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The early detection and grading of gliomas is important for treatment decision and
assessment of prognosis. Over the last decade numerous automated computer analysis
tools have been proposed, which can potentially lead to more reliable and reproducible
brain tumor diagnostic procedures. In this paper, we used the gradient-based features
extracted from structural magnetic resonance imaging (sMRI) images to depict the
subtle changes within brains of patients with gliomas. Based on the gradient features,
we proposed a novel two-phase classification framework for detection and grading of
gliomas. In the first phase, the probability of each local feature being related to different
types (e.g., diseased or healthy for detection, benign or malignant for grading) was
calculated. Then the high-level feature representing the whole MRI image was generated
by concatenating the membership probability of each local feature. In the second phase,
the supervised classification algorithm was used to train a classifier based on the high-
level features and patient labels of the training subjects. We applied this framework
on the brain imaging data collected from Zhongnan Hospital of Wuhan University for
glioma detection, and the public TCIA datasets including glioblastomas (WHO IV) and
low-grade gliomas (WHO II and III) data for glioma grading. The experimental results
showed that the gradient-based classification framework could be a promising tool for
automatic diagnosis of brain tumors.

Keywords: glioma, detection, grading, gradient, classification, MRI

INTRODUCTION

Gliomas are a group of primary brain tumors that arise from glial cells of the central nervous
system (CNS). Traditionally, gliomas are classified by the World Health Organization (WHO)
into four grades (from I to IV) depending on their histopathological features (Louis et al., 2007).
However, the newest WHO classification of CNS tumors, published in 2016, combined both
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histopathological and genotypic features in the classification of
these tumors (Louis et al., 2016). In this classification, WHO
grade II and III are grouped under the low-grade glioma (LGG)
category since they share common IDH mutations. Most of these
tumors may also develop into the WHO grade IV glioblastoma
(GBM) that has very high malignant degrees and poorer
prognosis (Ohgaki and Kleihues, 2005). Compared to GBM, LGG
has more optimistic outcomes with longer survival times (Brat
et al., 2015). Therapeutic approaches are also different for these
two groups of gliomas. Treatment for GBM normally includes
surgical resection followed by radiotherapy with or without
chemotherapy, while treatment for LGG is usually surgical
resection followed by close observation (Woodworth et al., 2006).
Hence, correctly grading of gliomas is very important for correct
treatment. Conventionally, the determination of glioma grade
depends on several histopathological features including mitotic
activity, cytological atypia, neoangiogenesis, and tumor necrosis
(Hsieh et al., 2017b). However, these features are not always easy
to be recognized, and physicians may have different views about
them, thus some misdiagnosis can still happen due to glioma
heterogeneity or subjective judgments by physicians. Meanwhile,
the surgery needs to resect some normal brain tissues, which may
lead to sequelae, dysfunction or even functional loss after surgery.

With the rapid development of medical imaging technology,
magnetic resonance imaging (MRI) is commonly used as a
non-invasive tool to detect and determine the characteristics
of brain tumors in clinic because it can provide a wide range
of physiologically authoritative contrasts to recognize diverse
tissues and enhances assessment of heterogeneous patterns of
tissue compositions inside diffuse gliomas (Leach et al., 2005).
Besides the typical sequences such as T1-weighted imaging
(T1WI) and T2-weighted imaging (T2WI), other MRI techniques
including diffusion-weighted imaging (DWI), MR spectroscopy
(MRS), and perfusion-weighted imaging (PWI) can also be
applied to discriminate between GBM and LGG (Provenzale
et al., 2006; Tsougos et al., 2012; Svolos et al., 2013). Although
a myriad of imaging data of gliomas has been produced every
day worldwide, the detection and grade identification mainly
depend on visual examination by experts, which is both time
consuming and prone to errors. In recent years, artificial
intelligence has made a huge impact on many aspects in human
life including medicine and healthcare domain. Machine learning
algorithms, the core techniques in artificial intelligence, can
provide assistance for more automatic and objective diagnosis
of brain tumors. Many algorithms can potentially discover the
underlying subtle change patterns in patient brains by analyzing
imaging data, which is sometimes difficult for humans to
identify with eyes.

In MRI image analysis, feature extraction is a type of
dimensionality reduction method that represents interesting
parts of an image as informative features, facilitating the
subsequent classification steps. For glioma detection and grading,
traditional methods extracted hand-crafted image features and
then trained machine learning models. Hsieh et al. (2017a)
evaluated the malignancy of gliomas (GBM = 34, LGG = 73)
using combination of global histogram moment features and
local textural features, achieving an accuracy of 88% and an AUC

of 0.89. Skogen et al. (2016) discriminated between low grade
gliomas (grade II = 27) and high grade gliomas (grade III = 34
and grade IV = 34) using MRI textural features with different
anatomical scales, achieving an AUC of 0.910. In recent years,
deep learning methods such as convolutional neural networks
(CNN) have shown the state-of-the-art performance in medical
image analysis (Shen et al., 2017), including applications for
tumor diagnosis. Yang et al. (2018) combined the deep learning
with transfer learning for glioma grading (GBM = 61, LGG = 52)
on conventional MRI images. AlexNet and GoogLeNet were
fine-tuned from models that pre-trained on the ImageNet
dataset, achieving the best test accuracy of 94.5%. Although
these studies showed good performance on glioma grading, their
experiments depended on manual selection of slices and ROIs
by experienced neuroradiologists, which is time-consuming and
error-prone. Zhuge et al. (2020) investigated fully automated
methods for grading gliomas (GBM = 210, LGG = 105) by
using deep CNN models including tumor segmentation and
grade classification, achieving test accuracy of 97.1%. However,
the process of distinguishing tumor boundaries from healthy
cells is still a challenging task in the clinical routine. Some
studies applied multistream deep learning method to obtain
better performance. Ge et al. (2018) proposed a multistream
deep CNN architecture for glioma grading followed by multi-
modality MRI data fusion, achieving test accuracy of 90.87%. Ali
et al. (2019) used the generative adversarial networks (GANs) for
data augmentation and employed a multistream convolutional
autoencoder (CAE) to extract multi-modality MRI features for
classification of low/high grade gliomas, achieving test accuracy
of 92.04%. Although deep learning methods have shown excellent
performance in biomedical domains, their lack of interpretability
still remains an issue, especially for clinical practice.

In this study, we propose a two-phase classification framework
to distinguish patient from healthy controls or discriminate
between GBM and LGG based on MRI images. Different from
other studies, this framework analyzes all slices of a 3D MRI
image without segmentation of brain tumors. In the first phase,
we extract local features slice by slice using the Histogram of
Oriented Gradients (HOG) algorithm. This algorithm helps to
generate high-quality representations that depict image edge and
texture. Zhu et al. (2015) proposed a multi-view learning method
extracting both ROI features and HOG features from each MRI
image for Alzheimer’s Disease diagnosis. Their method can help
enhance disease status identification performance. Ghiassian
et al. (2016) described a HOG-based learning algorithm that
can produce effective classifiers for ADHD and autism. They
applied the algorithm on two large public datasets and achieved
good performance on both datasets. Since the histopathological
characteristics of the two different grades of glioma influence the
pixel intensity and spatial distribution within MRI images, we
think that the HOG method may also help in the differentiation
between GBM and LGG. We hypothesize that each local feature
may be related to certain type, e.g., normal tissue or tumor
tissue, with some membership probability. Then we combine
the membership probability of each local feature into one high-
level feature vector that is fed into the classifier trained in the
second phase. By using this two-phase classification framework,
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we can identify whether tumors occur in the brain or predict
the tumor grade.

MATERIALS AND METHODS

Data Acquisition
In this study, we achieved two tasks in glioma diagnosis including
glioma detection and glioma grading. We collected structural
MRI (sMRI) data from patients with glioma and healthy controls
in Zhongnan Hospital of Wuhan University. Because there is no
grading information about these sMRI data, we used them in
this study only for glioma detection task. We also downloaded
the sMRI data from the Cancer Imaging Archive (TCIA) public
repository. The data from TCIA only include images of different
glioma grades, thus we used them in the glioma grading task. For
convenience, we named these two datasets DS-Detect and DS-
Grade, respectively, according to their different classification task.

The DS-Detect dataset contains 99 subjects including 62
patients with glioma and 37 healthy controls. Imaging was
performed on a SIEMENS MAGNETOM Trio Tim 3.0T MRI
Scanner. Whole brain coverage was obtained with 23 contiguous
6 mm axial slices (TR = 7,000 ms, TE = 94 ms, TI = 2,210 ms,
FA = 130, matrix size = 464 × 512). The DS-Grade dataset
includes 134 subjects among which 76 are diagnosed as GBM
(grade IV), and 58 as LGG (grade II and III). Both datasets
include three sMRI modalities: T1-weighted, T2-weighted, and
T2-FLAIR. We chose T2-FLAIR modality since T2-FLAIR
images are of higher-contrast and the high signal of tissue
indicates the possible tumor growth.

Image Preprocessing
As the first step of image preprocessing, the MRIcron tool was
used to convert the original DICOM scans of an individual
into a single NifTI image file. To solve the problem of non-
standardized MRI intensity values among intra-patient and inter-
patient acquisitions, we used the bias correction and Z-score
normalization method, respectively. The scan bias correction
algorithm implemented in SPM12 was used to minimizes MRI
intensity inhomogeneity within a tissue region. To remove
inter-patient intensity variability, we performed a Z-score
normalization for each image, which normalize an image by
simply subtracting the mean and dividing by the standard
deviation of the whole brain, followed by clipping of the intensity
value at [−4, 4] and a transformation to [0, 1]. To support
comparison in a similar position at similar sizes, MRI image
need to be spatial normalized. We used the spatial normalization
procedure provided by SPM12 toolbox to register all MRI images
to standard MNI space.

Feature Extraction
Dalal and Triggs (2005) first applied HOG to pedestrian detection
in static images and achieved higher performance than other
local feature descriptors such as SIFT and HAAR (Dalal and
Triggs, 2005). Since then HOG has been widely used in computer
vision applications such as person and object detection or
recognition (Qiang et al., 2006; Li et al., 2008; Yuan et al., 2009;

Khan et al., 2010; Overett and Petersson, 2011; Kobayashi, 2013;
Simo-Serra et al., 2013). The fundamental concept of HOG
is that local object appearance and shape within an image
can be described by the distribution of intensity gradients or
edge directions. Here, we gave a brief introduction of HOG
calculation process.

First, as illustrated in Figure 1A, the whole MRI image was
divided into a dense grid of uniformed spaced regions that is
called cells in HOG’s terminology. The cell could be in any shape,
but rectangular shape (R-HOG) and circular shape (C-HOG) are
the most widely used ones. Due to better performance in the
pedestrian detection experiments, we chose the R-HOG in this
study. Secondly, the gradient of each pixel within the cell was
calculated including magnitude and direction. Figure 1B shows
the gradient calculation result of one 4 × 4 cell. Each arrow
in the figure represents the corresponding pixel gradient – the
arrow direction means gradient direction and the arrow length
means gradient magnitude. Then a process called orientation
binning was used to generate the cell histogram. The histogram
is essentially a vector of N (e.g., 8) channels (bins) that are evenly
spread over 0 to 360 degrees if the gradient is considered to
be “signed.” Figure 1C shows a partition scheme including 8
channels. Each arrow represents the center direction of a channel.
The channel 0 is illustrated as the shaded area, and so on.
Thus, which channel is selected depends on the calculated pixel
gradient direction. Furthermore, each pixel within the cell casts
a weighted vote for its channel based on the gradient magnitude.
Finally, a cell histogram was generated by counting the weighted
number of pixels distributed in different direction channels as
shown in Figure 1D. And the concatenation of all the cell
histograms represents the feature descriptor of the MRI image.
The histogram may be contrast-normalized to improve accuracy
and reduce effect of changes of illumination and shadowing
(Dalal and Triggs, 2005).

Two-Phase Classification Framework
In traditional HOG application like pedestrian detection, the
HOG feature vector of each cell is concatenated into one high-
dimensional vector representing the 2D image. However, since
the preprocessed MRI image is a 3D NifTI format, we need to
extract the HOG feature from each slice then concatenate all the
HOG features to form a representation of the whole 3D image.
The dimension of the final HOG feature vector thus is quite high,
which may cause the “curse of dimensionality” problem.

To address this, we proposed a two-phase classification
framework that could transform the low-level gradient features
into high-level semantic features. In the first classification
phase, we calculated the HOG feature of every cell in an MRI
image from the first slice to the last slice. Then instead of
directly concatenating these local HOG features into one high-
dimensional feature vector, we analyzed these local features
independently and then integrated the analyzing results for
further process. We have proposed this “local to whole” approach
in a previous study that used SIFT features to diagnose
the neurological diseases (Chen et al., 2014). Specifically, we
first transformed each HOG feature into one real number,
which indicates the probability of each cell relating to one
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FIGURE 1 | HOG feature extracted from the MRI image. (A) The MRI image divided into cells. (B) The gradient calculation result of one cell. (C) The partition scheme
including 8 channels. (D) The cell histogram generated by counting the weighted number of pixels distributed in different direction channels.

specific type, and then these real numbers were concatenated
to form a compact representation of the whole MRI image.
This transformation from original HOG feature to cell type
feature can reduce the dimensionality of feature space, thus
alleviating the impact of overfitting problem. In the second
classification phase, the new representation of brain images in
the training set were used to train a classifier to detect gliomas
from brains or distinguish between different grades. We take
the glioma grading as example to illustrate the overall two-phase
classification framework.

Some studies about brain tumors depend on experienced
neuroradiologists to select the most representative slices from
the image scan, and delineate the tumor contour manually as
ROI for feature analysis (Skogen et al., 2016; Hsieh et al., 2017a).
However, the tumor location can be anywhere in the brain, thus
such ROI process may be labor-intensive and time-consuming,
which is not appropriate for clinical practice. In this study, we
designed an automatic pipeline to analyze the image features
without manual or semi-manual ROI delineation. Firstly, the
whole 3D sMRI image was sliced into a series of 2D images along

the scan orientation. Then for every slice, the feature descriptor
of each cell was extracted using the HOG algorithm. This feature
extraction process is fully automatic and can cover the entire
brain. For the sake of convenient illustration, only the slice
with the largest axial cross-section of the tumor was used as an
example in Figure 2. Suppose a 3D sMRI image includes m slices
and each slice is divided into n cells, then a total of m× n cells are
required to be analyzed for one brain.

After we applied the HOG algorithm to the sMRI image,
each cell was represented by its local HOG feature. We analyzed
each feature independently and supposed it to be related to
different types. Because in the MRI preprocessing phase the
MRI images were already aligned to the standard brain template,
those HOG features that were extracted from the same location
of different brains could be compared based on their gradient
histogram, and then their respective feature type be identified as
the Figure 2 illustrated.

Since the exact label of the whole brain rather than the type
of each local brain region is known, we applied unsupervised
clustering methods to discriminate the type of each HOG feature.
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FIGURE 2 | The gradient-based two-phase classification framework.

In machine learning, a clustering method is used to determine a
classification of n subjects into K discrete classes (K < < n) for a
given dataset X = {x1, x2, x3, . . ., xn}, with each subject xi, i = 1,
2, 3, . . .,n characterized by m features, xi = (xi1, xi2, xi3, . . ., xim).
The main objective of clustering is to discover and describe the
underlying structure in the data. There are two kinds of clustering
methods including “hard clustering” that exclusively assigns each
subject to a single cluster, and “soft clustering” that is flexible
and allows each subject to be assigned to more than one cluster.
K-means, one of the most widely used hard clustering methods,
partitions the subjects into k clusters given the data points and
k number of centroids in an automated fashion. As a variation
of the K-means algorithm, the fuzzy C-means algorithm is based
on fuzzy logic principles and assigns each subject a possibility
in each cluster center from 0 to 100 percent. In this study, we
used the fuzzy C-means algorithm to calculate the possibility
of each HOG feature being related to diseased/healthy status or
GBM/LGG status. The reason we used fuzzy clustering method is

that the boundary between these different types of image features
is usually ambiguous, e.g., some cells may be located in both
malignant and benign brain regions. So, if only using traditional
hard-thresholding clustering method like K-means to classify
the feature without considering the ambiguity, the classification
result can not reflect the actual grouping complexity of the brain
features thus leading to reduced classification performance. In
Figure 2, the decimal numbers like 0.4, 0.6 are the probability
of local HOG feature being classified into GBM-related cluster
(or LGG-related cluster). For the two datasets, we have tried
differentK values, and foundK = 2 is the best value. Furthermore,
the clustering process also generated centers of the two clusters
that can be used to predict to which cluster the local features
of new unknown subject belongs based on the nearest centroid
classification method.

The local feature clustering result only represents the status of
individual brain regions, while the status combination of all brain
regions is more significant for describing the underlying pattern
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of the whole brain. Thus for every subject, we concatenated
the fuzzy labels of each feature from the first cell to the last
cell across all the MRI slices as shown in Figure 2. Instead of
directly concatenating original HOG feature of each cell, we
used the clustering method to transform each HOG feature
to another high-level feature that indicates the status of the
corresponding brain region (e.g., 60% for malignant). This
feature transformation can reduce data dimensionality and
alleviate the problem of overfitting. As a new representation
of each subject’s brain image, the compact probability vector
was used as the input feature to a Support Vector Machine
(SVM) discriminative classifier. In machine learning, SVM
is a supervised learning algorithm that outputs an optimal
hyperplane which separates the data samples into two classes.
And it has been proved highly successful in solving a wide range
of pattern recognition and computer vision problems such as
text detection and image classification, also in the classification of
MRI data (Magnin et al., 2009; Zacharaki et al., 2009; Ecker et al.,
2010). If the data is not linearly separable in the original feature
space, SVM can efficiently performs a non-linear classification
using a so-called kernel function, implicitly mapping their inputs
into high-dimensional feature spaces to achieve separability.

The above steps described the whole training process of
the two-phase classification framework. This training process
produced two classifiers, the nearest centroid for local brain
regions and SVM for the whole brain image. Then we can apply
these classifiers to unknown brain samples in the test dataset.
Like the training process, the test brain sample was also divided
into local regions and the HOG feature was extracted for each
brain region. These local features were first identified to be
related to different types using the nearest centroid classifier
trained in the first phase. Then the classification results of all the
individual features were combined and fed to the SVM classifier
trained on the second phase to predict the final result of the test
brain sample, e.g., whether the brain contains gliomas or what
grade the glioma is.

RESULTS

To evaluate the performance of our two-phase classification
framework and solve the problem of the imbalanced datasets,
the stratified 10-fold cross-validation (CV) method was applied
to train the models. The stratified method can preserve the
proportion of positive to negative samples in each fold to match
the original distribution in the whole dataset. Furthermore, the
variance of the model will decrease by performing several random
runs, in each of which all samples are first randomly shuffled and
then split into a pair of train and test sets. Since we extracted
HOG features slice by slice and combined their clustered results
into one feature vector representing the whole 3D MRI image,
our random data shuffling for CV is subject-separated.

In this study, we evaluated the performance of our
proposed two-phase classification model using the following
measurements: accuracy (ACC), sensitivity (SEN), specificity
(SPE), and area under curve (AUC). These measurements can
be calculated from the classification confusion matrix. Here, the

accuracy is defined as the ratio of correctly classified subjects
over all subjects. The sensitivity is the ratio of correctly classified
subjects with glioma over all subjects with glioma, and the
specificity is the ratio of correctly classified subjects without
glioma over all subjects without glioma. The AUC refers the
area under the receiver operating characteristic (ROC) curve.
The larger AUC value means better model performance. For our
unbalanced dataset, the AUC metric is especially useful to assess
the overall performance of the model. In addition, the cell size is
a parameter that will affect the performance of the model. In the
experiment, we assigned the cell size with value from 10 to 20 and
calculated the above measurements, respectively. In this study, we
accomplished two classification tasks including glioma detection
and glioma grading using our proposed gradient-based two-
phase classification framework. Figure 3 shows the performance
of these two classification tasks.

The measurements from Figure 3 were calculated after 10
random runs of stratified 10-fold cross-validation for each
cell size. The figures showed that the performance for glioma
detection outperformed that for glioma grading. The reason lies
in that glioma detection is just to identify the occupying effect
in the patient brain, while glioma grading intends to distinguish
different morphological pattern between high grade and lower
grade, thus the detection task seems easier than the grading task.

During the second phase in SVM training, we obtained a
weight vector that indicates the direction along which the two
classes of subjects differ most. This vector can be used to
identify and localize the most discriminant HOG features that
account for case-control separation. By sorting the weights in
descending order or setting a threshold value, we identified the
brain regions that most likely related to tumors. Figure 4 shows
the thresholding results for a patient with glioma.

The baseline method for HOG is that extracting the local HOG
features and then directly concatenating them into one feature
vector as representation of the whole image. In the experiment,
we compared the performance between the baseline method and
our proposed method, which transformed regional HOG features
into high-level features, for each glioma diagnostic task. We
also used the stratified 10-fold cross-validation strategy for the
baseline method. Tables 1, 2 shows the performance of the two
methods. The cell size in each table means the optimal parameter
to obtain the best model performance.

For summarizing the performance of our proposed
classification method, we showed the confusion matrix for glioma
detection task and glioma grading task in Tables 3, 4, respectively.

DISCUSSION

As an advanced diagnostic imaging technology, brain MRI
can provide more objective and reliable evidence for tumor
detection and grade evaluation with invasive procedure. In the
present study, a two-phase classification framework based on
HOG features was developed for supporting clinical diagnosis
of brain tumors such as gliomas. We applied the framework to
two different tasks including identifying patients with gliomas
from healthy controls and differentiating between GBM (WHO
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FIGURE 3 | Performance of glioma detection and glioma grading.

grade IV) and LGG (WHO grade II and III). In clinic, the
glioma detection task is the first step for the subsequent
grade differentiation. The performance for glioma detection task
achieved an accuracy of 86.3%, a sensitivity of 89.4%, a specificity
of 80.5%, and an AUC of 0.921. The results may be good enough
to provide diagnostic suggestions to physicians. By comparison,
the glioma grading performance achieved an accuracy of 76.3%, a
sensitivity of 83.7%, a specificity of 68.7%, and an AUC of 0.806.
The reason may be that the differences between healthy brains
and diseased brains are more significant than those between
GBM and LGG. Furthermore, the heterogeneous composition of
aggressive cellular tissues may also cause misdiagnoses. Although
machine learning techniques have been widely used in prior
tumor grading studies, it is striking that most of these previous
studies used the state-of-the-art radiomics or deep learning
methods (Skogen et al., 2016; Hsieh et al., 2017a; Yang et al., 2018;
Zhuge et al., 2020). Some of these approaches obtained grade

classification accuracy over 90%. However, these methods are
more dependent on stable and reproducible segmentation of the
ROI, and a large amount of high-dimensional feature extraction
and evaluation. Although our two-phase classification framework
did not achieve much high performance on tumor grading,
we directly extracted gradient features from the MRI images
without much computational complexity. And our method did
not depend on tumor segmentation by physicians or algorithms.
Thus, our automated diagnostic tool may be more appropriate
for clinical usage.

The first contribution of our work is that we have applied the
computer vision techniques, e.g., HOG descriptor, to the analysis
of MRI medical images. HOG and other feature descriptors such
as SIFT are commonly used in object detection task such as
human face identification. Compared to SIFT that only captures
some salient key feature points, HOG describes the gradient
change for each pixel (voxel for 3D HOG), so HOG features are
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FIGURE 4 | Discriminant features related to brain tumors.

good at depicting small or subtle changes within brain. Since
the gliomas can cause local occupying effect, some structural
changes will occur in the brain, which can lead to abnormal
intensity-based gradient changes on the MRI images of patients
with gliomas compared to images of healthy brains. For different
grades of gliomas, the gradient change pattern is also supposed
to be different thus can be used as discriminating features to
estimate the tumor grade.

The second contribution of our work is to propose the
two-phase classification framework. In our framework, we
calculated HOG feature on each local brain region that is
called a “cell” in the algorithm. Instead of directly concatenating

each HOG feature into one feature vector as what it is
traditionally used in pedestrian detection, we analyzed each
HOG feature independently using machine learning methods.
Specifically, we applied the fuzzy clustering method on HOG
features from the same position on an MRI image, which
transformed each HOG feature into a membership probability
related to diseased status. Then we can obtain a high-level
semantic feature by concatenating the clustered result of each
HOG feature representing the distribution pattern of diseased
brain regions for the whole MRI image. On the one hand,
this transformation between different feature space can indeed
reduce the dimensionality of the final feature representation
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TABLE 1 | Comparison of the glioma detection performance evaluated by 10-fold
cross-validation between the baseline concatenating HOG method and our
proposed transformed HOG method.

Dataset Cell
size

Measurements Our method
(SD)

Baseline
method (SD)

DS-Detect 20 ACC 86.3% (1.4) 76.8% (1.2)

SEN 89.4% (1.9) 84.1% (1.9)

SPE 80.5% (2.5) 63.7% (2.4)

AUC 0.921 (0.007) 0.846 (0.013)

TABLE 2 | Comparison of the glioma grading performance evaluated by 10-fold
cross-validation between the baseline concatenating HOG method and our
proposed transformed HOG method.

Dataset Cell
size

Measurements Our method
(SD)

Baseline
method (SD)

DS-Grade 18 ACC 76.3% (2.4) 72.0% (2.3)

SEN 83.7% (3.2) 72.5% (3.4)

SPE 68.7% (2.7) 71.6% (2.8)

AUC 0.806 (0.022) 0.777 (0.021)

TABLE 3 | Confusion matrix for glioma detection task.

Predicted class

glioma non-glioma

Actual class glioma TP = 56 FN = 6

non-glioma FP = 6 TN = 31

TABLE 4 | Confusion matrix for glioma grading task.

Predicted class

GBM LGG

Actual class GBM TP = 62 FN = 14

LGG FP = 19 TN = 39

in order to avoid overfitting, which is especially necessary
for 3D MRI images including many 2D slices and relatively
small number of annotated medical images; on the other, it
enables us to identify the tumor-related features that contribute
most to the final classification result. We have adopted such
region-independent analysis approach in our previous studies
on diagnosis of Alzheimer’s disease, Parkinson’s disease, bipolar
disorder and autism using MRI images (Chen et al., 2014,
2020). And the results showed that this approach analyzing
local features independently could facilitate the identification of
potential tumor regions in neurological diseases.

In addition to the brain tumor classification framework, we
also developed a computer-aided diagnosis platform for brain
tumor integrating different parts of the framework. Currently,
this platform needs to manually transfer the original DICOM
image data to the platform, which is not efficient and timely. Next,
we plan to develop a network interface between the platform
and the Picture Archiving and Communication Systems (PACS)

of Zhongnan Hospital of Wuhan University. This interface can
ensure an automatic imaging data transfer from PACS to the
platform, which may improve the applicability of the platform in
clinical settings.

In addition to the strengths discussed earlier, our study has
several limitations. First, we used only T2-Flair sequences that
can depict peritumoral edema with clear signals, while may
be weak in demonstrating other tumor characteristics such
as necrosis and angiogenesis module. In the future study, we
plan to investigate the possible complementary power from
other MRI sequences under routine preoperative protocol.
Second, the DS-Grade dataset includes both grade II and III
gliomas with three different histological cell types including
astrocytoma, oligodendroglioma, oligoastrocytoma. Each of the
glioma subtypes is considered to contain different MRI signature.
And the heterogeneity within the DS-Grade dataset may account
for the poorer model performance for differentiating GBM and
LGG. So, it is necessary to collect sufficient data consisting of
various glioma subtypes for model validation in the next study.
Third, our study did not consider demographic information of
the subjects (e.g., patient age), which may provide additional
discriminatory value.
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