with peripheral or central scotomas (Van der Stigchel et al.,
2013; Burton et al., 2014) and it is the basis of many other
proposed forms of eye-movement-based perimetry (Kim et al.,
1995; Murray et al., 2009; Pel et al., 2013; Jones et al., 2019;
Martínez-González et al., 2020). This implies that in its current
form, the TFCE approach could already be deployed in a clinical
setting (perhaps after optimization of its hyperparameters,
see section “Current Limitations and Future Improvements”).
In contrast, the RNN approach lacks this a priori biological
plausibility. While this does not exclude it from being clinically
applicable, it does imply that the data used to train the network
must be sourced with great care to ensure biological plausibility
and clinical relevance. Further optimizing the RNN will
require collecting more and in particular more variegated
simulation data.

The second aspect to consider is the difference between static
and kinetic perimetry. The visual stimulation used in continuous
gaze-tracking perimetry is more analogous to kinetic perimetry

Frontiers in Neuroscience | www.frontiersin.org 12 April 2021 | Volume 15 | Article 650540

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-650540 April 24, 2021 Time: 18:15 # 13

Grillini et al. Continuous Eye-Tracking Perimetry

(e.g., as performed by means of a Goldman Perimeter) than to
the static stimuli used in SAP. When comparing the results of
static and kinetic perimetry, it is well documented that their
visual field maps do not always match, a phenomenon known
as Stato-Kinetic Dissociation (SKD). The basis of SKD can
be either physiological (Hudson and Wild, 1992; Osako et al.,
1997) or pathological (Safran and Glaser, 1980; Hayashi et al.,
2017). This implies that the maps derived from continuous
gaze-tracking perimetry and SAP may reflect different aspects
of visual sensitivity. On the one hand, continuous gaze-based
perimetry may emphasize the sensitivity of the magnocellular
system, while SAP may emphasize that of the parvocellular
system (Safran and Glaser, 1980). If so, this would imply that
continuous gaze-tracking perimetry and SAP would best be seen
as complementary approaches.

The final aspects to consider are comprehensiveness and
ease of use. While SAP does only perimetry, the use of eye
movements has two important clinical advantages: the data
acquired for perimetry can simultaneously be used for additional
neuro-ophthalmic evaluations (Grillini et al., 2020). Moreover,
according to patients, continuous gaze-tracking perimetry is less
tiring and easier to perform than SAP (Demaria et al., 2020).
These properties could make continuous gaze-tracking perimetry
an interesting approach for preliminary screenings.

Comparison With Existing Tools for
Eye-Tracking-Based Perimetry
The rationale behind the development of a perimetric tool based
on continuous gaze tracking is rooted in the previous evidence
that kinetic perimeters, i.e., devices such as the Goldmann
Perimeter and the Octopus 900 where the probing stimulus is
moving, outperform SAP both in reliability and ease of use in
patients aged 5–8 (Patel et al., 2015). This suggests that the use of
moving stimuli in perimetry, although considered not optimal for
the general population, might be relevant within specific clinical
contexts, and eye-tracking techniques constitute a fertile ground
to explore this possibility.

We are not the first to propose eye tracking as a means
toward removing some critical aspects of SAP, such as its high
cognitive load and the need for manual feedback (Kim et al.,
1995; Murray et al., 2009; Pel et al., 2013; Jones et al., 2019). In
fact, even the counting of fixation losses and determining blink
frequency can be seen as an elementary form of eye-tracking that
is used to improve the reliability of SAP (Ishiyama et al., 2015;
Asaoka et al., 2019).

So far, all existing tools for eye-tracking-based perimetry
employ the same working principles of conventional perimetry
with the primary difference being using ocular responses instead
of manual ones. The patient is still asked to repeatedly answer the
question “do you see the stimulus?”, and the answer is provided
by the landing (or not) of a saccade within a Region-of-interest
(ROI) around the target (Kim et al., 1995; Jones et al., 2019), or
by the latency of a saccade that fell within the ROI of a displaced
target (Pel et al., 2013).

This approach comes with the advantage of allowing a
precise sensitivity threshold estimation for each tested visual

field location but has two major downsides. First, since each
point needs to be tested individually and repeatedly, the spatial
resolution is intimately interrelated to the available testing time.
Second, discrete eye movement perimetry is heavily reliant
on optimal instrument calibration: if the average calibration
error exceeds the ROI radius of each target, it is very well
possible to have completely invalid maps where none of the
measured locations on the visual field reflects the true underlying
visual sensitivity.

Our method based on continuous tracking is designed to be
less affected by these sampling- and calibration-related issues.

First, as each time sample contributes to the final map
and spatial binning is applied only a posteriori, even without
any smoothing, it is possible to obtain detailed maps (see
Figures 6, 7, 9).

Second, although less affected by the calibration issues that
might arise during a clinical evaluation, our gaze-based method
of visual field mapping can still allow for the classification of
VFDs. Our method is based on the same stimuli as used in a
previous study by Grillini et al. (2018), where spatio-temporal
features were used to classify the shape of the underlying
VFD. The categorical classification in that study was performed
by training a simple decision tree with the features explicitly
extracted from the gaze and stimulus data. The temporal features
are affected minimally by poor calibration and still yield sufficient
information about the type of scotoma.

In the present study, these spatio-temporal features of
eye movements are not made explicit, but their categorical
classification is still performed by our neural network (see
Figure 4, upper stream). As the temporal dependencies are taken
into account by the long short-term memory properties of the
bidirectional GRUs layers (Cho et al., 2014), the network can
perform a satisfactory VFD classification (not reconstruction)
also in the presence of rather poor calibrations. We provide
empirical evidence for this claim in Supplementary Materials,
where we show how the RNN is robust even in the presence of
rather severe distortions applied to the data. The performance
of the RNN remains above chance-level (25%) for absolute
distortions in the data up to 5◦ (see Supplementary Figures 3, 4),
with an accuracy above 60% up until 3◦.

Current Limitations and Future
Improvements
While we believe that the results presented constitute a promising
proof-of-concept of the viability of continuous-gaze-tracking
perimetry, their implementation into a clinical setting would
still require several improvements, both in the acquisition and
analysis of gaze data.

First, we trained the RNN using simulated VFDs to establish
a ground-truth for the presence vs. absence of a scotoma.
While this is not feasible with real scotomas, an alternative is
to train the RNN with more realistic and diverse visual loss
simulations. The ones that we used were either masking the
stimulus completely or not at all, as well as having stereotyped
shapes lacking all the idiosyncrasies that can be present in
actual visual field impairments. Training the RNN with different
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“archetypal” shapes with multiple levels of contrast reduction
could provide a significant improvement over our present
results (Elze et al., 2015). Another re-training possibility could
use data augmentation in a similar way to what we show
in Supplementary Materials: the RNN is already robust to
miscalibration error, but its performance could improve further
if the training data is augmented with such perturbations.
Data augmentation has proven to be one of the most effective
methods to improve the robustness of neural networks to noise
and other data perturbations (Hernandez-Garcia et al., 2019;
Rusak et al., 2020).

Second, the TFCE method requires two parameters to be
defined beforehand: H and E, representing the weights to
be attributed to the height and the extent of the positional
deviations, respectively. These parameters are typically
chosen empirically (Smith and Nichols, 2009), while a future
implementation of this method can comprise a preliminary
optimization phase in which the parameters H and E are chosen
analytically using machine learning. Possible computational
approaches for the optimization of the TFCE hyperparameters
would be grid-search cross-validation (Abu-Mostafa et al., 2012)
or Bayesian optimization (Brochu et al., 2010).

Third, optimization of the stimulus properties. The current
stimulus is the same used to extract the spatio-temporal
properties of eye movements for neuro-ophthalmic screening
(Grillini et al., 2020), but it can be further optimized to
perform visual field assessment. For instance, properties such
as luminance contrast and speed can be adjusted to “lengthen
the tail” of the normative distribution of TFCE values (see
Figure 5B), thus facilitating the thresholding between “healthy”
and “impaired” values. We hypothesize that adopting test
conditions closer to the sensory limits may help in this (i.e., using
a stimulus contrast close to the contrast-sensitivity threshold and
using an average speed above 30◦/s to make smooth pursuit
more difficult).

Analogously, the trajectory of the moving target can be
adjusted with the goal of maximizing visual field coverage
and minimizing central bias. For example, the positions to
which the target will “jump” can be drawn from a pattern
similar to the stimulus locations of SAP, rather than being
randomly chosen. This would ensure optimal coverage while
retaining the advantage of a higher spatial resolution brought by
continuous gaze-tracking.

Fourth, the present simulated visual loss data used for training
the RNN (healthy controls) and the clinical data (glaucoma
patients) used to test it were acquired from two groups with
different age ranges (20–30 vs. 70–80). The different age ranges
may have affected eye movements even in the absence of a clinical
condition (Rottach et al., 1996).

Lastly, an additional improvement could be to take into
account the physiology of the retina and model H and E
according to the “hill of vision” (Jacobs and Patterson, 1985). In
this case, different values of H and E could be determined for
sections of the retina at different eccentricities, such as the central
peak (0◦–10◦), the mid-plateau (15◦–25◦), and the peripheral
decay (above 25◦) and combined with the hyperparameter
optimization methods mentioned above for best results.

CONCLUSION

We developed and proposed two methods that enable the
reconstruction of visual field maps by estimating retinal
sensitivity using continuous gaze-tracking data: (1) spatio-
temporal integration of positional deviations performed
with TFCE and (2) recurrent deep artificial neural network
(RNN). The two methods possess complementary qualities
(and downsides): the TFCE is biologically-plausible and
computationally efficient while the RNN is remarkably accurate
when provided with proper training data. We conclude that both
methods can contribute to making gaze-based perimetry more
viable in the future.
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